xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision ee8a99bd)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/console.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/serial.h>
19 #include <linux/smp.h>
20 #include <linux/types.h>
21 #include <linux/string.h>	/* for memset */
22 #include <linux/tty.h>
23 #include <linux/time.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial_core.h>
26 #include <linux/serial_8250.h>
27 #include <linux/of_fdt.h>
28 #include <linux/libfdt.h>
29 #include <linux/kexec.h>
30 
31 #include <asm/processor.h>
32 #include <asm/reboot.h>
33 #include <asm/smp-ops.h>
34 #include <asm/irq_cpu.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bootinfo.h>
37 #include <asm/sections.h>
38 #include <asm/time.h>
39 
40 #include <asm/octeon/octeon.h>
41 #include <asm/octeon/pci-octeon.h>
42 #include <asm/octeon/cvmx-mio-defs.h>
43 
44 extern struct plat_smp_ops octeon_smp_ops;
45 
46 #ifdef CONFIG_PCI
47 extern void pci_console_init(const char *arg);
48 #endif
49 
50 static unsigned long long MAX_MEMORY = 512ull << 20;
51 
52 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
53 
54 struct cvmx_bootinfo *octeon_bootinfo;
55 EXPORT_SYMBOL(octeon_bootinfo);
56 
57 static unsigned long long RESERVE_LOW_MEM = 0ull;
58 #ifdef CONFIG_KEXEC
59 #ifdef CONFIG_SMP
60 /*
61  * Wait for relocation code is prepared and send
62  * secondary CPUs to spin until kernel is relocated.
63  */
64 static void octeon_kexec_smp_down(void *ignored)
65 {
66 	int cpu = smp_processor_id();
67 
68 	local_irq_disable();
69 	set_cpu_online(cpu, false);
70 	while (!atomic_read(&kexec_ready_to_reboot))
71 		cpu_relax();
72 
73 	asm volatile (
74 	"	sync						\n"
75 	"	synci	($0)					\n");
76 
77 	relocated_kexec_smp_wait(NULL);
78 }
79 #endif
80 
81 #define OCTEON_DDR0_BASE    (0x0ULL)
82 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
83 #define OCTEON_DDR1_BASE    (0x410000000ULL)
84 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
85 #define OCTEON_DDR2_BASE    (0x020000000ULL)
86 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
87 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
88 
89 static struct kimage *kimage_ptr;
90 
91 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
92 {
93 	int64_t addr;
94 	struct cvmx_bootmem_desc *bootmem_desc;
95 
96 	bootmem_desc = cvmx_bootmem_get_desc();
97 
98 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
99 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
100 		pr_err("Error: requested memory too large,"
101 		       "truncating to maximum size\n");
102 	}
103 
104 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
105 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
106 
107 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
108 	bootmem_desc->head_addr = 0;
109 
110 	if (mem_size <= OCTEON_DDR0_SIZE) {
111 		__cvmx_bootmem_phy_free(addr,
112 				mem_size - RESERVE_LOW_MEM -
113 				low_reserved_bytes, 0);
114 		return;
115 	}
116 
117 	__cvmx_bootmem_phy_free(addr,
118 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
119 			low_reserved_bytes, 0);
120 
121 	mem_size -= OCTEON_DDR0_SIZE;
122 
123 	if (mem_size > OCTEON_DDR1_SIZE) {
124 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
125 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
126 				mem_size - OCTEON_DDR1_SIZE, 0);
127 	} else
128 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
129 }
130 
131 static int octeon_kexec_prepare(struct kimage *image)
132 {
133 	int i;
134 	char *bootloader = "kexec";
135 
136 	octeon_boot_desc_ptr->argc = 0;
137 	for (i = 0; i < image->nr_segments; i++) {
138 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
139 				strlen(bootloader))) {
140 			/*
141 			 * convert command line string to array
142 			 * of parameters (as bootloader does).
143 			 */
144 			int argc = 0, offt;
145 			char *str = (char *)image->segment[i].buf;
146 			char *ptr = strchr(str, ' ');
147 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
148 				*ptr = '\0';
149 				if (ptr[1] != ' ') {
150 					offt = (int)(ptr - str + 1);
151 					octeon_boot_desc_ptr->argv[argc] =
152 						image->segment[i].mem + offt;
153 					argc++;
154 				}
155 				ptr = strchr(ptr + 1, ' ');
156 			}
157 			octeon_boot_desc_ptr->argc = argc;
158 			break;
159 		}
160 	}
161 
162 	/*
163 	 * Information about segments will be needed during pre-boot memory
164 	 * initialization.
165 	 */
166 	kimage_ptr = image;
167 	return 0;
168 }
169 
170 static void octeon_generic_shutdown(void)
171 {
172 	int i;
173 #ifdef CONFIG_SMP
174 	int cpu;
175 #endif
176 	struct cvmx_bootmem_desc *bootmem_desc;
177 	void *named_block_array_ptr;
178 
179 	bootmem_desc = cvmx_bootmem_get_desc();
180 	named_block_array_ptr =
181 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
182 
183 #ifdef CONFIG_SMP
184 	/* disable watchdogs */
185 	for_each_online_cpu(cpu)
186 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
187 #else
188 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
189 #endif
190 	if (kimage_ptr != kexec_crash_image) {
191 		memset(named_block_array_ptr,
192 			0x0,
193 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
194 			sizeof(struct cvmx_bootmem_named_block_desc));
195 		/*
196 		 * Mark all memory (except low 0x100000 bytes) as free.
197 		 * It is the same thing that bootloader does.
198 		 */
199 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
200 				0x100000);
201 		/*
202 		 * Allocate all segments to avoid their corruption during boot.
203 		 */
204 		for (i = 0; i < kimage_ptr->nr_segments; i++)
205 			cvmx_bootmem_alloc_address(
206 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
207 				kimage_ptr->segment[i].mem - PAGE_SIZE,
208 				PAGE_SIZE);
209 	} else {
210 		/*
211 		 * Do not mark all memory as free. Free only named sections
212 		 * leaving the rest of memory unchanged.
213 		 */
214 		struct cvmx_bootmem_named_block_desc *ptr =
215 			(struct cvmx_bootmem_named_block_desc *)
216 			named_block_array_ptr;
217 
218 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
219 			if (ptr[i].size)
220 				cvmx_bootmem_free_named(ptr[i].name);
221 	}
222 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
223 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
224 #ifdef CONFIG_SMP
225 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
226 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
227 #endif
228 }
229 
230 static void octeon_shutdown(void)
231 {
232 	octeon_generic_shutdown();
233 #ifdef CONFIG_SMP
234 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
235 	smp_wmb();
236 	while (num_online_cpus() > 1) {
237 		cpu_relax();
238 		mdelay(1);
239 	}
240 #endif
241 }
242 
243 static void octeon_crash_shutdown(struct pt_regs *regs)
244 {
245 	octeon_generic_shutdown();
246 	default_machine_crash_shutdown(regs);
247 }
248 
249 #endif /* CONFIG_KEXEC */
250 
251 #ifdef CONFIG_CAVIUM_RESERVE32
252 uint64_t octeon_reserve32_memory;
253 EXPORT_SYMBOL(octeon_reserve32_memory);
254 #endif
255 
256 #ifdef CONFIG_KEXEC
257 /* crashkernel cmdline parameter is parsed _after_ memory setup
258  * we also parse it here (workaround for EHB5200) */
259 static uint64_t crashk_size, crashk_base;
260 #endif
261 
262 static int octeon_uart;
263 
264 extern asmlinkage void handle_int(void);
265 extern asmlinkage void plat_irq_dispatch(void);
266 
267 /**
268  * Return non zero if we are currently running in the Octeon simulator
269  *
270  * Returns
271  */
272 int octeon_is_simulation(void)
273 {
274 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
275 }
276 EXPORT_SYMBOL(octeon_is_simulation);
277 
278 /**
279  * Return true if Octeon is in PCI Host mode. This means
280  * Linux can control the PCI bus.
281  *
282  * Returns Non zero if Octeon in host mode.
283  */
284 int octeon_is_pci_host(void)
285 {
286 #ifdef CONFIG_PCI
287 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
288 #else
289 	return 0;
290 #endif
291 }
292 
293 /**
294  * Get the clock rate of Octeon
295  *
296  * Returns Clock rate in HZ
297  */
298 uint64_t octeon_get_clock_rate(void)
299 {
300 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
301 
302 	return sysinfo->cpu_clock_hz;
303 }
304 EXPORT_SYMBOL(octeon_get_clock_rate);
305 
306 static u64 octeon_io_clock_rate;
307 
308 u64 octeon_get_io_clock_rate(void)
309 {
310 	return octeon_io_clock_rate;
311 }
312 EXPORT_SYMBOL(octeon_get_io_clock_rate);
313 
314 
315 /**
316  * Write to the LCD display connected to the bootbus. This display
317  * exists on most Cavium evaluation boards. If it doesn't exist, then
318  * this function doesn't do anything.
319  *
320  * @s:	    String to write
321  */
322 void octeon_write_lcd(const char *s)
323 {
324 	if (octeon_bootinfo->led_display_base_addr) {
325 		void __iomem *lcd_address =
326 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
327 					8);
328 		int i;
329 		for (i = 0; i < 8; i++, s++) {
330 			if (*s)
331 				iowrite8(*s, lcd_address + i);
332 			else
333 				iowrite8(' ', lcd_address + i);
334 		}
335 		iounmap(lcd_address);
336 	}
337 }
338 
339 /**
340  * Return the console uart passed by the bootloader
341  *
342  * Returns uart	  (0 or 1)
343  */
344 int octeon_get_boot_uart(void)
345 {
346 	int uart;
347 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
348 	uart = 1;
349 #else
350 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
351 		1 : 0;
352 #endif
353 	return uart;
354 }
355 
356 /**
357  * Get the coremask Linux was booted on.
358  *
359  * Returns Core mask
360  */
361 int octeon_get_boot_coremask(void)
362 {
363 	return octeon_boot_desc_ptr->core_mask;
364 }
365 
366 /**
367  * Check the hardware BIST results for a CPU
368  */
369 void octeon_check_cpu_bist(void)
370 {
371 	const int coreid = cvmx_get_core_num();
372 	unsigned long long mask;
373 	unsigned long long bist_val;
374 
375 	/* Check BIST results for COP0 registers */
376 	mask = 0x1f00000000ull;
377 	bist_val = read_octeon_c0_icacheerr();
378 	if (bist_val & mask)
379 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
380 		       coreid, bist_val);
381 
382 	bist_val = read_octeon_c0_dcacheerr();
383 	if (bist_val & 1)
384 		pr_err("Core%d L1 Dcache parity error: "
385 		       "CacheErr(dcache) = 0x%llx\n",
386 		       coreid, bist_val);
387 
388 	mask = 0xfc00000000000000ull;
389 	bist_val = read_c0_cvmmemctl();
390 	if (bist_val & mask)
391 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
392 		       coreid, bist_val);
393 
394 	write_octeon_c0_dcacheerr(0);
395 }
396 
397 /**
398  * Reboot Octeon
399  *
400  * @command: Command to pass to the bootloader. Currently ignored.
401  */
402 static void octeon_restart(char *command)
403 {
404 	/* Disable all watchdogs before soft reset. They don't get cleared */
405 #ifdef CONFIG_SMP
406 	int cpu;
407 	for_each_online_cpu(cpu)
408 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
409 #else
410 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
411 #endif
412 
413 	mb();
414 	while (1)
415 		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
416 }
417 
418 
419 /**
420  * Permanently stop a core.
421  *
422  * @arg: Ignored.
423  */
424 static void octeon_kill_core(void *arg)
425 {
426 	if (octeon_is_simulation())
427 		/* A break instruction causes the simulator stop a core */
428 		asm volatile ("break" ::: "memory");
429 
430 	local_irq_disable();
431 	/* Disable watchdog on this core. */
432 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
433 	/* Spin in a low power mode. */
434 	while (true)
435 		asm volatile ("wait" ::: "memory");
436 }
437 
438 
439 /**
440  * Halt the system
441  */
442 static void octeon_halt(void)
443 {
444 	smp_call_function(octeon_kill_core, NULL, 0);
445 
446 	switch (octeon_bootinfo->board_type) {
447 	case CVMX_BOARD_TYPE_NAO38:
448 		/* Driving a 1 to GPIO 12 shuts off this board */
449 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
450 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
451 		break;
452 	default:
453 		octeon_write_lcd("PowerOff");
454 		break;
455 	}
456 
457 	octeon_kill_core(NULL);
458 }
459 
460 /**
461  * Return a string representing the system type
462  *
463  * Returns
464  */
465 const char *octeon_board_type_string(void)
466 {
467 	static char name[80];
468 	sprintf(name, "%s (%s)",
469 		cvmx_board_type_to_string(octeon_bootinfo->board_type),
470 		octeon_model_get_string(read_c0_prid()));
471 	return name;
472 }
473 
474 const char *get_system_type(void)
475 	__attribute__ ((alias("octeon_board_type_string")));
476 
477 void octeon_user_io_init(void)
478 {
479 	union octeon_cvmemctl cvmmemctl;
480 	union cvmx_iob_fau_timeout fau_timeout;
481 	union cvmx_pow_nw_tim nm_tim;
482 
483 	/* Get the current settings for CP0_CVMMEMCTL_REG */
484 	cvmmemctl.u64 = read_c0_cvmmemctl();
485 	/* R/W If set, marked write-buffer entries time out the same
486 	 * as as other entries; if clear, marked write-buffer entries
487 	 * use the maximum timeout. */
488 	cvmmemctl.s.dismarkwblongto = 1;
489 	/* R/W If set, a merged store does not clear the write-buffer
490 	 * entry timeout state. */
491 	cvmmemctl.s.dismrgclrwbto = 0;
492 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
493 	 * word location for an IOBDMA. The other 8 bits come from the
494 	 * SCRADDR field of the IOBDMA. */
495 	cvmmemctl.s.iobdmascrmsb = 0;
496 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
497 	 * clear, SYNCWS and SYNCS only order unmarked
498 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
499 	 * set. */
500 	cvmmemctl.s.syncwsmarked = 0;
501 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
502 	cvmmemctl.s.dissyncws = 0;
503 	/* R/W If set, no stall happens on write buffer full. */
504 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
505 		cvmmemctl.s.diswbfst = 1;
506 	else
507 		cvmmemctl.s.diswbfst = 0;
508 	/* R/W If set (and SX set), supervisor-level loads/stores can
509 	 * use XKPHYS addresses with <48>==0 */
510 	cvmmemctl.s.xkmemenas = 0;
511 
512 	/* R/W If set (and UX set), user-level loads/stores can use
513 	 * XKPHYS addresses with VA<48>==0 */
514 	cvmmemctl.s.xkmemenau = 0;
515 
516 	/* R/W If set (and SX set), supervisor-level loads/stores can
517 	 * use XKPHYS addresses with VA<48>==1 */
518 	cvmmemctl.s.xkioenas = 0;
519 
520 	/* R/W If set (and UX set), user-level loads/stores can use
521 	 * XKPHYS addresses with VA<48>==1 */
522 	cvmmemctl.s.xkioenau = 0;
523 
524 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
525 	 * when this is set) RW, reset to 0. */
526 	cvmmemctl.s.allsyncw = 0;
527 
528 	/* R/W If set, no stores merge, and all stores reach the
529 	 * coherent bus in order. */
530 	cvmmemctl.s.nomerge = 0;
531 	/* R/W Selects the bit in the counter used for DID time-outs 0
532 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
533 	 * between 1x and 2x this interval. For example, with
534 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
535 	cvmmemctl.s.didtto = 0;
536 	/* R/W If set, the (mem) CSR clock never turns off. */
537 	cvmmemctl.s.csrckalwys = 0;
538 	/* R/W If set, mclk never turns off. */
539 	cvmmemctl.s.mclkalwys = 0;
540 	/* R/W Selects the bit in the counter used for write buffer
541 	 * flush time-outs (WBFLT+11) is the bit position in an
542 	 * internal counter used to determine expiration. The write
543 	 * buffer expires between 1x and 2x this interval. For
544 	 * example, with WBFLT = 0, a write buffer expires between 2K
545 	 * and 4K cycles after the write buffer entry is allocated. */
546 	cvmmemctl.s.wbfltime = 0;
547 	/* R/W If set, do not put Istream in the L2 cache. */
548 	cvmmemctl.s.istrnol2 = 0;
549 
550 	/*
551 	 * R/W The write buffer threshold. As per erratum Core-14752
552 	 * for CN63XX, a sc/scd might fail if the write buffer is
553 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
554 	 * write buffer ever being full and triggering the erratum.
555 	 */
556 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
557 		cvmmemctl.s.wbthresh = 4;
558 	else
559 		cvmmemctl.s.wbthresh = 10;
560 
561 	/* R/W If set, CVMSEG is available for loads/stores in
562 	 * kernel/debug mode. */
563 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
564 	cvmmemctl.s.cvmsegenak = 1;
565 #else
566 	cvmmemctl.s.cvmsegenak = 0;
567 #endif
568 	/* R/W If set, CVMSEG is available for loads/stores in
569 	 * supervisor mode. */
570 	cvmmemctl.s.cvmsegenas = 0;
571 	/* R/W If set, CVMSEG is available for loads/stores in user
572 	 * mode. */
573 	cvmmemctl.s.cvmsegenau = 0;
574 	/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
575 	 * is max legal value. */
576 	cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
577 
578 	write_c0_cvmmemctl(cvmmemctl.u64);
579 
580 	if (smp_processor_id() == 0)
581 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
582 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
583 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
584 
585 	/* Set a default for the hardware timeouts */
586 	fau_timeout.u64 = 0;
587 	fau_timeout.s.tout_val = 0xfff;
588 	/* Disable tagwait FAU timeout */
589 	fau_timeout.s.tout_enb = 0;
590 	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
591 
592 	nm_tim.u64 = 0;
593 	/* 4096 cycles */
594 	nm_tim.s.nw_tim = 3;
595 	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
596 
597 	write_octeon_c0_icacheerr(0);
598 	write_c0_derraddr1(0);
599 }
600 
601 /**
602  * Early entry point for arch setup
603  */
604 void __init prom_init(void)
605 {
606 	struct cvmx_sysinfo *sysinfo;
607 	const char *arg;
608 	char *p;
609 	int i;
610 	int argc;
611 #ifdef CONFIG_CAVIUM_RESERVE32
612 	int64_t addr = -1;
613 #endif
614 	/*
615 	 * The bootloader passes a pointer to the boot descriptor in
616 	 * $a3, this is available as fw_arg3.
617 	 */
618 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
619 	octeon_bootinfo =
620 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
621 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
622 
623 	sysinfo = cvmx_sysinfo_get();
624 	memset(sysinfo, 0, sizeof(*sysinfo));
625 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
626 	sysinfo->phy_mem_desc_ptr =
627 		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
628 	sysinfo->core_mask = octeon_bootinfo->core_mask;
629 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
630 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
631 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
632 	sysinfo->board_type = octeon_bootinfo->board_type;
633 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
634 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
635 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
636 	       sizeof(sysinfo->mac_addr_base));
637 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
638 	memcpy(sysinfo->board_serial_number,
639 	       octeon_bootinfo->board_serial_number,
640 	       sizeof(sysinfo->board_serial_number));
641 	sysinfo->compact_flash_common_base_addr =
642 		octeon_bootinfo->compact_flash_common_base_addr;
643 	sysinfo->compact_flash_attribute_base_addr =
644 		octeon_bootinfo->compact_flash_attribute_base_addr;
645 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
646 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
647 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
648 
649 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
650 		/* I/O clock runs at a different rate than the CPU. */
651 		union cvmx_mio_rst_boot rst_boot;
652 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
653 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
654 	} else {
655 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
656 	}
657 
658 	/*
659 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
660 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
661 	 */
662 	if (!octeon_is_simulation() &&
663 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
664 		cvmx_write_csr(CVMX_LED_EN, 0);
665 		cvmx_write_csr(CVMX_LED_PRT, 0);
666 		cvmx_write_csr(CVMX_LED_DBG, 0);
667 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
668 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
669 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
670 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
671 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
672 		cvmx_write_csr(CVMX_LED_EN, 1);
673 	}
674 #ifdef CONFIG_CAVIUM_RESERVE32
675 	/*
676 	 * We need to temporarily allocate all memory in the reserve32
677 	 * region. This makes sure the kernel doesn't allocate this
678 	 * memory when it is getting memory from the
679 	 * bootloader. Later, after the memory allocations are
680 	 * complete, the reserve32 will be freed.
681 	 *
682 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
683 	 * is in case we later use hugetlb entries with it.
684 	 */
685 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
686 						0, 0, 2 << 20,
687 						"CAVIUM_RESERVE32", 0);
688 	if (addr < 0)
689 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
690 	else
691 		octeon_reserve32_memory = addr;
692 #endif
693 
694 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
695 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
696 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
697 	} else {
698 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
699 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
700 		/* TLB refill */
701 		cvmx_l2c_lock_mem_region(ebase, 0x100);
702 #endif
703 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
704 		/* General exception */
705 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
706 #endif
707 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
708 		/* Interrupt handler */
709 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
710 #endif
711 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
712 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
713 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
714 #endif
715 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
716 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
717 #endif
718 	}
719 #endif
720 
721 	octeon_check_cpu_bist();
722 
723 	octeon_uart = octeon_get_boot_uart();
724 
725 #ifdef CONFIG_SMP
726 	octeon_write_lcd("LinuxSMP");
727 #else
728 	octeon_write_lcd("Linux");
729 #endif
730 
731 #ifdef CONFIG_CAVIUM_GDB
732 	/*
733 	 * When debugging the linux kernel, force the cores to enter
734 	 * the debug exception handler to break in.
735 	 */
736 	if (octeon_get_boot_debug_flag()) {
737 		cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
738 		cvmx_read_csr(CVMX_CIU_DINT);
739 	}
740 #endif
741 
742 	octeon_setup_delays();
743 
744 	/*
745 	 * BIST should always be enabled when doing a soft reset. L2
746 	 * Cache locking for instance is not cleared unless BIST is
747 	 * enabled.  Unfortunately due to a chip errata G-200 for
748 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
749 	 */
750 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
751 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
752 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
753 	else
754 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
755 
756 	/* Default to 64MB in the simulator to speed things up */
757 	if (octeon_is_simulation())
758 		MAX_MEMORY = 64ull << 20;
759 
760 	arg = strstr(arcs_cmdline, "mem=");
761 	if (arg) {
762 		MAX_MEMORY = memparse(arg + 4, &p);
763 		if (MAX_MEMORY == 0)
764 			MAX_MEMORY = 32ull << 30;
765 		if (*p == '@')
766 			RESERVE_LOW_MEM = memparse(p + 1, &p);
767 	}
768 
769 	arcs_cmdline[0] = 0;
770 	argc = octeon_boot_desc_ptr->argc;
771 	for (i = 0; i < argc; i++) {
772 		const char *arg =
773 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
774 		if ((strncmp(arg, "MEM=", 4) == 0) ||
775 		    (strncmp(arg, "mem=", 4) == 0)) {
776 			MAX_MEMORY = memparse(arg + 4, &p);
777 			if (MAX_MEMORY == 0)
778 				MAX_MEMORY = 32ull << 30;
779 			if (*p == '@')
780 				RESERVE_LOW_MEM = memparse(p + 1, &p);
781 		} else if (strcmp(arg, "ecc_verbose") == 0) {
782 #ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
783 			__cvmx_interrupt_ecc_report_single_bit_errors = 1;
784 			pr_notice("Reporting of single bit ECC errors is "
785 				  "turned on\n");
786 #endif
787 #ifdef CONFIG_KEXEC
788 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
789 			crashk_size = memparse(arg+12, &p);
790 			if (*p == '@')
791 				crashk_base = memparse(p+1, &p);
792 			strcat(arcs_cmdline, " ");
793 			strcat(arcs_cmdline, arg);
794 			/*
795 			 * To do: switch parsing to new style, something like:
796 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
797 			 *		  &crashk_size, &crashk_base);
798 			 */
799 #endif
800 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
801 			   sizeof(arcs_cmdline) - 1) {
802 			strcat(arcs_cmdline, " ");
803 			strcat(arcs_cmdline, arg);
804 		}
805 	}
806 
807 	if (strstr(arcs_cmdline, "console=") == NULL) {
808 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
809 		strcat(arcs_cmdline, " console=ttyS0,115200");
810 #else
811 		if (octeon_uart == 1)
812 			strcat(arcs_cmdline, " console=ttyS1,115200");
813 		else
814 			strcat(arcs_cmdline, " console=ttyS0,115200");
815 #endif
816 	}
817 
818 	if (octeon_is_simulation()) {
819 		/*
820 		 * The simulator uses a mtdram device pre filled with
821 		 * the filesystem. Also specify the calibration delay
822 		 * to avoid calculating it every time.
823 		 */
824 		strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
825 	}
826 
827 	mips_hpt_frequency = octeon_get_clock_rate();
828 
829 	octeon_init_cvmcount();
830 
831 	_machine_restart = octeon_restart;
832 	_machine_halt = octeon_halt;
833 
834 #ifdef CONFIG_KEXEC
835 	_machine_kexec_shutdown = octeon_shutdown;
836 	_machine_crash_shutdown = octeon_crash_shutdown;
837 	_machine_kexec_prepare = octeon_kexec_prepare;
838 #endif
839 
840 	octeon_user_io_init();
841 	register_smp_ops(&octeon_smp_ops);
842 }
843 
844 /* Exclude a single page from the regions obtained in plat_mem_setup. */
845 #ifndef CONFIG_CRASH_DUMP
846 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
847 {
848 	if (addr > *mem && addr < *mem + *size) {
849 		u64 inc = addr - *mem;
850 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
851 		*mem += inc;
852 		*size -= inc;
853 	}
854 
855 	if (addr == *mem && *size > PAGE_SIZE) {
856 		*mem += PAGE_SIZE;
857 		*size -= PAGE_SIZE;
858 	}
859 }
860 #endif /* CONFIG_CRASH_DUMP */
861 
862 void __init plat_mem_setup(void)
863 {
864 	uint64_t mem_alloc_size;
865 	uint64_t total;
866 	uint64_t crashk_end;
867 #ifndef CONFIG_CRASH_DUMP
868 	int64_t memory;
869 	uint64_t kernel_start;
870 	uint64_t kernel_size;
871 #endif
872 
873 	total = 0;
874 	crashk_end = 0;
875 
876 	/*
877 	 * The Mips memory init uses the first memory location for
878 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
879 	 * verify that the size is big enough for the final
880 	 * vectors. Making the smallest chuck 4MB seems to be enough
881 	 * to consistently work.
882 	 */
883 	mem_alloc_size = 4 << 20;
884 	if (mem_alloc_size > MAX_MEMORY)
885 		mem_alloc_size = MAX_MEMORY;
886 
887 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
888 #ifdef CONFIG_CRASH_DUMP
889 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
890 	total += MAX_MEMORY;
891 #else
892 #ifdef CONFIG_KEXEC
893 	if (crashk_size > 0) {
894 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
895 		crashk_end = crashk_base + crashk_size;
896 	}
897 #endif
898 	/*
899 	 * When allocating memory, we want incrementing addresses from
900 	 * bootmem_alloc so the code in add_memory_region can merge
901 	 * regions next to each other.
902 	 */
903 	cvmx_bootmem_lock();
904 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
905 		&& (total < MAX_MEMORY)) {
906 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
907 						__pa_symbol(&__init_end), -1,
908 						0x100000,
909 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
910 		if (memory >= 0) {
911 			u64 size = mem_alloc_size;
912 #ifdef CONFIG_KEXEC
913 			uint64_t end;
914 #endif
915 
916 			/*
917 			 * exclude a page at the beginning and end of
918 			 * the 256MB PCIe 'hole' so the kernel will not
919 			 * try to allocate multi-page buffers that
920 			 * span the discontinuity.
921 			 */
922 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
923 					    &memory, &size);
924 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
925 					    CVMX_PCIE_BAR1_PHYS_SIZE,
926 					    &memory, &size);
927 #ifdef CONFIG_KEXEC
928 			end = memory + mem_alloc_size;
929 
930 			/*
931 			 * This function automatically merges address regions
932 			 * next to each other if they are received in
933 			 * incrementing order
934 			 */
935 			if (memory < crashk_base && end >  crashk_end) {
936 				/* region is fully in */
937 				add_memory_region(memory,
938 						  crashk_base - memory,
939 						  BOOT_MEM_RAM);
940 				total += crashk_base - memory;
941 				add_memory_region(crashk_end,
942 						  end - crashk_end,
943 						  BOOT_MEM_RAM);
944 				total += end - crashk_end;
945 				continue;
946 			}
947 
948 			if (memory >= crashk_base && end <= crashk_end)
949 				/*
950 				 * Entire memory region is within the new
951 				 *  kernel's memory, ignore it.
952 				 */
953 				continue;
954 
955 			if (memory > crashk_base && memory < crashk_end &&
956 			    end > crashk_end) {
957 				/*
958 				 * Overlap with the beginning of the region,
959 				 * reserve the beginning.
960 				  */
961 				mem_alloc_size -= crashk_end - memory;
962 				memory = crashk_end;
963 			} else if (memory < crashk_base && end > crashk_base &&
964 				   end < crashk_end)
965 				/*
966 				 * Overlap with the beginning of the region,
967 				 * chop of end.
968 				 */
969 				mem_alloc_size -= end - crashk_base;
970 #endif
971 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
972 			total += mem_alloc_size;
973 			/* Recovering mem_alloc_size */
974 			mem_alloc_size = 4 << 20;
975 		} else {
976 			break;
977 		}
978 	}
979 	cvmx_bootmem_unlock();
980 	/* Add the memory region for the kernel. */
981 	kernel_start = (unsigned long) _text;
982 	kernel_size = _end - _text;
983 
984 	/* Adjust for physical offset. */
985 	kernel_start &= ~0xffffffff80000000ULL;
986 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
987 #endif /* CONFIG_CRASH_DUMP */
988 
989 #ifdef CONFIG_CAVIUM_RESERVE32
990 	/*
991 	 * Now that we've allocated the kernel memory it is safe to
992 	 * free the reserved region. We free it here so that builtin
993 	 * drivers can use the memory.
994 	 */
995 	if (octeon_reserve32_memory)
996 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
997 #endif /* CONFIG_CAVIUM_RESERVE32 */
998 
999 	if (total == 0)
1000 		panic("Unable to allocate memory from "
1001 		      "cvmx_bootmem_phy_alloc\n");
1002 }
1003 
1004 /*
1005  * Emit one character to the boot UART.	 Exported for use by the
1006  * watchdog timer.
1007  */
1008 int prom_putchar(char c)
1009 {
1010 	uint64_t lsrval;
1011 
1012 	/* Spin until there is room */
1013 	do {
1014 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1015 	} while ((lsrval & 0x20) == 0);
1016 
1017 	/* Write the byte */
1018 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1019 	return 1;
1020 }
1021 EXPORT_SYMBOL(prom_putchar);
1022 
1023 void prom_free_prom_memory(void)
1024 {
1025 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1026 		/* Check for presence of Core-14449 fix.  */
1027 		u32 insn;
1028 		u32 *foo;
1029 
1030 		foo = &insn;
1031 
1032 		asm volatile("# before" : : : "memory");
1033 		prefetch(foo);
1034 		asm volatile(
1035 			".set push\n\t"
1036 			".set noreorder\n\t"
1037 			"bal 1f\n\t"
1038 			"nop\n"
1039 			"1:\tlw %0,-12($31)\n\t"
1040 			".set pop\n\t"
1041 			: "=r" (insn) : : "$31", "memory");
1042 
1043 		if ((insn >> 26) != 0x33)
1044 			panic("No PREF instruction at Core-14449 probe point.");
1045 
1046 		if (((insn >> 16) & 0x1f) != 28)
1047 			panic("Core-14449 WAR not in place (%04x).\n"
1048 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1049 	}
1050 }
1051 
1052 int octeon_prune_device_tree(void);
1053 
1054 extern const char __dtb_octeon_3xxx_begin;
1055 extern const char __dtb_octeon_3xxx_end;
1056 extern const char __dtb_octeon_68xx_begin;
1057 extern const char __dtb_octeon_68xx_end;
1058 void __init device_tree_init(void)
1059 {
1060 	int dt_size;
1061 	struct boot_param_header *fdt;
1062 	bool do_prune;
1063 
1064 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1065 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1066 		if (fdt_check_header(fdt))
1067 			panic("Corrupt Device Tree passed to kernel.");
1068 		dt_size = be32_to_cpu(fdt->totalsize);
1069 		do_prune = false;
1070 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1071 		fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1072 		dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1073 		do_prune = true;
1074 	} else {
1075 		fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1076 		dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1077 		do_prune = true;
1078 	}
1079 
1080 	/* Copy the default tree from init memory. */
1081 	initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1082 	if (initial_boot_params == NULL)
1083 		panic("Could not allocate initial_boot_params\n");
1084 	memcpy(initial_boot_params, fdt, dt_size);
1085 
1086 	if (do_prune) {
1087 		octeon_prune_device_tree();
1088 		pr_info("Using internal Device Tree.\n");
1089 	} else {
1090 		pr_info("Using passed Device Tree.\n");
1091 	}
1092 	unflatten_device_tree();
1093 }
1094 
1095 static int __initdata disable_octeon_edac_p;
1096 
1097 static int __init disable_octeon_edac(char *str)
1098 {
1099 	disable_octeon_edac_p = 1;
1100 	return 0;
1101 }
1102 early_param("disable_octeon_edac", disable_octeon_edac);
1103 
1104 static char *edac_device_names[] = {
1105 	"octeon_l2c_edac",
1106 	"octeon_pc_edac",
1107 };
1108 
1109 static int __init edac_devinit(void)
1110 {
1111 	struct platform_device *dev;
1112 	int i, err = 0;
1113 	int num_lmc;
1114 	char *name;
1115 
1116 	if (disable_octeon_edac_p)
1117 		return 0;
1118 
1119 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1120 		name = edac_device_names[i];
1121 		dev = platform_device_register_simple(name, -1, NULL, 0);
1122 		if (IS_ERR(dev)) {
1123 			pr_err("Registation of %s failed!\n", name);
1124 			err = PTR_ERR(dev);
1125 		}
1126 	}
1127 
1128 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1129 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1130 	for (i = 0; i < num_lmc; i++) {
1131 		dev = platform_device_register_simple("octeon_lmc_edac",
1132 						      i, NULL, 0);
1133 		if (IS_ERR(dev)) {
1134 			pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1135 			err = PTR_ERR(dev);
1136 		}
1137 	}
1138 
1139 	return err;
1140 }
1141 device_initcall(edac_devinit);
1142