1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2007 Cavium Networks 7 * Copyright (C) 2008, 2009 Wind River Systems 8 * written by Ralf Baechle <ralf@linux-mips.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/vmalloc.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/console.h> 15 #include <linux/delay.h> 16 #include <linux/export.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/memblock.h> 20 #include <linux/serial.h> 21 #include <linux/smp.h> 22 #include <linux/types.h> 23 #include <linux/string.h> /* for memset */ 24 #include <linux/tty.h> 25 #include <linux/time.h> 26 #include <linux/platform_device.h> 27 #include <linux/serial_core.h> 28 #include <linux/serial_8250.h> 29 #include <linux/of_fdt.h> 30 #include <linux/libfdt.h> 31 #include <linux/kexec.h> 32 33 #include <asm/processor.h> 34 #include <asm/reboot.h> 35 #include <asm/smp-ops.h> 36 #include <asm/irq_cpu.h> 37 #include <asm/mipsregs.h> 38 #include <asm/bootinfo.h> 39 #include <asm/sections.h> 40 #include <asm/fw/fw.h> 41 #include <asm/setup.h> 42 #include <asm/prom.h> 43 #include <asm/time.h> 44 45 #include <asm/octeon/octeon.h> 46 #include <asm/octeon/pci-octeon.h> 47 #include <asm/octeon/cvmx-rst-defs.h> 48 49 /* 50 * TRUE for devices having registers with little-endian byte 51 * order, FALSE for registers with native-endian byte order. 52 * PCI mandates little-endian, USB and SATA are configuraable, 53 * but we chose little-endian for these. 54 */ 55 const bool octeon_should_swizzle_table[256] = { 56 [0x00] = true, /* bootbus/CF */ 57 [0x1b] = true, /* PCI mmio window */ 58 [0x1c] = true, /* PCI mmio window */ 59 [0x1d] = true, /* PCI mmio window */ 60 [0x1e] = true, /* PCI mmio window */ 61 [0x68] = true, /* OCTEON III USB */ 62 [0x69] = true, /* OCTEON III USB */ 63 [0x6c] = true, /* OCTEON III SATA */ 64 [0x6f] = true, /* OCTEON II USB */ 65 }; 66 EXPORT_SYMBOL(octeon_should_swizzle_table); 67 68 #ifdef CONFIG_PCI 69 extern void pci_console_init(const char *arg); 70 #endif 71 72 static unsigned long long max_memory = ULLONG_MAX; 73 static unsigned long long reserve_low_mem; 74 75 DEFINE_SEMAPHORE(octeon_bootbus_sem); 76 EXPORT_SYMBOL(octeon_bootbus_sem); 77 78 static struct octeon_boot_descriptor *octeon_boot_desc_ptr; 79 80 struct cvmx_bootinfo *octeon_bootinfo; 81 EXPORT_SYMBOL(octeon_bootinfo); 82 83 #ifdef CONFIG_KEXEC 84 #ifdef CONFIG_SMP 85 /* 86 * Wait for relocation code is prepared and send 87 * secondary CPUs to spin until kernel is relocated. 88 */ 89 static void octeon_kexec_smp_down(void *ignored) 90 { 91 int cpu = smp_processor_id(); 92 93 local_irq_disable(); 94 set_cpu_online(cpu, false); 95 while (!atomic_read(&kexec_ready_to_reboot)) 96 cpu_relax(); 97 98 asm volatile ( 99 " sync \n" 100 " synci ($0) \n"); 101 102 kexec_reboot(); 103 } 104 #endif 105 106 #define OCTEON_DDR0_BASE (0x0ULL) 107 #define OCTEON_DDR0_SIZE (0x010000000ULL) 108 #define OCTEON_DDR1_BASE (0x410000000ULL) 109 #define OCTEON_DDR1_SIZE (0x010000000ULL) 110 #define OCTEON_DDR2_BASE (0x020000000ULL) 111 #define OCTEON_DDR2_SIZE (0x3e0000000ULL) 112 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) 113 114 static struct kimage *kimage_ptr; 115 116 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) 117 { 118 int64_t addr; 119 struct cvmx_bootmem_desc *bootmem_desc; 120 121 bootmem_desc = cvmx_bootmem_get_desc(); 122 123 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { 124 mem_size = OCTEON_MAX_PHY_MEM_SIZE; 125 pr_err("Error: requested memory too large," 126 "truncating to maximum size\n"); 127 } 128 129 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; 130 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; 131 132 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes); 133 bootmem_desc->head_addr = 0; 134 135 if (mem_size <= OCTEON_DDR0_SIZE) { 136 __cvmx_bootmem_phy_free(addr, 137 mem_size - reserve_low_mem - 138 low_reserved_bytes, 0); 139 return; 140 } 141 142 __cvmx_bootmem_phy_free(addr, 143 OCTEON_DDR0_SIZE - reserve_low_mem - 144 low_reserved_bytes, 0); 145 146 mem_size -= OCTEON_DDR0_SIZE; 147 148 if (mem_size > OCTEON_DDR1_SIZE) { 149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); 150 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, 151 mem_size - OCTEON_DDR1_SIZE, 0); 152 } else 153 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); 154 } 155 156 static int octeon_kexec_prepare(struct kimage *image) 157 { 158 int i; 159 char *bootloader = "kexec"; 160 161 octeon_boot_desc_ptr->argc = 0; 162 for (i = 0; i < image->nr_segments; i++) { 163 if (!strncmp(bootloader, (char *)image->segment[i].buf, 164 strlen(bootloader))) { 165 /* 166 * convert command line string to array 167 * of parameters (as bootloader does). 168 */ 169 int argc = 0, offt; 170 char *str = (char *)image->segment[i].buf; 171 char *ptr = strchr(str, ' '); 172 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { 173 *ptr = '\0'; 174 if (ptr[1] != ' ') { 175 offt = (int)(ptr - str + 1); 176 octeon_boot_desc_ptr->argv[argc] = 177 image->segment[i].mem + offt; 178 argc++; 179 } 180 ptr = strchr(ptr + 1, ' '); 181 } 182 octeon_boot_desc_ptr->argc = argc; 183 break; 184 } 185 } 186 187 /* 188 * Information about segments will be needed during pre-boot memory 189 * initialization. 190 */ 191 kimage_ptr = image; 192 return 0; 193 } 194 195 static void octeon_generic_shutdown(void) 196 { 197 int i; 198 #ifdef CONFIG_SMP 199 int cpu; 200 #endif 201 struct cvmx_bootmem_desc *bootmem_desc; 202 void *named_block_array_ptr; 203 204 bootmem_desc = cvmx_bootmem_get_desc(); 205 named_block_array_ptr = 206 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); 207 208 #ifdef CONFIG_SMP 209 /* disable watchdogs */ 210 for_each_online_cpu(cpu) 211 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 212 #else 213 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 214 #endif 215 if (kimage_ptr != kexec_crash_image) { 216 memset(named_block_array_ptr, 217 0x0, 218 CVMX_BOOTMEM_NUM_NAMED_BLOCKS * 219 sizeof(struct cvmx_bootmem_named_block_desc)); 220 /* 221 * Mark all memory (except low 0x100000 bytes) as free. 222 * It is the same thing that bootloader does. 223 */ 224 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, 225 0x100000); 226 /* 227 * Allocate all segments to avoid their corruption during boot. 228 */ 229 for (i = 0; i < kimage_ptr->nr_segments; i++) 230 cvmx_bootmem_alloc_address( 231 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, 232 kimage_ptr->segment[i].mem - PAGE_SIZE, 233 PAGE_SIZE); 234 } else { 235 /* 236 * Do not mark all memory as free. Free only named sections 237 * leaving the rest of memory unchanged. 238 */ 239 struct cvmx_bootmem_named_block_desc *ptr = 240 (struct cvmx_bootmem_named_block_desc *) 241 named_block_array_ptr; 242 243 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) 244 if (ptr[i].size) 245 cvmx_bootmem_free_named(ptr[i].name); 246 } 247 kexec_args[2] = 1UL; /* running on octeon_main_processor */ 248 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 249 #ifdef CONFIG_SMP 250 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ 251 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 252 #endif 253 } 254 255 static void octeon_shutdown(void) 256 { 257 octeon_generic_shutdown(); 258 #ifdef CONFIG_SMP 259 smp_call_function(octeon_kexec_smp_down, NULL, 0); 260 smp_wmb(); 261 while (num_online_cpus() > 1) { 262 cpu_relax(); 263 mdelay(1); 264 } 265 #endif 266 } 267 268 static void octeon_crash_shutdown(struct pt_regs *regs) 269 { 270 octeon_generic_shutdown(); 271 default_machine_crash_shutdown(regs); 272 } 273 274 #ifdef CONFIG_SMP 275 void octeon_crash_smp_send_stop(void) 276 { 277 int cpu; 278 279 /* disable watchdogs */ 280 for_each_online_cpu(cpu) 281 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 282 } 283 #endif 284 285 #endif /* CONFIG_KEXEC */ 286 287 #ifdef CONFIG_CAVIUM_RESERVE32 288 uint64_t octeon_reserve32_memory; 289 EXPORT_SYMBOL(octeon_reserve32_memory); 290 #endif 291 292 #ifdef CONFIG_KEXEC 293 /* crashkernel cmdline parameter is parsed _after_ memory setup 294 * we also parse it here (workaround for EHB5200) */ 295 static uint64_t crashk_size, crashk_base; 296 #endif 297 298 static int octeon_uart; 299 300 extern asmlinkage void handle_int(void); 301 302 /** 303 * octeon_is_simulation - Return non-zero if we are currently running 304 * in the Octeon simulator 305 * 306 * Return: non-0 if running in the Octeon simulator, 0 otherwise 307 */ 308 int octeon_is_simulation(void) 309 { 310 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; 311 } 312 EXPORT_SYMBOL(octeon_is_simulation); 313 314 /** 315 * octeon_is_pci_host - Return true if Octeon is in PCI Host mode. This means 316 * Linux can control the PCI bus. 317 * 318 * Return: Non-zero if Octeon is in host mode. 319 */ 320 int octeon_is_pci_host(void) 321 { 322 #ifdef CONFIG_PCI 323 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; 324 #else 325 return 0; 326 #endif 327 } 328 329 /** 330 * octeon_get_clock_rate - Get the clock rate of Octeon 331 * 332 * Return: Clock rate in HZ 333 */ 334 uint64_t octeon_get_clock_rate(void) 335 { 336 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); 337 338 return sysinfo->cpu_clock_hz; 339 } 340 EXPORT_SYMBOL(octeon_get_clock_rate); 341 342 static u64 octeon_io_clock_rate; 343 344 u64 octeon_get_io_clock_rate(void) 345 { 346 return octeon_io_clock_rate; 347 } 348 EXPORT_SYMBOL(octeon_get_io_clock_rate); 349 350 351 /** 352 * octeon_write_lcd - Write to the LCD display connected to the bootbus. 353 * @s: String to write 354 * 355 * This display exists on most Cavium evaluation boards. If it doesn't exist, 356 * then this function doesn't do anything. 357 */ 358 static void octeon_write_lcd(const char *s) 359 { 360 if (octeon_bootinfo->led_display_base_addr) { 361 void __iomem *lcd_address = 362 ioremap(octeon_bootinfo->led_display_base_addr, 363 8); 364 int i; 365 for (i = 0; i < 8; i++, s++) { 366 if (*s) 367 iowrite8(*s, lcd_address + i); 368 else 369 iowrite8(' ', lcd_address + i); 370 } 371 iounmap(lcd_address); 372 } 373 } 374 375 /** 376 * octeon_get_boot_uart - Return the console uart passed by the bootloader 377 * 378 * Return: uart number (0 or 1) 379 */ 380 static int octeon_get_boot_uart(void) 381 { 382 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? 383 1 : 0; 384 } 385 386 /** 387 * octeon_get_boot_coremask - Get the coremask Linux was booted on. 388 * 389 * Return: Core mask 390 */ 391 int octeon_get_boot_coremask(void) 392 { 393 return octeon_boot_desc_ptr->core_mask; 394 } 395 396 /** 397 * octeon_check_cpu_bist - Check the hardware BIST results for a CPU 398 */ 399 void octeon_check_cpu_bist(void) 400 { 401 const int coreid = cvmx_get_core_num(); 402 unsigned long long mask; 403 unsigned long long bist_val; 404 405 /* Check BIST results for COP0 registers */ 406 mask = 0x1f00000000ull; 407 bist_val = read_octeon_c0_icacheerr(); 408 if (bist_val & mask) 409 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", 410 coreid, bist_val); 411 412 bist_val = read_octeon_c0_dcacheerr(); 413 if (bist_val & 1) 414 pr_err("Core%d L1 Dcache parity error: " 415 "CacheErr(dcache) = 0x%llx\n", 416 coreid, bist_val); 417 418 mask = 0xfc00000000000000ull; 419 bist_val = read_c0_cvmmemctl(); 420 if (bist_val & mask) 421 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", 422 coreid, bist_val); 423 424 write_octeon_c0_dcacheerr(0); 425 } 426 427 /** 428 * octeon_restart - Reboot Octeon 429 * 430 * @command: Command to pass to the bootloader. Currently ignored. 431 */ 432 static void octeon_restart(char *command) 433 { 434 /* Disable all watchdogs before soft reset. They don't get cleared */ 435 #ifdef CONFIG_SMP 436 int cpu; 437 for_each_online_cpu(cpu) 438 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 439 #else 440 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 441 #endif 442 443 mb(); 444 while (1) 445 if (OCTEON_IS_OCTEON3()) 446 cvmx_write_csr(CVMX_RST_SOFT_RST, 1); 447 else 448 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); 449 } 450 451 452 /** 453 * octeon_kill_core - Permanently stop a core. 454 * 455 * @arg: Ignored. 456 */ 457 static void octeon_kill_core(void *arg) 458 { 459 if (octeon_is_simulation()) 460 /* A break instruction causes the simulator stop a core */ 461 asm volatile ("break" ::: "memory"); 462 463 local_irq_disable(); 464 /* Disable watchdog on this core. */ 465 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 466 /* Spin in a low power mode. */ 467 while (true) 468 asm volatile ("wait" ::: "memory"); 469 } 470 471 472 /** 473 * octeon_halt - Halt the system 474 */ 475 static void octeon_halt(void) 476 { 477 smp_call_function(octeon_kill_core, NULL, 0); 478 479 switch (octeon_bootinfo->board_type) { 480 case CVMX_BOARD_TYPE_NAO38: 481 /* Driving a 1 to GPIO 12 shuts off this board */ 482 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); 483 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); 484 break; 485 default: 486 octeon_write_lcd("PowerOff"); 487 break; 488 } 489 490 octeon_kill_core(NULL); 491 } 492 493 static char __read_mostly octeon_system_type[80]; 494 495 static void __init init_octeon_system_type(void) 496 { 497 char const *board_type; 498 499 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type); 500 if (board_type == NULL) { 501 struct device_node *root; 502 int ret; 503 504 root = of_find_node_by_path("/"); 505 ret = of_property_read_string(root, "model", &board_type); 506 of_node_put(root); 507 if (ret) 508 board_type = "Unsupported Board"; 509 } 510 511 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", 512 board_type, octeon_model_get_string(read_c0_prid())); 513 } 514 515 /** 516 * octeon_board_type_string - Return a string representing the system type 517 * 518 * Return: system type string 519 */ 520 const char *octeon_board_type_string(void) 521 { 522 return octeon_system_type; 523 } 524 525 const char *get_system_type(void) 526 __attribute__ ((alias("octeon_board_type_string"))); 527 528 void octeon_user_io_init(void) 529 { 530 union octeon_cvmemctl cvmmemctl; 531 532 /* Get the current settings for CP0_CVMMEMCTL_REG */ 533 cvmmemctl.u64 = read_c0_cvmmemctl(); 534 /* R/W If set, marked write-buffer entries time out the same 535 * as as other entries; if clear, marked write-buffer entries 536 * use the maximum timeout. */ 537 cvmmemctl.s.dismarkwblongto = 1; 538 /* R/W If set, a merged store does not clear the write-buffer 539 * entry timeout state. */ 540 cvmmemctl.s.dismrgclrwbto = 0; 541 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM 542 * word location for an IOBDMA. The other 8 bits come from the 543 * SCRADDR field of the IOBDMA. */ 544 cvmmemctl.s.iobdmascrmsb = 0; 545 /* R/W If set, SYNCWS and SYNCS only order marked stores; if 546 * clear, SYNCWS and SYNCS only order unmarked 547 * stores. SYNCWSMARKED has no effect when DISSYNCWS is 548 * set. */ 549 cvmmemctl.s.syncwsmarked = 0; 550 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ 551 cvmmemctl.s.dissyncws = 0; 552 /* R/W If set, no stall happens on write buffer full. */ 553 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) 554 cvmmemctl.s.diswbfst = 1; 555 else 556 cvmmemctl.s.diswbfst = 0; 557 /* R/W If set (and SX set), supervisor-level loads/stores can 558 * use XKPHYS addresses with <48>==0 */ 559 cvmmemctl.s.xkmemenas = 0; 560 561 /* R/W If set (and UX set), user-level loads/stores can use 562 * XKPHYS addresses with VA<48>==0 */ 563 cvmmemctl.s.xkmemenau = 0; 564 565 /* R/W If set (and SX set), supervisor-level loads/stores can 566 * use XKPHYS addresses with VA<48>==1 */ 567 cvmmemctl.s.xkioenas = 0; 568 569 /* R/W If set (and UX set), user-level loads/stores can use 570 * XKPHYS addresses with VA<48>==1 */ 571 cvmmemctl.s.xkioenau = 0; 572 573 /* R/W If set, all stores act as SYNCW (NOMERGE must be set 574 * when this is set) RW, reset to 0. */ 575 cvmmemctl.s.allsyncw = 0; 576 577 /* R/W If set, no stores merge, and all stores reach the 578 * coherent bus in order. */ 579 cvmmemctl.s.nomerge = 0; 580 /* R/W Selects the bit in the counter used for DID time-outs 0 581 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is 582 * between 1x and 2x this interval. For example, with 583 * DIDTTO=3, expiration interval is between 16K and 32K. */ 584 cvmmemctl.s.didtto = 0; 585 /* R/W If set, the (mem) CSR clock never turns off. */ 586 cvmmemctl.s.csrckalwys = 0; 587 /* R/W If set, mclk never turns off. */ 588 cvmmemctl.s.mclkalwys = 0; 589 /* R/W Selects the bit in the counter used for write buffer 590 * flush time-outs (WBFLT+11) is the bit position in an 591 * internal counter used to determine expiration. The write 592 * buffer expires between 1x and 2x this interval. For 593 * example, with WBFLT = 0, a write buffer expires between 2K 594 * and 4K cycles after the write buffer entry is allocated. */ 595 cvmmemctl.s.wbfltime = 0; 596 /* R/W If set, do not put Istream in the L2 cache. */ 597 cvmmemctl.s.istrnol2 = 0; 598 599 /* 600 * R/W The write buffer threshold. As per erratum Core-14752 601 * for CN63XX, a sc/scd might fail if the write buffer is 602 * full. Lowering WBTHRESH greatly lowers the chances of the 603 * write buffer ever being full and triggering the erratum. 604 */ 605 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) 606 cvmmemctl.s.wbthresh = 4; 607 else 608 cvmmemctl.s.wbthresh = 10; 609 610 /* R/W If set, CVMSEG is available for loads/stores in 611 * kernel/debug mode. */ 612 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 613 cvmmemctl.s.cvmsegenak = 1; 614 #else 615 cvmmemctl.s.cvmsegenak = 0; 616 #endif 617 /* R/W If set, CVMSEG is available for loads/stores in 618 * supervisor mode. */ 619 cvmmemctl.s.cvmsegenas = 0; 620 /* R/W If set, CVMSEG is available for loads/stores in user 621 * mode. */ 622 cvmmemctl.s.cvmsegenau = 0; 623 624 write_c0_cvmmemctl(cvmmemctl.u64); 625 626 /* Setup of CVMSEG is done in kernel-entry-init.h */ 627 if (smp_processor_id() == 0) 628 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", 629 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, 630 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); 631 632 if (octeon_has_feature(OCTEON_FEATURE_FAU)) { 633 union cvmx_iob_fau_timeout fau_timeout; 634 635 /* Set a default for the hardware timeouts */ 636 fau_timeout.u64 = 0; 637 fau_timeout.s.tout_val = 0xfff; 638 /* Disable tagwait FAU timeout */ 639 fau_timeout.s.tout_enb = 0; 640 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); 641 } 642 643 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) && 644 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) || 645 OCTEON_IS_MODEL(OCTEON_CN70XX)) { 646 union cvmx_pow_nw_tim nm_tim; 647 648 nm_tim.u64 = 0; 649 /* 4096 cycles */ 650 nm_tim.s.nw_tim = 3; 651 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); 652 } 653 654 write_octeon_c0_icacheerr(0); 655 write_c0_derraddr1(0); 656 } 657 658 /** 659 * prom_init - Early entry point for arch setup 660 */ 661 void __init prom_init(void) 662 { 663 struct cvmx_sysinfo *sysinfo; 664 const char *arg; 665 char *p; 666 int i; 667 u64 t; 668 int argc; 669 #ifdef CONFIG_CAVIUM_RESERVE32 670 int64_t addr = -1; 671 #endif 672 /* 673 * The bootloader passes a pointer to the boot descriptor in 674 * $a3, this is available as fw_arg3. 675 */ 676 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 677 octeon_bootinfo = 678 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 679 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); 680 681 sysinfo = cvmx_sysinfo_get(); 682 memset(sysinfo, 0, sizeof(*sysinfo)); 683 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; 684 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr); 685 686 if ((octeon_bootinfo->major_version > 1) || 687 (octeon_bootinfo->major_version == 1 && 688 octeon_bootinfo->minor_version >= 4)) 689 cvmx_coremask_copy(&sysinfo->core_mask, 690 &octeon_bootinfo->ext_core_mask); 691 else 692 cvmx_coremask_set64(&sysinfo->core_mask, 693 octeon_bootinfo->core_mask); 694 695 /* Some broken u-boot pass garbage in upper bits, clear them out */ 696 if (!OCTEON_IS_MODEL(OCTEON_CN78XX)) 697 for (i = 512; i < 1024; i++) 698 cvmx_coremask_clear_core(&sysinfo->core_mask, i); 699 700 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; 701 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; 702 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; 703 sysinfo->board_type = octeon_bootinfo->board_type; 704 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; 705 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; 706 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, 707 sizeof(sysinfo->mac_addr_base)); 708 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; 709 memcpy(sysinfo->board_serial_number, 710 octeon_bootinfo->board_serial_number, 711 sizeof(sysinfo->board_serial_number)); 712 sysinfo->compact_flash_common_base_addr = 713 octeon_bootinfo->compact_flash_common_base_addr; 714 sysinfo->compact_flash_attribute_base_addr = 715 octeon_bootinfo->compact_flash_attribute_base_addr; 716 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; 717 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; 718 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; 719 720 if (OCTEON_IS_OCTEON2()) { 721 /* I/O clock runs at a different rate than the CPU. */ 722 union cvmx_mio_rst_boot rst_boot; 723 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); 724 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 725 } else if (OCTEON_IS_OCTEON3()) { 726 /* I/O clock runs at a different rate than the CPU. */ 727 union cvmx_rst_boot rst_boot; 728 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); 729 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 730 } else { 731 octeon_io_clock_rate = sysinfo->cpu_clock_hz; 732 } 733 734 t = read_c0_cvmctl(); 735 if ((t & (1ull << 27)) == 0) { 736 /* 737 * Setup the multiplier save/restore code if 738 * CvmCtl[NOMUL] clear. 739 */ 740 void *save; 741 void *save_end; 742 void *restore; 743 void *restore_end; 744 int save_len; 745 int restore_len; 746 int save_max = (char *)octeon_mult_save_end - 747 (char *)octeon_mult_save; 748 int restore_max = (char *)octeon_mult_restore_end - 749 (char *)octeon_mult_restore; 750 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) { 751 save = octeon_mult_save3; 752 save_end = octeon_mult_save3_end; 753 restore = octeon_mult_restore3; 754 restore_end = octeon_mult_restore3_end; 755 } else { 756 save = octeon_mult_save2; 757 save_end = octeon_mult_save2_end; 758 restore = octeon_mult_restore2; 759 restore_end = octeon_mult_restore2_end; 760 } 761 save_len = (char *)save_end - (char *)save; 762 restore_len = (char *)restore_end - (char *)restore; 763 if (!WARN_ON(save_len > save_max || 764 restore_len > restore_max)) { 765 memcpy(octeon_mult_save, save, save_len); 766 memcpy(octeon_mult_restore, restore, restore_len); 767 } 768 } 769 770 /* 771 * Only enable the LED controller if we're running on a CN38XX, CN58XX, 772 * or CN56XX. The CN30XX and CN31XX don't have an LED controller. 773 */ 774 if (!octeon_is_simulation() && 775 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { 776 cvmx_write_csr(CVMX_LED_EN, 0); 777 cvmx_write_csr(CVMX_LED_PRT, 0); 778 cvmx_write_csr(CVMX_LED_DBG, 0); 779 cvmx_write_csr(CVMX_LED_PRT_FMT, 0); 780 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); 781 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); 782 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); 783 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); 784 cvmx_write_csr(CVMX_LED_EN, 1); 785 } 786 #ifdef CONFIG_CAVIUM_RESERVE32 787 /* 788 * We need to temporarily allocate all memory in the reserve32 789 * region. This makes sure the kernel doesn't allocate this 790 * memory when it is getting memory from the 791 * bootloader. Later, after the memory allocations are 792 * complete, the reserve32 will be freed. 793 * 794 * Allocate memory for RESERVED32 aligned on 2MB boundary. This 795 * is in case we later use hugetlb entries with it. 796 */ 797 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, 798 0, 0, 2 << 20, 799 "CAVIUM_RESERVE32", 0); 800 if (addr < 0) 801 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); 802 else 803 octeon_reserve32_memory = addr; 804 #endif 805 806 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 807 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { 808 pr_info("Skipping L2 locking due to reduced L2 cache size\n"); 809 } else { 810 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; 811 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB 812 /* TLB refill */ 813 cvmx_l2c_lock_mem_region(ebase, 0x100); 814 #endif 815 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION 816 /* General exception */ 817 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); 818 #endif 819 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT 820 /* Interrupt handler */ 821 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); 822 #endif 823 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT 824 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); 825 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); 826 #endif 827 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY 828 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); 829 #endif 830 } 831 #endif 832 833 octeon_check_cpu_bist(); 834 835 octeon_uart = octeon_get_boot_uart(); 836 837 #ifdef CONFIG_SMP 838 octeon_write_lcd("LinuxSMP"); 839 #else 840 octeon_write_lcd("Linux"); 841 #endif 842 843 octeon_setup_delays(); 844 845 /* 846 * BIST should always be enabled when doing a soft reset. L2 847 * Cache locking for instance is not cleared unless BIST is 848 * enabled. Unfortunately due to a chip errata G-200 for 849 * Cn38XX and CN31XX, BIST must be disabled on these parts. 850 */ 851 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 852 OCTEON_IS_MODEL(OCTEON_CN31XX)) 853 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); 854 else 855 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); 856 857 /* Default to 64MB in the simulator to speed things up */ 858 if (octeon_is_simulation()) 859 max_memory = 64ull << 20; 860 861 arg = strstr(arcs_cmdline, "mem="); 862 if (arg) { 863 max_memory = memparse(arg + 4, &p); 864 if (max_memory == 0) 865 max_memory = 32ull << 30; 866 if (*p == '@') 867 reserve_low_mem = memparse(p + 1, &p); 868 } 869 870 arcs_cmdline[0] = 0; 871 argc = octeon_boot_desc_ptr->argc; 872 for (i = 0; i < argc; i++) { 873 const char *arg = 874 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 875 if ((strncmp(arg, "MEM=", 4) == 0) || 876 (strncmp(arg, "mem=", 4) == 0)) { 877 max_memory = memparse(arg + 4, &p); 878 if (max_memory == 0) 879 max_memory = 32ull << 30; 880 if (*p == '@') 881 reserve_low_mem = memparse(p + 1, &p); 882 #ifdef CONFIG_KEXEC 883 } else if (strncmp(arg, "crashkernel=", 12) == 0) { 884 crashk_size = memparse(arg+12, &p); 885 if (*p == '@') 886 crashk_base = memparse(p+1, &p); 887 strcat(arcs_cmdline, " "); 888 strcat(arcs_cmdline, arg); 889 /* 890 * To do: switch parsing to new style, something like: 891 * parse_crashkernel(arg, sysinfo->system_dram_size, 892 * &crashk_size, &crashk_base); 893 */ 894 #endif 895 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < 896 sizeof(arcs_cmdline) - 1) { 897 strcat(arcs_cmdline, " "); 898 strcat(arcs_cmdline, arg); 899 } 900 } 901 902 if (strstr(arcs_cmdline, "console=") == NULL) { 903 if (octeon_uart == 1) 904 strcat(arcs_cmdline, " console=ttyS1,115200"); 905 else 906 strcat(arcs_cmdline, " console=ttyS0,115200"); 907 } 908 909 mips_hpt_frequency = octeon_get_clock_rate(); 910 911 octeon_init_cvmcount(); 912 913 _machine_restart = octeon_restart; 914 _machine_halt = octeon_halt; 915 916 #ifdef CONFIG_KEXEC 917 _machine_kexec_shutdown = octeon_shutdown; 918 _machine_crash_shutdown = octeon_crash_shutdown; 919 _machine_kexec_prepare = octeon_kexec_prepare; 920 #ifdef CONFIG_SMP 921 _crash_smp_send_stop = octeon_crash_smp_send_stop; 922 #endif 923 #endif 924 925 octeon_user_io_init(); 926 octeon_setup_smp(); 927 } 928 929 /* Exclude a single page from the regions obtained in plat_mem_setup. */ 930 #ifndef CONFIG_CRASH_DUMP 931 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) 932 { 933 if (addr > *mem && addr < *mem + *size) { 934 u64 inc = addr - *mem; 935 memblock_add(*mem, inc); 936 *mem += inc; 937 *size -= inc; 938 } 939 940 if (addr == *mem && *size > PAGE_SIZE) { 941 *mem += PAGE_SIZE; 942 *size -= PAGE_SIZE; 943 } 944 } 945 #endif /* CONFIG_CRASH_DUMP */ 946 947 void __init fw_init_cmdline(void) 948 { 949 int i; 950 951 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 952 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) { 953 const char *arg = 954 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 955 if (strlen(arcs_cmdline) + strlen(arg) + 1 < 956 sizeof(arcs_cmdline) - 1) { 957 strcat(arcs_cmdline, " "); 958 strcat(arcs_cmdline, arg); 959 } 960 } 961 } 962 963 void __init *plat_get_fdt(void) 964 { 965 octeon_bootinfo = 966 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 967 return phys_to_virt(octeon_bootinfo->fdt_addr); 968 } 969 970 void __init plat_mem_setup(void) 971 { 972 uint64_t mem_alloc_size; 973 uint64_t total; 974 uint64_t crashk_end; 975 #ifndef CONFIG_CRASH_DUMP 976 int64_t memory; 977 #endif 978 979 total = 0; 980 crashk_end = 0; 981 982 /* 983 * The Mips memory init uses the first memory location for 984 * some memory vectors. When SPARSEMEM is in use, it doesn't 985 * verify that the size is big enough for the final 986 * vectors. Making the smallest chuck 4MB seems to be enough 987 * to consistently work. 988 */ 989 mem_alloc_size = 4 << 20; 990 if (mem_alloc_size > max_memory) 991 mem_alloc_size = max_memory; 992 993 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ 994 #ifdef CONFIG_CRASH_DUMP 995 memblock_add(reserve_low_mem, max_memory); 996 total += max_memory; 997 #else 998 #ifdef CONFIG_KEXEC 999 if (crashk_size > 0) { 1000 memblock_add(crashk_base, crashk_size); 1001 crashk_end = crashk_base + crashk_size; 1002 } 1003 #endif 1004 /* 1005 * When allocating memory, we want incrementing addresses, 1006 * which is handled by memblock 1007 */ 1008 cvmx_bootmem_lock(); 1009 while (total < max_memory) { 1010 memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 1011 __pa_symbol(&_end), -1, 1012 0x100000, 1013 CVMX_BOOTMEM_FLAG_NO_LOCKING); 1014 if (memory >= 0) { 1015 u64 size = mem_alloc_size; 1016 #ifdef CONFIG_KEXEC 1017 uint64_t end; 1018 #endif 1019 1020 /* 1021 * exclude a page at the beginning and end of 1022 * the 256MB PCIe 'hole' so the kernel will not 1023 * try to allocate multi-page buffers that 1024 * span the discontinuity. 1025 */ 1026 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, 1027 &memory, &size); 1028 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + 1029 CVMX_PCIE_BAR1_PHYS_SIZE, 1030 &memory, &size); 1031 #ifdef CONFIG_KEXEC 1032 end = memory + mem_alloc_size; 1033 1034 /* 1035 * This function automatically merges address regions 1036 * next to each other if they are received in 1037 * incrementing order 1038 */ 1039 if (memory < crashk_base && end > crashk_end) { 1040 /* region is fully in */ 1041 memblock_add(memory, crashk_base - memory); 1042 total += crashk_base - memory; 1043 memblock_add(crashk_end, end - crashk_end); 1044 total += end - crashk_end; 1045 continue; 1046 } 1047 1048 if (memory >= crashk_base && end <= crashk_end) 1049 /* 1050 * Entire memory region is within the new 1051 * kernel's memory, ignore it. 1052 */ 1053 continue; 1054 1055 if (memory > crashk_base && memory < crashk_end && 1056 end > crashk_end) { 1057 /* 1058 * Overlap with the beginning of the region, 1059 * reserve the beginning. 1060 */ 1061 mem_alloc_size -= crashk_end - memory; 1062 memory = crashk_end; 1063 } else if (memory < crashk_base && end > crashk_base && 1064 end < crashk_end) 1065 /* 1066 * Overlap with the beginning of the region, 1067 * chop of end. 1068 */ 1069 mem_alloc_size -= end - crashk_base; 1070 #endif 1071 memblock_add(memory, mem_alloc_size); 1072 total += mem_alloc_size; 1073 /* Recovering mem_alloc_size */ 1074 mem_alloc_size = 4 << 20; 1075 } else { 1076 break; 1077 } 1078 } 1079 cvmx_bootmem_unlock(); 1080 #endif /* CONFIG_CRASH_DUMP */ 1081 1082 #ifdef CONFIG_CAVIUM_RESERVE32 1083 /* 1084 * Now that we've allocated the kernel memory it is safe to 1085 * free the reserved region. We free it here so that builtin 1086 * drivers can use the memory. 1087 */ 1088 if (octeon_reserve32_memory) 1089 cvmx_bootmem_free_named("CAVIUM_RESERVE32"); 1090 #endif /* CONFIG_CAVIUM_RESERVE32 */ 1091 1092 if (total == 0) 1093 panic("Unable to allocate memory from " 1094 "cvmx_bootmem_phy_alloc"); 1095 } 1096 1097 /* 1098 * Emit one character to the boot UART. Exported for use by the 1099 * watchdog timer. 1100 */ 1101 void prom_putchar(char c) 1102 { 1103 uint64_t lsrval; 1104 1105 /* Spin until there is room */ 1106 do { 1107 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); 1108 } while ((lsrval & 0x20) == 0); 1109 1110 /* Write the byte */ 1111 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); 1112 } 1113 EXPORT_SYMBOL(prom_putchar); 1114 1115 void __init prom_free_prom_memory(void) 1116 { 1117 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 1118 /* Check for presence of Core-14449 fix. */ 1119 u32 insn; 1120 u32 *foo; 1121 1122 foo = &insn; 1123 1124 asm volatile("# before" : : : "memory"); 1125 prefetch(foo); 1126 asm volatile( 1127 ".set push\n\t" 1128 ".set noreorder\n\t" 1129 "bal 1f\n\t" 1130 "nop\n" 1131 "1:\tlw %0,-12($31)\n\t" 1132 ".set pop\n\t" 1133 : "=r" (insn) : : "$31", "memory"); 1134 1135 if ((insn >> 26) != 0x33) 1136 panic("No PREF instruction at Core-14449 probe point."); 1137 1138 if (((insn >> 16) & 0x1f) != 28) 1139 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n" 1140 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", 1141 insn); 1142 } 1143 } 1144 1145 void __init octeon_fill_mac_addresses(void); 1146 1147 void __init device_tree_init(void) 1148 { 1149 const void *fdt; 1150 bool do_prune; 1151 bool fill_mac; 1152 1153 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 1154 if (!fdt_check_header(&__appended_dtb)) { 1155 fdt = &__appended_dtb; 1156 do_prune = false; 1157 fill_mac = true; 1158 pr_info("Using appended Device Tree.\n"); 1159 } else 1160 #endif 1161 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { 1162 fdt = phys_to_virt(octeon_bootinfo->fdt_addr); 1163 if (fdt_check_header(fdt)) 1164 panic("Corrupt Device Tree passed to kernel."); 1165 do_prune = false; 1166 fill_mac = false; 1167 pr_info("Using passed Device Tree.\n"); 1168 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { 1169 fdt = &__dtb_octeon_68xx_begin; 1170 do_prune = true; 1171 fill_mac = true; 1172 } else { 1173 fdt = &__dtb_octeon_3xxx_begin; 1174 do_prune = true; 1175 fill_mac = true; 1176 } 1177 1178 initial_boot_params = (void *)fdt; 1179 1180 if (do_prune) { 1181 octeon_prune_device_tree(); 1182 pr_info("Using internal Device Tree.\n"); 1183 } 1184 if (fill_mac) 1185 octeon_fill_mac_addresses(); 1186 unflatten_and_copy_device_tree(); 1187 init_octeon_system_type(); 1188 } 1189 1190 static int __initdata disable_octeon_edac_p; 1191 1192 static int __init disable_octeon_edac(char *str) 1193 { 1194 disable_octeon_edac_p = 1; 1195 return 0; 1196 } 1197 early_param("disable_octeon_edac", disable_octeon_edac); 1198 1199 static char *edac_device_names[] = { 1200 "octeon_l2c_edac", 1201 "octeon_pc_edac", 1202 }; 1203 1204 static int __init edac_devinit(void) 1205 { 1206 struct platform_device *dev; 1207 int i, err = 0; 1208 int num_lmc; 1209 char *name; 1210 1211 if (disable_octeon_edac_p) 1212 return 0; 1213 1214 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { 1215 name = edac_device_names[i]; 1216 dev = platform_device_register_simple(name, -1, NULL, 0); 1217 if (IS_ERR(dev)) { 1218 pr_err("Registration of %s failed!\n", name); 1219 err = PTR_ERR(dev); 1220 } 1221 } 1222 1223 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : 1224 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); 1225 for (i = 0; i < num_lmc; i++) { 1226 dev = platform_device_register_simple("octeon_lmc_edac", 1227 i, NULL, 0); 1228 if (IS_ERR(dev)) { 1229 pr_err("Registration of octeon_lmc_edac %d failed!\n", i); 1230 err = PTR_ERR(dev); 1231 } 1232 } 1233 1234 return err; 1235 } 1236 device_initcall(edac_devinit); 1237 1238 static void __initdata *octeon_dummy_iospace; 1239 1240 static int __init octeon_no_pci_init(void) 1241 { 1242 /* 1243 * Initially assume there is no PCI. The PCI/PCIe platform code will 1244 * later re-initialize these to correct values if they are present. 1245 */ 1246 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); 1247 set_io_port_base((unsigned long)octeon_dummy_iospace); 1248 ioport_resource.start = MAX_RESOURCE; 1249 ioport_resource.end = 0; 1250 return 0; 1251 } 1252 core_initcall(octeon_no_pci_init); 1253 1254 static int __init octeon_no_pci_release(void) 1255 { 1256 /* 1257 * Release the allocated memory if a real IO space is there. 1258 */ 1259 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) 1260 vfree(octeon_dummy_iospace); 1261 return 0; 1262 } 1263 late_initcall(octeon_no_pci_release); 1264