xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision d949b4fe)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/console.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/serial.h>
19 #include <linux/smp.h>
20 #include <linux/types.h>
21 #include <linux/string.h>	/* for memset */
22 #include <linux/tty.h>
23 #include <linux/time.h>
24 #include <linux/platform_device.h>
25 #include <linux/serial_core.h>
26 #include <linux/serial_8250.h>
27 #include <linux/of_fdt.h>
28 #include <linux/libfdt.h>
29 #include <linux/kexec.h>
30 
31 #include <asm/processor.h>
32 #include <asm/reboot.h>
33 #include <asm/smp-ops.h>
34 #include <asm/irq_cpu.h>
35 #include <asm/mipsregs.h>
36 #include <asm/bootinfo.h>
37 #include <asm/sections.h>
38 #include <asm/time.h>
39 
40 #include <asm/octeon/octeon.h>
41 #include <asm/octeon/pci-octeon.h>
42 #include <asm/octeon/cvmx-mio-defs.h>
43 
44 #ifdef CONFIG_CAVIUM_DECODE_RSL
45 extern void cvmx_interrupt_rsl_decode(void);
46 extern int __cvmx_interrupt_ecc_report_single_bit_errors;
47 extern void cvmx_interrupt_rsl_enable(void);
48 #endif
49 
50 extern struct plat_smp_ops octeon_smp_ops;
51 
52 #ifdef CONFIG_PCI
53 extern void pci_console_init(const char *arg);
54 #endif
55 
56 static unsigned long long MAX_MEMORY = 512ull << 20;
57 
58 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
59 
60 struct cvmx_bootinfo *octeon_bootinfo;
61 EXPORT_SYMBOL(octeon_bootinfo);
62 
63 static unsigned long long RESERVE_LOW_MEM = 0ull;
64 #ifdef CONFIG_KEXEC
65 #ifdef CONFIG_SMP
66 /*
67  * Wait for relocation code is prepared and send
68  * secondary CPUs to spin until kernel is relocated.
69  */
70 static void octeon_kexec_smp_down(void *ignored)
71 {
72 	int cpu = smp_processor_id();
73 
74 	local_irq_disable();
75 	set_cpu_online(cpu, false);
76 	while (!atomic_read(&kexec_ready_to_reboot))
77 		cpu_relax();
78 
79 	asm volatile (
80 	"	sync						\n"
81 	"	synci	($0)					\n");
82 
83 	relocated_kexec_smp_wait(NULL);
84 }
85 #endif
86 
87 #define OCTEON_DDR0_BASE    (0x0ULL)
88 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
89 #define OCTEON_DDR1_BASE    (0x410000000ULL)
90 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
91 #define OCTEON_DDR2_BASE    (0x020000000ULL)
92 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
93 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
94 
95 static struct kimage *kimage_ptr;
96 
97 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
98 {
99 	int64_t addr;
100 	struct cvmx_bootmem_desc *bootmem_desc;
101 
102 	bootmem_desc = cvmx_bootmem_get_desc();
103 
104 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
105 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
106 		pr_err("Error: requested memory too large,"
107 		       "truncating to maximum size\n");
108 	}
109 
110 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
111 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
112 
113 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
114 	bootmem_desc->head_addr = 0;
115 
116 	if (mem_size <= OCTEON_DDR0_SIZE) {
117 		__cvmx_bootmem_phy_free(addr,
118 				mem_size - RESERVE_LOW_MEM -
119 				low_reserved_bytes, 0);
120 		return;
121 	}
122 
123 	__cvmx_bootmem_phy_free(addr,
124 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
125 			low_reserved_bytes, 0);
126 
127 	mem_size -= OCTEON_DDR0_SIZE;
128 
129 	if (mem_size > OCTEON_DDR1_SIZE) {
130 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
131 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
132 				mem_size - OCTEON_DDR1_SIZE, 0);
133 	} else
134 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
135 }
136 
137 static int octeon_kexec_prepare(struct kimage *image)
138 {
139 	int i;
140 	char *bootloader = "kexec";
141 
142 	octeon_boot_desc_ptr->argc = 0;
143 	for (i = 0; i < image->nr_segments; i++) {
144 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
145 				strlen(bootloader))) {
146 			/*
147 			 * convert command line string to array
148 			 * of parameters (as bootloader does).
149 			 */
150 			int argc = 0, offt;
151 			char *str = (char *)image->segment[i].buf;
152 			char *ptr = strchr(str, ' ');
153 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
154 				*ptr = '\0';
155 				if (ptr[1] != ' ') {
156 					offt = (int)(ptr - str + 1);
157 					octeon_boot_desc_ptr->argv[argc] =
158 						image->segment[i].mem + offt;
159 					argc++;
160 				}
161 				ptr = strchr(ptr + 1, ' ');
162 			}
163 			octeon_boot_desc_ptr->argc = argc;
164 			break;
165 		}
166 	}
167 
168 	/*
169 	 * Information about segments will be needed during pre-boot memory
170 	 * initialization.
171 	 */
172 	kimage_ptr = image;
173 	return 0;
174 }
175 
176 static void octeon_generic_shutdown(void)
177 {
178 	int i;
179 #ifdef CONFIG_SMP
180 	int cpu;
181 #endif
182 	struct cvmx_bootmem_desc *bootmem_desc;
183 	void *named_block_array_ptr;
184 
185 	bootmem_desc = cvmx_bootmem_get_desc();
186 	named_block_array_ptr =
187 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
188 
189 #ifdef CONFIG_SMP
190 	/* disable watchdogs */
191 	for_each_online_cpu(cpu)
192 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
193 #else
194 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
195 #endif
196 	if (kimage_ptr != kexec_crash_image) {
197 		memset(named_block_array_ptr,
198 			0x0,
199 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
200 			sizeof(struct cvmx_bootmem_named_block_desc));
201 		/*
202 		 * Mark all memory (except low 0x100000 bytes) as free.
203 		 * It is the same thing that bootloader does.
204 		 */
205 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
206 				0x100000);
207 		/*
208 		 * Allocate all segments to avoid their corruption during boot.
209 		 */
210 		for (i = 0; i < kimage_ptr->nr_segments; i++)
211 			cvmx_bootmem_alloc_address(
212 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
213 				kimage_ptr->segment[i].mem - PAGE_SIZE,
214 				PAGE_SIZE);
215 	} else {
216 		/*
217 		 * Do not mark all memory as free. Free only named sections
218 		 * leaving the rest of memory unchanged.
219 		 */
220 		struct cvmx_bootmem_named_block_desc *ptr =
221 			(struct cvmx_bootmem_named_block_desc *)
222 			named_block_array_ptr;
223 
224 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
225 			if (ptr[i].size)
226 				cvmx_bootmem_free_named(ptr[i].name);
227 	}
228 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
229 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
230 #ifdef CONFIG_SMP
231 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
232 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
233 #endif
234 }
235 
236 static void octeon_shutdown(void)
237 {
238 	octeon_generic_shutdown();
239 #ifdef CONFIG_SMP
240 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
241 	smp_wmb();
242 	while (num_online_cpus() > 1) {
243 		cpu_relax();
244 		mdelay(1);
245 	}
246 #endif
247 }
248 
249 static void octeon_crash_shutdown(struct pt_regs *regs)
250 {
251 	octeon_generic_shutdown();
252 	default_machine_crash_shutdown(regs);
253 }
254 
255 #endif /* CONFIG_KEXEC */
256 
257 #ifdef CONFIG_CAVIUM_RESERVE32
258 uint64_t octeon_reserve32_memory;
259 EXPORT_SYMBOL(octeon_reserve32_memory);
260 #endif
261 
262 #ifdef CONFIG_KEXEC
263 /* crashkernel cmdline parameter is parsed _after_ memory setup
264  * we also parse it here (workaround for EHB5200) */
265 static uint64_t crashk_size, crashk_base;
266 #endif
267 
268 static int octeon_uart;
269 
270 extern asmlinkage void handle_int(void);
271 extern asmlinkage void plat_irq_dispatch(void);
272 
273 /**
274  * Return non zero if we are currently running in the Octeon simulator
275  *
276  * Returns
277  */
278 int octeon_is_simulation(void)
279 {
280 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
281 }
282 EXPORT_SYMBOL(octeon_is_simulation);
283 
284 /**
285  * Return true if Octeon is in PCI Host mode. This means
286  * Linux can control the PCI bus.
287  *
288  * Returns Non zero if Octeon in host mode.
289  */
290 int octeon_is_pci_host(void)
291 {
292 #ifdef CONFIG_PCI
293 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
294 #else
295 	return 0;
296 #endif
297 }
298 
299 /**
300  * Get the clock rate of Octeon
301  *
302  * Returns Clock rate in HZ
303  */
304 uint64_t octeon_get_clock_rate(void)
305 {
306 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
307 
308 	return sysinfo->cpu_clock_hz;
309 }
310 EXPORT_SYMBOL(octeon_get_clock_rate);
311 
312 static u64 octeon_io_clock_rate;
313 
314 u64 octeon_get_io_clock_rate(void)
315 {
316 	return octeon_io_clock_rate;
317 }
318 EXPORT_SYMBOL(octeon_get_io_clock_rate);
319 
320 
321 /**
322  * Write to the LCD display connected to the bootbus. This display
323  * exists on most Cavium evaluation boards. If it doesn't exist, then
324  * this function doesn't do anything.
325  *
326  * @s:	    String to write
327  */
328 void octeon_write_lcd(const char *s)
329 {
330 	if (octeon_bootinfo->led_display_base_addr) {
331 		void __iomem *lcd_address =
332 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
333 					8);
334 		int i;
335 		for (i = 0; i < 8; i++, s++) {
336 			if (*s)
337 				iowrite8(*s, lcd_address + i);
338 			else
339 				iowrite8(' ', lcd_address + i);
340 		}
341 		iounmap(lcd_address);
342 	}
343 }
344 
345 /**
346  * Return the console uart passed by the bootloader
347  *
348  * Returns uart	  (0 or 1)
349  */
350 int octeon_get_boot_uart(void)
351 {
352 	int uart;
353 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
354 	uart = 1;
355 #else
356 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
357 		1 : 0;
358 #endif
359 	return uart;
360 }
361 
362 /**
363  * Get the coremask Linux was booted on.
364  *
365  * Returns Core mask
366  */
367 int octeon_get_boot_coremask(void)
368 {
369 	return octeon_boot_desc_ptr->core_mask;
370 }
371 
372 /**
373  * Check the hardware BIST results for a CPU
374  */
375 void octeon_check_cpu_bist(void)
376 {
377 	const int coreid = cvmx_get_core_num();
378 	unsigned long long mask;
379 	unsigned long long bist_val;
380 
381 	/* Check BIST results for COP0 registers */
382 	mask = 0x1f00000000ull;
383 	bist_val = read_octeon_c0_icacheerr();
384 	if (bist_val & mask)
385 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
386 		       coreid, bist_val);
387 
388 	bist_val = read_octeon_c0_dcacheerr();
389 	if (bist_val & 1)
390 		pr_err("Core%d L1 Dcache parity error: "
391 		       "CacheErr(dcache) = 0x%llx\n",
392 		       coreid, bist_val);
393 
394 	mask = 0xfc00000000000000ull;
395 	bist_val = read_c0_cvmmemctl();
396 	if (bist_val & mask)
397 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
398 		       coreid, bist_val);
399 
400 	write_octeon_c0_dcacheerr(0);
401 }
402 
403 /**
404  * Reboot Octeon
405  *
406  * @command: Command to pass to the bootloader. Currently ignored.
407  */
408 static void octeon_restart(char *command)
409 {
410 	/* Disable all watchdogs before soft reset. They don't get cleared */
411 #ifdef CONFIG_SMP
412 	int cpu;
413 	for_each_online_cpu(cpu)
414 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
415 #else
416 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
417 #endif
418 
419 	mb();
420 	while (1)
421 		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
422 }
423 
424 
425 /**
426  * Permanently stop a core.
427  *
428  * @arg: Ignored.
429  */
430 static void octeon_kill_core(void *arg)
431 {
432 	if (octeon_is_simulation())
433 		/* A break instruction causes the simulator stop a core */
434 		asm volatile ("break" ::: "memory");
435 
436 	local_irq_disable();
437 	/* Disable watchdog on this core. */
438 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
439 	/* Spin in a low power mode. */
440 	while (true)
441 		asm volatile ("wait" ::: "memory");
442 }
443 
444 
445 /**
446  * Halt the system
447  */
448 static void octeon_halt(void)
449 {
450 	smp_call_function(octeon_kill_core, NULL, 0);
451 
452 	switch (octeon_bootinfo->board_type) {
453 	case CVMX_BOARD_TYPE_NAO38:
454 		/* Driving a 1 to GPIO 12 shuts off this board */
455 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
456 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
457 		break;
458 	default:
459 		octeon_write_lcd("PowerOff");
460 		break;
461 	}
462 
463 	octeon_kill_core(NULL);
464 }
465 
466 /**
467  * Handle all the error condition interrupts that might occur.
468  *
469  */
470 #ifdef CONFIG_CAVIUM_DECODE_RSL
471 static irqreturn_t octeon_rlm_interrupt(int cpl, void *dev_id)
472 {
473 	cvmx_interrupt_rsl_decode();
474 	return IRQ_HANDLED;
475 }
476 #endif
477 
478 /**
479  * Return a string representing the system type
480  *
481  * Returns
482  */
483 const char *octeon_board_type_string(void)
484 {
485 	static char name[80];
486 	sprintf(name, "%s (%s)",
487 		cvmx_board_type_to_string(octeon_bootinfo->board_type),
488 		octeon_model_get_string(read_c0_prid()));
489 	return name;
490 }
491 
492 const char *get_system_type(void)
493 	__attribute__ ((alias("octeon_board_type_string")));
494 
495 void octeon_user_io_init(void)
496 {
497 	union octeon_cvmemctl cvmmemctl;
498 	union cvmx_iob_fau_timeout fau_timeout;
499 	union cvmx_pow_nw_tim nm_tim;
500 
501 	/* Get the current settings for CP0_CVMMEMCTL_REG */
502 	cvmmemctl.u64 = read_c0_cvmmemctl();
503 	/* R/W If set, marked write-buffer entries time out the same
504 	 * as as other entries; if clear, marked write-buffer entries
505 	 * use the maximum timeout. */
506 	cvmmemctl.s.dismarkwblongto = 1;
507 	/* R/W If set, a merged store does not clear the write-buffer
508 	 * entry timeout state. */
509 	cvmmemctl.s.dismrgclrwbto = 0;
510 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
511 	 * word location for an IOBDMA. The other 8 bits come from the
512 	 * SCRADDR field of the IOBDMA. */
513 	cvmmemctl.s.iobdmascrmsb = 0;
514 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
515 	 * clear, SYNCWS and SYNCS only order unmarked
516 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
517 	 * set. */
518 	cvmmemctl.s.syncwsmarked = 0;
519 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
520 	cvmmemctl.s.dissyncws = 0;
521 	/* R/W If set, no stall happens on write buffer full. */
522 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
523 		cvmmemctl.s.diswbfst = 1;
524 	else
525 		cvmmemctl.s.diswbfst = 0;
526 	/* R/W If set (and SX set), supervisor-level loads/stores can
527 	 * use XKPHYS addresses with <48>==0 */
528 	cvmmemctl.s.xkmemenas = 0;
529 
530 	/* R/W If set (and UX set), user-level loads/stores can use
531 	 * XKPHYS addresses with VA<48>==0 */
532 	cvmmemctl.s.xkmemenau = 0;
533 
534 	/* R/W If set (and SX set), supervisor-level loads/stores can
535 	 * use XKPHYS addresses with VA<48>==1 */
536 	cvmmemctl.s.xkioenas = 0;
537 
538 	/* R/W If set (and UX set), user-level loads/stores can use
539 	 * XKPHYS addresses with VA<48>==1 */
540 	cvmmemctl.s.xkioenau = 0;
541 
542 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
543 	 * when this is set) RW, reset to 0. */
544 	cvmmemctl.s.allsyncw = 0;
545 
546 	/* R/W If set, no stores merge, and all stores reach the
547 	 * coherent bus in order. */
548 	cvmmemctl.s.nomerge = 0;
549 	/* R/W Selects the bit in the counter used for DID time-outs 0
550 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
551 	 * between 1x and 2x this interval. For example, with
552 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
553 	cvmmemctl.s.didtto = 0;
554 	/* R/W If set, the (mem) CSR clock never turns off. */
555 	cvmmemctl.s.csrckalwys = 0;
556 	/* R/W If set, mclk never turns off. */
557 	cvmmemctl.s.mclkalwys = 0;
558 	/* R/W Selects the bit in the counter used for write buffer
559 	 * flush time-outs (WBFLT+11) is the bit position in an
560 	 * internal counter used to determine expiration. The write
561 	 * buffer expires between 1x and 2x this interval. For
562 	 * example, with WBFLT = 0, a write buffer expires between 2K
563 	 * and 4K cycles after the write buffer entry is allocated. */
564 	cvmmemctl.s.wbfltime = 0;
565 	/* R/W If set, do not put Istream in the L2 cache. */
566 	cvmmemctl.s.istrnol2 = 0;
567 
568 	/*
569 	 * R/W The write buffer threshold. As per erratum Core-14752
570 	 * for CN63XX, a sc/scd might fail if the write buffer is
571 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
572 	 * write buffer ever being full and triggering the erratum.
573 	 */
574 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
575 		cvmmemctl.s.wbthresh = 4;
576 	else
577 		cvmmemctl.s.wbthresh = 10;
578 
579 	/* R/W If set, CVMSEG is available for loads/stores in
580 	 * kernel/debug mode. */
581 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
582 	cvmmemctl.s.cvmsegenak = 1;
583 #else
584 	cvmmemctl.s.cvmsegenak = 0;
585 #endif
586 	/* R/W If set, CVMSEG is available for loads/stores in
587 	 * supervisor mode. */
588 	cvmmemctl.s.cvmsegenas = 0;
589 	/* R/W If set, CVMSEG is available for loads/stores in user
590 	 * mode. */
591 	cvmmemctl.s.cvmsegenau = 0;
592 	/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
593 	 * is max legal value. */
594 	cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
595 
596 	write_c0_cvmmemctl(cvmmemctl.u64);
597 
598 	if (smp_processor_id() == 0)
599 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
600 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
601 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
602 
603 	/* Set a default for the hardware timeouts */
604 	fau_timeout.u64 = 0;
605 	fau_timeout.s.tout_val = 0xfff;
606 	/* Disable tagwait FAU timeout */
607 	fau_timeout.s.tout_enb = 0;
608 	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
609 
610 	nm_tim.u64 = 0;
611 	/* 4096 cycles */
612 	nm_tim.s.nw_tim = 3;
613 	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
614 
615 	write_octeon_c0_icacheerr(0);
616 	write_c0_derraddr1(0);
617 }
618 
619 /**
620  * Early entry point for arch setup
621  */
622 void __init prom_init(void)
623 {
624 	struct cvmx_sysinfo *sysinfo;
625 	const char *arg;
626 	char *p;
627 	int i;
628 	int argc;
629 #ifdef CONFIG_CAVIUM_RESERVE32
630 	int64_t addr = -1;
631 #endif
632 	/*
633 	 * The bootloader passes a pointer to the boot descriptor in
634 	 * $a3, this is available as fw_arg3.
635 	 */
636 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
637 	octeon_bootinfo =
638 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
639 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
640 
641 	sysinfo = cvmx_sysinfo_get();
642 	memset(sysinfo, 0, sizeof(*sysinfo));
643 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
644 	sysinfo->phy_mem_desc_ptr =
645 		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
646 	sysinfo->core_mask = octeon_bootinfo->core_mask;
647 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
648 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
649 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
650 	sysinfo->board_type = octeon_bootinfo->board_type;
651 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
652 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
653 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
654 	       sizeof(sysinfo->mac_addr_base));
655 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
656 	memcpy(sysinfo->board_serial_number,
657 	       octeon_bootinfo->board_serial_number,
658 	       sizeof(sysinfo->board_serial_number));
659 	sysinfo->compact_flash_common_base_addr =
660 		octeon_bootinfo->compact_flash_common_base_addr;
661 	sysinfo->compact_flash_attribute_base_addr =
662 		octeon_bootinfo->compact_flash_attribute_base_addr;
663 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
664 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
665 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
666 
667 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
668 		/* I/O clock runs at a different rate than the CPU. */
669 		union cvmx_mio_rst_boot rst_boot;
670 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
671 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
672 	} else {
673 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
674 	}
675 
676 	/*
677 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
678 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
679 	 */
680 	if (!octeon_is_simulation() &&
681 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
682 		cvmx_write_csr(CVMX_LED_EN, 0);
683 		cvmx_write_csr(CVMX_LED_PRT, 0);
684 		cvmx_write_csr(CVMX_LED_DBG, 0);
685 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
686 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
687 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
688 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
689 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
690 		cvmx_write_csr(CVMX_LED_EN, 1);
691 	}
692 #ifdef CONFIG_CAVIUM_RESERVE32
693 	/*
694 	 * We need to temporarily allocate all memory in the reserve32
695 	 * region. This makes sure the kernel doesn't allocate this
696 	 * memory when it is getting memory from the
697 	 * bootloader. Later, after the memory allocations are
698 	 * complete, the reserve32 will be freed.
699 	 *
700 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
701 	 * is in case we later use hugetlb entries with it.
702 	 */
703 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
704 						0, 0, 2 << 20,
705 						"CAVIUM_RESERVE32", 0);
706 	if (addr < 0)
707 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
708 	else
709 		octeon_reserve32_memory = addr;
710 #endif
711 
712 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
713 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
714 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
715 	} else {
716 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
717 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
718 		/* TLB refill */
719 		cvmx_l2c_lock_mem_region(ebase, 0x100);
720 #endif
721 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
722 		/* General exception */
723 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
724 #endif
725 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
726 		/* Interrupt handler */
727 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
728 #endif
729 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
730 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
731 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
732 #endif
733 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
734 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
735 #endif
736 	}
737 #endif
738 
739 	octeon_check_cpu_bist();
740 
741 	octeon_uart = octeon_get_boot_uart();
742 
743 #ifdef CONFIG_SMP
744 	octeon_write_lcd("LinuxSMP");
745 #else
746 	octeon_write_lcd("Linux");
747 #endif
748 
749 #ifdef CONFIG_CAVIUM_GDB
750 	/*
751 	 * When debugging the linux kernel, force the cores to enter
752 	 * the debug exception handler to break in.
753 	 */
754 	if (octeon_get_boot_debug_flag()) {
755 		cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
756 		cvmx_read_csr(CVMX_CIU_DINT);
757 	}
758 #endif
759 
760 	octeon_setup_delays();
761 
762 	/*
763 	 * BIST should always be enabled when doing a soft reset. L2
764 	 * Cache locking for instance is not cleared unless BIST is
765 	 * enabled.  Unfortunately due to a chip errata G-200 for
766 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
767 	 */
768 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
769 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
770 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
771 	else
772 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
773 
774 	/* Default to 64MB in the simulator to speed things up */
775 	if (octeon_is_simulation())
776 		MAX_MEMORY = 64ull << 20;
777 
778 	arg = strstr(arcs_cmdline, "mem=");
779 	if (arg) {
780 		MAX_MEMORY = memparse(arg + 4, &p);
781 		if (MAX_MEMORY == 0)
782 			MAX_MEMORY = 32ull << 30;
783 		if (*p == '@')
784 			RESERVE_LOW_MEM = memparse(p + 1, &p);
785 	}
786 
787 	arcs_cmdline[0] = 0;
788 	argc = octeon_boot_desc_ptr->argc;
789 	for (i = 0; i < argc; i++) {
790 		const char *arg =
791 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
792 		if ((strncmp(arg, "MEM=", 4) == 0) ||
793 		    (strncmp(arg, "mem=", 4) == 0)) {
794 			MAX_MEMORY = memparse(arg + 4, &p);
795 			if (MAX_MEMORY == 0)
796 				MAX_MEMORY = 32ull << 30;
797 			if (*p == '@')
798 				RESERVE_LOW_MEM = memparse(p + 1, &p);
799 		} else if (strcmp(arg, "ecc_verbose") == 0) {
800 #ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
801 			__cvmx_interrupt_ecc_report_single_bit_errors = 1;
802 			pr_notice("Reporting of single bit ECC errors is "
803 				  "turned on\n");
804 #endif
805 #ifdef CONFIG_KEXEC
806 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
807 			crashk_size = memparse(arg+12, &p);
808 			if (*p == '@')
809 				crashk_base = memparse(p+1, &p);
810 			strcat(arcs_cmdline, " ");
811 			strcat(arcs_cmdline, arg);
812 			/*
813 			 * To do: switch parsing to new style, something like:
814 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
815 			 *		  &crashk_size, &crashk_base);
816 			 */
817 #endif
818 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
819 			   sizeof(arcs_cmdline) - 1) {
820 			strcat(arcs_cmdline, " ");
821 			strcat(arcs_cmdline, arg);
822 		}
823 	}
824 
825 	if (strstr(arcs_cmdline, "console=") == NULL) {
826 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
827 		strcat(arcs_cmdline, " console=ttyS0,115200");
828 #else
829 		if (octeon_uart == 1)
830 			strcat(arcs_cmdline, " console=ttyS1,115200");
831 		else
832 			strcat(arcs_cmdline, " console=ttyS0,115200");
833 #endif
834 	}
835 
836 	if (octeon_is_simulation()) {
837 		/*
838 		 * The simulator uses a mtdram device pre filled with
839 		 * the filesystem. Also specify the calibration delay
840 		 * to avoid calculating it every time.
841 		 */
842 		strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
843 	}
844 
845 	mips_hpt_frequency = octeon_get_clock_rate();
846 
847 	octeon_init_cvmcount();
848 
849 	_machine_restart = octeon_restart;
850 	_machine_halt = octeon_halt;
851 
852 #ifdef CONFIG_KEXEC
853 	_machine_kexec_shutdown = octeon_shutdown;
854 	_machine_crash_shutdown = octeon_crash_shutdown;
855 	_machine_kexec_prepare = octeon_kexec_prepare;
856 #endif
857 
858 	octeon_user_io_init();
859 	register_smp_ops(&octeon_smp_ops);
860 }
861 
862 /* Exclude a single page from the regions obtained in plat_mem_setup. */
863 #ifndef CONFIG_CRASH_DUMP
864 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
865 {
866 	if (addr > *mem && addr < *mem + *size) {
867 		u64 inc = addr - *mem;
868 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
869 		*mem += inc;
870 		*size -= inc;
871 	}
872 
873 	if (addr == *mem && *size > PAGE_SIZE) {
874 		*mem += PAGE_SIZE;
875 		*size -= PAGE_SIZE;
876 	}
877 }
878 #endif /* CONFIG_CRASH_DUMP */
879 
880 void __init plat_mem_setup(void)
881 {
882 	uint64_t mem_alloc_size;
883 	uint64_t total;
884 	uint64_t crashk_end;
885 #ifndef CONFIG_CRASH_DUMP
886 	int64_t memory;
887 	uint64_t kernel_start;
888 	uint64_t kernel_size;
889 #endif
890 
891 	total = 0;
892 	crashk_end = 0;
893 
894 	/*
895 	 * The Mips memory init uses the first memory location for
896 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
897 	 * verify that the size is big enough for the final
898 	 * vectors. Making the smallest chuck 4MB seems to be enough
899 	 * to consistently work.
900 	 */
901 	mem_alloc_size = 4 << 20;
902 	if (mem_alloc_size > MAX_MEMORY)
903 		mem_alloc_size = MAX_MEMORY;
904 
905 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
906 #ifdef CONFIG_CRASH_DUMP
907 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
908 	total += MAX_MEMORY;
909 #else
910 #ifdef CONFIG_KEXEC
911 	if (crashk_size > 0) {
912 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
913 		crashk_end = crashk_base + crashk_size;
914 	}
915 #endif
916 	/*
917 	 * When allocating memory, we want incrementing addresses from
918 	 * bootmem_alloc so the code in add_memory_region can merge
919 	 * regions next to each other.
920 	 */
921 	cvmx_bootmem_lock();
922 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
923 		&& (total < MAX_MEMORY)) {
924 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
925 						__pa_symbol(&__init_end), -1,
926 						0x100000,
927 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
928 		if (memory >= 0) {
929 			u64 size = mem_alloc_size;
930 #ifdef CONFIG_KEXEC
931 			uint64_t end;
932 #endif
933 
934 			/*
935 			 * exclude a page at the beginning and end of
936 			 * the 256MB PCIe 'hole' so the kernel will not
937 			 * try to allocate multi-page buffers that
938 			 * span the discontinuity.
939 			 */
940 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
941 					    &memory, &size);
942 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
943 					    CVMX_PCIE_BAR1_PHYS_SIZE,
944 					    &memory, &size);
945 #ifdef CONFIG_KEXEC
946 			end = memory + mem_alloc_size;
947 
948 			/*
949 			 * This function automatically merges address regions
950 			 * next to each other if they are received in
951 			 * incrementing order
952 			 */
953 			if (memory < crashk_base && end >  crashk_end) {
954 				/* region is fully in */
955 				add_memory_region(memory,
956 						  crashk_base - memory,
957 						  BOOT_MEM_RAM);
958 				total += crashk_base - memory;
959 				add_memory_region(crashk_end,
960 						  end - crashk_end,
961 						  BOOT_MEM_RAM);
962 				total += end - crashk_end;
963 				continue;
964 			}
965 
966 			if (memory >= crashk_base && end <= crashk_end)
967 				/*
968 				 * Entire memory region is within the new
969 				 *  kernel's memory, ignore it.
970 				 */
971 				continue;
972 
973 			if (memory > crashk_base && memory < crashk_end &&
974 			    end > crashk_end) {
975 				/*
976 				 * Overlap with the beginning of the region,
977 				 * reserve the beginning.
978 				  */
979 				mem_alloc_size -= crashk_end - memory;
980 				memory = crashk_end;
981 			} else if (memory < crashk_base && end > crashk_base &&
982 				   end < crashk_end)
983 				/*
984 				 * Overlap with the beginning of the region,
985 				 * chop of end.
986 				 */
987 				mem_alloc_size -= end - crashk_base;
988 #endif
989 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
990 			total += mem_alloc_size;
991 			/* Recovering mem_alloc_size */
992 			mem_alloc_size = 4 << 20;
993 		} else {
994 			break;
995 		}
996 	}
997 	cvmx_bootmem_unlock();
998 	/* Add the memory region for the kernel. */
999 	kernel_start = (unsigned long) _text;
1000 	kernel_size = _end - _text;
1001 
1002 	/* Adjust for physical offset. */
1003 	kernel_start &= ~0xffffffff80000000ULL;
1004 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1005 #endif /* CONFIG_CRASH_DUMP */
1006 
1007 #ifdef CONFIG_CAVIUM_RESERVE32
1008 	/*
1009 	 * Now that we've allocated the kernel memory it is safe to
1010 	 * free the reserved region. We free it here so that builtin
1011 	 * drivers can use the memory.
1012 	 */
1013 	if (octeon_reserve32_memory)
1014 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1015 #endif /* CONFIG_CAVIUM_RESERVE32 */
1016 
1017 	if (total == 0)
1018 		panic("Unable to allocate memory from "
1019 		      "cvmx_bootmem_phy_alloc\n");
1020 }
1021 
1022 /*
1023  * Emit one character to the boot UART.	 Exported for use by the
1024  * watchdog timer.
1025  */
1026 int prom_putchar(char c)
1027 {
1028 	uint64_t lsrval;
1029 
1030 	/* Spin until there is room */
1031 	do {
1032 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1033 	} while ((lsrval & 0x20) == 0);
1034 
1035 	/* Write the byte */
1036 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1037 	return 1;
1038 }
1039 EXPORT_SYMBOL(prom_putchar);
1040 
1041 void prom_free_prom_memory(void)
1042 {
1043 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
1044 		/* Check for presence of Core-14449 fix.  */
1045 		u32 insn;
1046 		u32 *foo;
1047 
1048 		foo = &insn;
1049 
1050 		asm volatile("# before" : : : "memory");
1051 		prefetch(foo);
1052 		asm volatile(
1053 			".set push\n\t"
1054 			".set noreorder\n\t"
1055 			"bal 1f\n\t"
1056 			"nop\n"
1057 			"1:\tlw %0,-12($31)\n\t"
1058 			".set pop\n\t"
1059 			: "=r" (insn) : : "$31", "memory");
1060 
1061 		if ((insn >> 26) != 0x33)
1062 			panic("No PREF instruction at Core-14449 probe point.");
1063 
1064 		if (((insn >> 16) & 0x1f) != 28)
1065 			panic("Core-14449 WAR not in place (%04x).\n"
1066 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
1067 	}
1068 #ifdef CONFIG_CAVIUM_DECODE_RSL
1069 	cvmx_interrupt_rsl_enable();
1070 
1071 	/* Add an interrupt handler for general failures. */
1072 	if (request_irq(OCTEON_IRQ_RML, octeon_rlm_interrupt, IRQF_SHARED,
1073 			"RML/RSL", octeon_rlm_interrupt)) {
1074 		panic("Unable to request_irq(OCTEON_IRQ_RML)");
1075 	}
1076 #endif
1077 }
1078 
1079 int octeon_prune_device_tree(void);
1080 
1081 extern const char __dtb_octeon_3xxx_begin;
1082 extern const char __dtb_octeon_3xxx_end;
1083 extern const char __dtb_octeon_68xx_begin;
1084 extern const char __dtb_octeon_68xx_end;
1085 void __init device_tree_init(void)
1086 {
1087 	int dt_size;
1088 	struct boot_param_header *fdt;
1089 	bool do_prune;
1090 
1091 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1092 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1093 		if (fdt_check_header(fdt))
1094 			panic("Corrupt Device Tree passed to kernel.");
1095 		dt_size = be32_to_cpu(fdt->totalsize);
1096 		do_prune = false;
1097 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1098 		fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
1099 		dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
1100 		do_prune = true;
1101 	} else {
1102 		fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
1103 		dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
1104 		do_prune = true;
1105 	}
1106 
1107 	/* Copy the default tree from init memory. */
1108 	initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
1109 	if (initial_boot_params == NULL)
1110 		panic("Could not allocate initial_boot_params\n");
1111 	memcpy(initial_boot_params, fdt, dt_size);
1112 
1113 	if (do_prune) {
1114 		octeon_prune_device_tree();
1115 		pr_info("Using internal Device Tree.\n");
1116 	} else {
1117 		pr_info("Using passed Device Tree.\n");
1118 	}
1119 	unflatten_device_tree();
1120 }
1121 
1122 static int __initdata disable_octeon_edac_p;
1123 
1124 static int __init disable_octeon_edac(char *str)
1125 {
1126 	disable_octeon_edac_p = 1;
1127 	return 0;
1128 }
1129 early_param("disable_octeon_edac", disable_octeon_edac);
1130 
1131 static char *edac_device_names[] = {
1132 	"octeon_l2c_edac",
1133 	"octeon_pc_edac",
1134 };
1135 
1136 static int __init edac_devinit(void)
1137 {
1138 	struct platform_device *dev;
1139 	int i, err = 0;
1140 	int num_lmc;
1141 	char *name;
1142 
1143 	if (disable_octeon_edac_p)
1144 		return 0;
1145 
1146 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1147 		name = edac_device_names[i];
1148 		dev = platform_device_register_simple(name, -1, NULL, 0);
1149 		if (IS_ERR(dev)) {
1150 			pr_err("Registation of %s failed!\n", name);
1151 			err = PTR_ERR(dev);
1152 		}
1153 	}
1154 
1155 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1156 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1157 	for (i = 0; i < num_lmc; i++) {
1158 		dev = platform_device_register_simple("octeon_lmc_edac",
1159 						      i, NULL, 0);
1160 		if (IS_ERR(dev)) {
1161 			pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
1162 			err = PTR_ERR(dev);
1163 		}
1164 	}
1165 
1166 	return err;
1167 }
1168 device_initcall(edac_devinit);
1169