xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision bb0eb050)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40 
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-rst-defs.h>
44 
45 /*
46  * TRUE for devices having registers with little-endian byte
47  * order, FALSE for registers with native-endian byte order.
48  * PCI mandates little-endian, USB and SATA are configuraable,
49  * but we chose little-endian for these.
50  */
51 const bool octeon_should_swizzle_table[256] = {
52 	[0x00] = true,	/* bootbus/CF */
53 	[0x1b] = true,	/* PCI mmio window */
54 	[0x1c] = true,	/* PCI mmio window */
55 	[0x1d] = true,	/* PCI mmio window */
56 	[0x1e] = true,	/* PCI mmio window */
57 	[0x68] = true,	/* OCTEON III USB */
58 	[0x69] = true,	/* OCTEON III USB */
59 	[0x6c] = true,	/* OCTEON III SATA */
60 	[0x6f] = true,	/* OCTEON II USB */
61 };
62 EXPORT_SYMBOL(octeon_should_swizzle_table);
63 
64 #ifdef CONFIG_PCI
65 extern void pci_console_init(const char *arg);
66 #endif
67 
68 static unsigned long long max_memory = ULLONG_MAX;
69 static unsigned long long reserve_low_mem;
70 
71 DEFINE_SEMAPHORE(octeon_bootbus_sem);
72 EXPORT_SYMBOL(octeon_bootbus_sem);
73 
74 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
75 
76 struct cvmx_bootinfo *octeon_bootinfo;
77 EXPORT_SYMBOL(octeon_bootinfo);
78 
79 #ifdef CONFIG_KEXEC
80 #ifdef CONFIG_SMP
81 /*
82  * Wait for relocation code is prepared and send
83  * secondary CPUs to spin until kernel is relocated.
84  */
85 static void octeon_kexec_smp_down(void *ignored)
86 {
87 	int cpu = smp_processor_id();
88 
89 	local_irq_disable();
90 	set_cpu_online(cpu, false);
91 	while (!atomic_read(&kexec_ready_to_reboot))
92 		cpu_relax();
93 
94 	asm volatile (
95 	"	sync						\n"
96 	"	synci	($0)					\n");
97 
98 	relocated_kexec_smp_wait(NULL);
99 }
100 #endif
101 
102 #define OCTEON_DDR0_BASE    (0x0ULL)
103 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
104 #define OCTEON_DDR1_BASE    (0x410000000ULL)
105 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
106 #define OCTEON_DDR2_BASE    (0x020000000ULL)
107 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
108 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
109 
110 static struct kimage *kimage_ptr;
111 
112 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
113 {
114 	int64_t addr;
115 	struct cvmx_bootmem_desc *bootmem_desc;
116 
117 	bootmem_desc = cvmx_bootmem_get_desc();
118 
119 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
120 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
121 		pr_err("Error: requested memory too large,"
122 		       "truncating to maximum size\n");
123 	}
124 
125 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
126 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
127 
128 	addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
129 	bootmem_desc->head_addr = 0;
130 
131 	if (mem_size <= OCTEON_DDR0_SIZE) {
132 		__cvmx_bootmem_phy_free(addr,
133 				mem_size - reserve_low_mem -
134 				low_reserved_bytes, 0);
135 		return;
136 	}
137 
138 	__cvmx_bootmem_phy_free(addr,
139 			OCTEON_DDR0_SIZE - reserve_low_mem -
140 			low_reserved_bytes, 0);
141 
142 	mem_size -= OCTEON_DDR0_SIZE;
143 
144 	if (mem_size > OCTEON_DDR1_SIZE) {
145 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
146 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
147 				mem_size - OCTEON_DDR1_SIZE, 0);
148 	} else
149 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
150 }
151 
152 static int octeon_kexec_prepare(struct kimage *image)
153 {
154 	int i;
155 	char *bootloader = "kexec";
156 
157 	octeon_boot_desc_ptr->argc = 0;
158 	for (i = 0; i < image->nr_segments; i++) {
159 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
160 				strlen(bootloader))) {
161 			/*
162 			 * convert command line string to array
163 			 * of parameters (as bootloader does).
164 			 */
165 			int argc = 0, offt;
166 			char *str = (char *)image->segment[i].buf;
167 			char *ptr = strchr(str, ' ');
168 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
169 				*ptr = '\0';
170 				if (ptr[1] != ' ') {
171 					offt = (int)(ptr - str + 1);
172 					octeon_boot_desc_ptr->argv[argc] =
173 						image->segment[i].mem + offt;
174 					argc++;
175 				}
176 				ptr = strchr(ptr + 1, ' ');
177 			}
178 			octeon_boot_desc_ptr->argc = argc;
179 			break;
180 		}
181 	}
182 
183 	/*
184 	 * Information about segments will be needed during pre-boot memory
185 	 * initialization.
186 	 */
187 	kimage_ptr = image;
188 	return 0;
189 }
190 
191 static void octeon_generic_shutdown(void)
192 {
193 	int i;
194 #ifdef CONFIG_SMP
195 	int cpu;
196 #endif
197 	struct cvmx_bootmem_desc *bootmem_desc;
198 	void *named_block_array_ptr;
199 
200 	bootmem_desc = cvmx_bootmem_get_desc();
201 	named_block_array_ptr =
202 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
203 
204 #ifdef CONFIG_SMP
205 	/* disable watchdogs */
206 	for_each_online_cpu(cpu)
207 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
208 #else
209 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
210 #endif
211 	if (kimage_ptr != kexec_crash_image) {
212 		memset(named_block_array_ptr,
213 			0x0,
214 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
215 			sizeof(struct cvmx_bootmem_named_block_desc));
216 		/*
217 		 * Mark all memory (except low 0x100000 bytes) as free.
218 		 * It is the same thing that bootloader does.
219 		 */
220 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
221 				0x100000);
222 		/*
223 		 * Allocate all segments to avoid their corruption during boot.
224 		 */
225 		for (i = 0; i < kimage_ptr->nr_segments; i++)
226 			cvmx_bootmem_alloc_address(
227 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
228 				kimage_ptr->segment[i].mem - PAGE_SIZE,
229 				PAGE_SIZE);
230 	} else {
231 		/*
232 		 * Do not mark all memory as free. Free only named sections
233 		 * leaving the rest of memory unchanged.
234 		 */
235 		struct cvmx_bootmem_named_block_desc *ptr =
236 			(struct cvmx_bootmem_named_block_desc *)
237 			named_block_array_ptr;
238 
239 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
240 			if (ptr[i].size)
241 				cvmx_bootmem_free_named(ptr[i].name);
242 	}
243 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
244 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
245 #ifdef CONFIG_SMP
246 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
247 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #endif
249 }
250 
251 static void octeon_shutdown(void)
252 {
253 	octeon_generic_shutdown();
254 #ifdef CONFIG_SMP
255 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
256 	smp_wmb();
257 	while (num_online_cpus() > 1) {
258 		cpu_relax();
259 		mdelay(1);
260 	}
261 #endif
262 }
263 
264 static void octeon_crash_shutdown(struct pt_regs *regs)
265 {
266 	octeon_generic_shutdown();
267 	default_machine_crash_shutdown(regs);
268 }
269 
270 #ifdef CONFIG_SMP
271 void octeon_crash_smp_send_stop(void)
272 {
273 	int cpu;
274 
275 	/* disable watchdogs */
276 	for_each_online_cpu(cpu)
277 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
278 }
279 #endif
280 
281 #endif /* CONFIG_KEXEC */
282 
283 #ifdef CONFIG_CAVIUM_RESERVE32
284 uint64_t octeon_reserve32_memory;
285 EXPORT_SYMBOL(octeon_reserve32_memory);
286 #endif
287 
288 #ifdef CONFIG_KEXEC
289 /* crashkernel cmdline parameter is parsed _after_ memory setup
290  * we also parse it here (workaround for EHB5200) */
291 static uint64_t crashk_size, crashk_base;
292 #endif
293 
294 static int octeon_uart;
295 
296 extern asmlinkage void handle_int(void);
297 
298 /**
299  * Return non zero if we are currently running in the Octeon simulator
300  *
301  * Returns
302  */
303 int octeon_is_simulation(void)
304 {
305 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
306 }
307 EXPORT_SYMBOL(octeon_is_simulation);
308 
309 /**
310  * Return true if Octeon is in PCI Host mode. This means
311  * Linux can control the PCI bus.
312  *
313  * Returns Non zero if Octeon in host mode.
314  */
315 int octeon_is_pci_host(void)
316 {
317 #ifdef CONFIG_PCI
318 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
319 #else
320 	return 0;
321 #endif
322 }
323 
324 /**
325  * Get the clock rate of Octeon
326  *
327  * Returns Clock rate in HZ
328  */
329 uint64_t octeon_get_clock_rate(void)
330 {
331 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
332 
333 	return sysinfo->cpu_clock_hz;
334 }
335 EXPORT_SYMBOL(octeon_get_clock_rate);
336 
337 static u64 octeon_io_clock_rate;
338 
339 u64 octeon_get_io_clock_rate(void)
340 {
341 	return octeon_io_clock_rate;
342 }
343 EXPORT_SYMBOL(octeon_get_io_clock_rate);
344 
345 
346 /**
347  * Write to the LCD display connected to the bootbus. This display
348  * exists on most Cavium evaluation boards. If it doesn't exist, then
349  * this function doesn't do anything.
350  *
351  * @s:	    String to write
352  */
353 void octeon_write_lcd(const char *s)
354 {
355 	if (octeon_bootinfo->led_display_base_addr) {
356 		void __iomem *lcd_address =
357 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
358 					8);
359 		int i;
360 		for (i = 0; i < 8; i++, s++) {
361 			if (*s)
362 				iowrite8(*s, lcd_address + i);
363 			else
364 				iowrite8(' ', lcd_address + i);
365 		}
366 		iounmap(lcd_address);
367 	}
368 }
369 
370 /**
371  * Return the console uart passed by the bootloader
372  *
373  * Returns uart	  (0 or 1)
374  */
375 int octeon_get_boot_uart(void)
376 {
377 	return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
378 		1 : 0;
379 }
380 
381 /**
382  * Get the coremask Linux was booted on.
383  *
384  * Returns Core mask
385  */
386 int octeon_get_boot_coremask(void)
387 {
388 	return octeon_boot_desc_ptr->core_mask;
389 }
390 
391 /**
392  * Check the hardware BIST results for a CPU
393  */
394 void octeon_check_cpu_bist(void)
395 {
396 	const int coreid = cvmx_get_core_num();
397 	unsigned long long mask;
398 	unsigned long long bist_val;
399 
400 	/* Check BIST results for COP0 registers */
401 	mask = 0x1f00000000ull;
402 	bist_val = read_octeon_c0_icacheerr();
403 	if (bist_val & mask)
404 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
405 		       coreid, bist_val);
406 
407 	bist_val = read_octeon_c0_dcacheerr();
408 	if (bist_val & 1)
409 		pr_err("Core%d L1 Dcache parity error: "
410 		       "CacheErr(dcache) = 0x%llx\n",
411 		       coreid, bist_val);
412 
413 	mask = 0xfc00000000000000ull;
414 	bist_val = read_c0_cvmmemctl();
415 	if (bist_val & mask)
416 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
417 		       coreid, bist_val);
418 
419 	write_octeon_c0_dcacheerr(0);
420 }
421 
422 /**
423  * Reboot Octeon
424  *
425  * @command: Command to pass to the bootloader. Currently ignored.
426  */
427 static void octeon_restart(char *command)
428 {
429 	/* Disable all watchdogs before soft reset. They don't get cleared */
430 #ifdef CONFIG_SMP
431 	int cpu;
432 	for_each_online_cpu(cpu)
433 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
434 #else
435 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
436 #endif
437 
438 	mb();
439 	while (1)
440 		if (OCTEON_IS_OCTEON3())
441 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
442 		else
443 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
444 }
445 
446 
447 /**
448  * Permanently stop a core.
449  *
450  * @arg: Ignored.
451  */
452 static void octeon_kill_core(void *arg)
453 {
454 	if (octeon_is_simulation())
455 		/* A break instruction causes the simulator stop a core */
456 		asm volatile ("break" ::: "memory");
457 
458 	local_irq_disable();
459 	/* Disable watchdog on this core. */
460 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
461 	/* Spin in a low power mode. */
462 	while (true)
463 		asm volatile ("wait" ::: "memory");
464 }
465 
466 
467 /**
468  * Halt the system
469  */
470 static void octeon_halt(void)
471 {
472 	smp_call_function(octeon_kill_core, NULL, 0);
473 
474 	switch (octeon_bootinfo->board_type) {
475 	case CVMX_BOARD_TYPE_NAO38:
476 		/* Driving a 1 to GPIO 12 shuts off this board */
477 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
478 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
479 		break;
480 	default:
481 		octeon_write_lcd("PowerOff");
482 		break;
483 	}
484 
485 	octeon_kill_core(NULL);
486 }
487 
488 static char __read_mostly octeon_system_type[80];
489 
490 static void __init init_octeon_system_type(void)
491 {
492 	char const *board_type;
493 
494 	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
495 	if (board_type == NULL) {
496 		struct device_node *root;
497 		int ret;
498 
499 		root = of_find_node_by_path("/");
500 		ret = of_property_read_string(root, "model", &board_type);
501 		of_node_put(root);
502 		if (ret)
503 			board_type = "Unsupported Board";
504 	}
505 
506 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
507 		 board_type, octeon_model_get_string(read_c0_prid()));
508 }
509 
510 /**
511  * Return a string representing the system type
512  *
513  * Returns
514  */
515 const char *octeon_board_type_string(void)
516 {
517 	return octeon_system_type;
518 }
519 
520 const char *get_system_type(void)
521 	__attribute__ ((alias("octeon_board_type_string")));
522 
523 void octeon_user_io_init(void)
524 {
525 	union octeon_cvmemctl cvmmemctl;
526 
527 	/* Get the current settings for CP0_CVMMEMCTL_REG */
528 	cvmmemctl.u64 = read_c0_cvmmemctl();
529 	/* R/W If set, marked write-buffer entries time out the same
530 	 * as as other entries; if clear, marked write-buffer entries
531 	 * use the maximum timeout. */
532 	cvmmemctl.s.dismarkwblongto = 1;
533 	/* R/W If set, a merged store does not clear the write-buffer
534 	 * entry timeout state. */
535 	cvmmemctl.s.dismrgclrwbto = 0;
536 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
537 	 * word location for an IOBDMA. The other 8 bits come from the
538 	 * SCRADDR field of the IOBDMA. */
539 	cvmmemctl.s.iobdmascrmsb = 0;
540 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
541 	 * clear, SYNCWS and SYNCS only order unmarked
542 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
543 	 * set. */
544 	cvmmemctl.s.syncwsmarked = 0;
545 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
546 	cvmmemctl.s.dissyncws = 0;
547 	/* R/W If set, no stall happens on write buffer full. */
548 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
549 		cvmmemctl.s.diswbfst = 1;
550 	else
551 		cvmmemctl.s.diswbfst = 0;
552 	/* R/W If set (and SX set), supervisor-level loads/stores can
553 	 * use XKPHYS addresses with <48>==0 */
554 	cvmmemctl.s.xkmemenas = 0;
555 
556 	/* R/W If set (and UX set), user-level loads/stores can use
557 	 * XKPHYS addresses with VA<48>==0 */
558 	cvmmemctl.s.xkmemenau = 0;
559 
560 	/* R/W If set (and SX set), supervisor-level loads/stores can
561 	 * use XKPHYS addresses with VA<48>==1 */
562 	cvmmemctl.s.xkioenas = 0;
563 
564 	/* R/W If set (and UX set), user-level loads/stores can use
565 	 * XKPHYS addresses with VA<48>==1 */
566 	cvmmemctl.s.xkioenau = 0;
567 
568 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
569 	 * when this is set) RW, reset to 0. */
570 	cvmmemctl.s.allsyncw = 0;
571 
572 	/* R/W If set, no stores merge, and all stores reach the
573 	 * coherent bus in order. */
574 	cvmmemctl.s.nomerge = 0;
575 	/* R/W Selects the bit in the counter used for DID time-outs 0
576 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
577 	 * between 1x and 2x this interval. For example, with
578 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
579 	cvmmemctl.s.didtto = 0;
580 	/* R/W If set, the (mem) CSR clock never turns off. */
581 	cvmmemctl.s.csrckalwys = 0;
582 	/* R/W If set, mclk never turns off. */
583 	cvmmemctl.s.mclkalwys = 0;
584 	/* R/W Selects the bit in the counter used for write buffer
585 	 * flush time-outs (WBFLT+11) is the bit position in an
586 	 * internal counter used to determine expiration. The write
587 	 * buffer expires between 1x and 2x this interval. For
588 	 * example, with WBFLT = 0, a write buffer expires between 2K
589 	 * and 4K cycles after the write buffer entry is allocated. */
590 	cvmmemctl.s.wbfltime = 0;
591 	/* R/W If set, do not put Istream in the L2 cache. */
592 	cvmmemctl.s.istrnol2 = 0;
593 
594 	/*
595 	 * R/W The write buffer threshold. As per erratum Core-14752
596 	 * for CN63XX, a sc/scd might fail if the write buffer is
597 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
598 	 * write buffer ever being full and triggering the erratum.
599 	 */
600 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
601 		cvmmemctl.s.wbthresh = 4;
602 	else
603 		cvmmemctl.s.wbthresh = 10;
604 
605 	/* R/W If set, CVMSEG is available for loads/stores in
606 	 * kernel/debug mode. */
607 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
608 	cvmmemctl.s.cvmsegenak = 1;
609 #else
610 	cvmmemctl.s.cvmsegenak = 0;
611 #endif
612 	/* R/W If set, CVMSEG is available for loads/stores in
613 	 * supervisor mode. */
614 	cvmmemctl.s.cvmsegenas = 0;
615 	/* R/W If set, CVMSEG is available for loads/stores in user
616 	 * mode. */
617 	cvmmemctl.s.cvmsegenau = 0;
618 
619 	write_c0_cvmmemctl(cvmmemctl.u64);
620 
621 	/* Setup of CVMSEG is done in kernel-entry-init.h */
622 	if (smp_processor_id() == 0)
623 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
624 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
625 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
626 
627 	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
628 		union cvmx_iob_fau_timeout fau_timeout;
629 
630 		/* Set a default for the hardware timeouts */
631 		fau_timeout.u64 = 0;
632 		fau_timeout.s.tout_val = 0xfff;
633 		/* Disable tagwait FAU timeout */
634 		fau_timeout.s.tout_enb = 0;
635 		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
636 	}
637 
638 	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
639 	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
640 	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
641 		union cvmx_pow_nw_tim nm_tim;
642 
643 		nm_tim.u64 = 0;
644 		/* 4096 cycles */
645 		nm_tim.s.nw_tim = 3;
646 		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
647 	}
648 
649 	write_octeon_c0_icacheerr(0);
650 	write_c0_derraddr1(0);
651 }
652 
653 /**
654  * Early entry point for arch setup
655  */
656 void __init prom_init(void)
657 {
658 	struct cvmx_sysinfo *sysinfo;
659 	const char *arg;
660 	char *p;
661 	int i;
662 	u64 t;
663 	int argc;
664 #ifdef CONFIG_CAVIUM_RESERVE32
665 	int64_t addr = -1;
666 #endif
667 	/*
668 	 * The bootloader passes a pointer to the boot descriptor in
669 	 * $a3, this is available as fw_arg3.
670 	 */
671 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672 	octeon_bootinfo =
673 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
675 
676 	sysinfo = cvmx_sysinfo_get();
677 	memset(sysinfo, 0, sizeof(*sysinfo));
678 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679 	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
680 
681 	if ((octeon_bootinfo->major_version > 1) ||
682 	    (octeon_bootinfo->major_version == 1 &&
683 	     octeon_bootinfo->minor_version >= 4))
684 		cvmx_coremask_copy(&sysinfo->core_mask,
685 				   &octeon_bootinfo->ext_core_mask);
686 	else
687 		cvmx_coremask_set64(&sysinfo->core_mask,
688 				    octeon_bootinfo->core_mask);
689 
690 	/* Some broken u-boot pass garbage in upper bits, clear them out */
691 	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692 		for (i = 512; i < 1024; i++)
693 			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
694 
695 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698 	sysinfo->board_type = octeon_bootinfo->board_type;
699 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702 	       sizeof(sysinfo->mac_addr_base));
703 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704 	memcpy(sysinfo->board_serial_number,
705 	       octeon_bootinfo->board_serial_number,
706 	       sizeof(sysinfo->board_serial_number));
707 	sysinfo->compact_flash_common_base_addr =
708 		octeon_bootinfo->compact_flash_common_base_addr;
709 	sysinfo->compact_flash_attribute_base_addr =
710 		octeon_bootinfo->compact_flash_attribute_base_addr;
711 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
714 
715 	if (OCTEON_IS_OCTEON2()) {
716 		/* I/O clock runs at a different rate than the CPU. */
717 		union cvmx_mio_rst_boot rst_boot;
718 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720 	} else if (OCTEON_IS_OCTEON3()) {
721 		/* I/O clock runs at a different rate than the CPU. */
722 		union cvmx_rst_boot rst_boot;
723 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725 	} else {
726 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
727 	}
728 
729 	t = read_c0_cvmctl();
730 	if ((t & (1ull << 27)) == 0) {
731 		/*
732 		 * Setup the multiplier save/restore code if
733 		 * CvmCtl[NOMUL] clear.
734 		 */
735 		void *save;
736 		void *save_end;
737 		void *restore;
738 		void *restore_end;
739 		int save_len;
740 		int restore_len;
741 		int save_max = (char *)octeon_mult_save_end -
742 			(char *)octeon_mult_save;
743 		int restore_max = (char *)octeon_mult_restore_end -
744 			(char *)octeon_mult_restore;
745 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746 			save = octeon_mult_save3;
747 			save_end = octeon_mult_save3_end;
748 			restore = octeon_mult_restore3;
749 			restore_end = octeon_mult_restore3_end;
750 		} else {
751 			save = octeon_mult_save2;
752 			save_end = octeon_mult_save2_end;
753 			restore = octeon_mult_restore2;
754 			restore_end = octeon_mult_restore2_end;
755 		}
756 		save_len = (char *)save_end - (char *)save;
757 		restore_len = (char *)restore_end - (char *)restore;
758 		if (!WARN_ON(save_len > save_max ||
759 				restore_len > restore_max)) {
760 			memcpy(octeon_mult_save, save, save_len);
761 			memcpy(octeon_mult_restore, restore, restore_len);
762 		}
763 	}
764 
765 	/*
766 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
768 	 */
769 	if (!octeon_is_simulation() &&
770 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771 		cvmx_write_csr(CVMX_LED_EN, 0);
772 		cvmx_write_csr(CVMX_LED_PRT, 0);
773 		cvmx_write_csr(CVMX_LED_DBG, 0);
774 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779 		cvmx_write_csr(CVMX_LED_EN, 1);
780 	}
781 #ifdef CONFIG_CAVIUM_RESERVE32
782 	/*
783 	 * We need to temporarily allocate all memory in the reserve32
784 	 * region. This makes sure the kernel doesn't allocate this
785 	 * memory when it is getting memory from the
786 	 * bootloader. Later, after the memory allocations are
787 	 * complete, the reserve32 will be freed.
788 	 *
789 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790 	 * is in case we later use hugetlb entries with it.
791 	 */
792 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
793 						0, 0, 2 << 20,
794 						"CAVIUM_RESERVE32", 0);
795 	if (addr < 0)
796 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
797 	else
798 		octeon_reserve32_memory = addr;
799 #endif
800 
801 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
802 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
803 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
804 	} else {
805 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
806 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
807 		/* TLB refill */
808 		cvmx_l2c_lock_mem_region(ebase, 0x100);
809 #endif
810 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
811 		/* General exception */
812 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
813 #endif
814 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
815 		/* Interrupt handler */
816 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
817 #endif
818 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
819 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
820 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
821 #endif
822 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
823 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
824 #endif
825 	}
826 #endif
827 
828 	octeon_check_cpu_bist();
829 
830 	octeon_uart = octeon_get_boot_uart();
831 
832 #ifdef CONFIG_SMP
833 	octeon_write_lcd("LinuxSMP");
834 #else
835 	octeon_write_lcd("Linux");
836 #endif
837 
838 	octeon_setup_delays();
839 
840 	/*
841 	 * BIST should always be enabled when doing a soft reset. L2
842 	 * Cache locking for instance is not cleared unless BIST is
843 	 * enabled.  Unfortunately due to a chip errata G-200 for
844 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
845 	 */
846 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
847 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
848 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
849 	else
850 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
851 
852 	/* Default to 64MB in the simulator to speed things up */
853 	if (octeon_is_simulation())
854 		max_memory = 64ull << 20;
855 
856 	arg = strstr(arcs_cmdline, "mem=");
857 	if (arg) {
858 		max_memory = memparse(arg + 4, &p);
859 		if (max_memory == 0)
860 			max_memory = 32ull << 30;
861 		if (*p == '@')
862 			reserve_low_mem = memparse(p + 1, &p);
863 	}
864 
865 	arcs_cmdline[0] = 0;
866 	argc = octeon_boot_desc_ptr->argc;
867 	for (i = 0; i < argc; i++) {
868 		const char *arg =
869 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
870 		if ((strncmp(arg, "MEM=", 4) == 0) ||
871 		    (strncmp(arg, "mem=", 4) == 0)) {
872 			max_memory = memparse(arg + 4, &p);
873 			if (max_memory == 0)
874 				max_memory = 32ull << 30;
875 			if (*p == '@')
876 				reserve_low_mem = memparse(p + 1, &p);
877 #ifdef CONFIG_KEXEC
878 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
879 			crashk_size = memparse(arg+12, &p);
880 			if (*p == '@')
881 				crashk_base = memparse(p+1, &p);
882 			strcat(arcs_cmdline, " ");
883 			strcat(arcs_cmdline, arg);
884 			/*
885 			 * To do: switch parsing to new style, something like:
886 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
887 			 *		  &crashk_size, &crashk_base);
888 			 */
889 #endif
890 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
891 			   sizeof(arcs_cmdline) - 1) {
892 			strcat(arcs_cmdline, " ");
893 			strcat(arcs_cmdline, arg);
894 		}
895 	}
896 
897 	if (strstr(arcs_cmdline, "console=") == NULL) {
898 		if (octeon_uart == 1)
899 			strcat(arcs_cmdline, " console=ttyS1,115200");
900 		else
901 			strcat(arcs_cmdline, " console=ttyS0,115200");
902 	}
903 
904 	mips_hpt_frequency = octeon_get_clock_rate();
905 
906 	octeon_init_cvmcount();
907 
908 	_machine_restart = octeon_restart;
909 	_machine_halt = octeon_halt;
910 
911 #ifdef CONFIG_KEXEC
912 	_machine_kexec_shutdown = octeon_shutdown;
913 	_machine_crash_shutdown = octeon_crash_shutdown;
914 	_machine_kexec_prepare = octeon_kexec_prepare;
915 #ifdef CONFIG_SMP
916 	_crash_smp_send_stop = octeon_crash_smp_send_stop;
917 #endif
918 #endif
919 
920 	octeon_user_io_init();
921 	octeon_setup_smp();
922 }
923 
924 /* Exclude a single page from the regions obtained in plat_mem_setup. */
925 #ifndef CONFIG_CRASH_DUMP
926 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
927 {
928 	if (addr > *mem && addr < *mem + *size) {
929 		u64 inc = addr - *mem;
930 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
931 		*mem += inc;
932 		*size -= inc;
933 	}
934 
935 	if (addr == *mem && *size > PAGE_SIZE) {
936 		*mem += PAGE_SIZE;
937 		*size -= PAGE_SIZE;
938 	}
939 }
940 #endif /* CONFIG_CRASH_DUMP */
941 
942 void __init fw_init_cmdline(void)
943 {
944 	int i;
945 
946 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
947 	for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
948 		const char *arg =
949 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
950 		if (strlen(arcs_cmdline) + strlen(arg) + 1 <
951 			   sizeof(arcs_cmdline) - 1) {
952 			strcat(arcs_cmdline, " ");
953 			strcat(arcs_cmdline, arg);
954 		}
955 	}
956 }
957 
958 void __init *plat_get_fdt(void)
959 {
960 	octeon_bootinfo =
961 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
962 	return phys_to_virt(octeon_bootinfo->fdt_addr);
963 }
964 
965 void __init plat_mem_setup(void)
966 {
967 	uint64_t mem_alloc_size;
968 	uint64_t total;
969 	uint64_t crashk_end;
970 #ifndef CONFIG_CRASH_DUMP
971 	int64_t memory;
972 	uint64_t kernel_start;
973 	uint64_t kernel_size;
974 #endif
975 
976 	total = 0;
977 	crashk_end = 0;
978 
979 	/*
980 	 * The Mips memory init uses the first memory location for
981 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
982 	 * verify that the size is big enough for the final
983 	 * vectors. Making the smallest chuck 4MB seems to be enough
984 	 * to consistently work.
985 	 */
986 	mem_alloc_size = 4 << 20;
987 	if (mem_alloc_size > max_memory)
988 		mem_alloc_size = max_memory;
989 
990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991 #ifdef CONFIG_CRASH_DUMP
992 	add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
993 	total += max_memory;
994 #else
995 #ifdef CONFIG_KEXEC
996 	if (crashk_size > 0) {
997 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
998 		crashk_end = crashk_base + crashk_size;
999 	}
1000 #endif
1001 	/*
1002 	 * When allocating memory, we want incrementing addresses from
1003 	 * bootmem_alloc so the code in add_memory_region can merge
1004 	 * regions next to each other.
1005 	 */
1006 	cvmx_bootmem_lock();
1007 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
1008 		&& (total < max_memory)) {
1009 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1010 						__pa_symbol(&_end), -1,
1011 						0x100000,
1012 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
1013 		if (memory >= 0) {
1014 			u64 size = mem_alloc_size;
1015 #ifdef CONFIG_KEXEC
1016 			uint64_t end;
1017 #endif
1018 
1019 			/*
1020 			 * exclude a page at the beginning and end of
1021 			 * the 256MB PCIe 'hole' so the kernel will not
1022 			 * try to allocate multi-page buffers that
1023 			 * span the discontinuity.
1024 			 */
1025 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1026 					    &memory, &size);
1027 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1028 					    CVMX_PCIE_BAR1_PHYS_SIZE,
1029 					    &memory, &size);
1030 #ifdef CONFIG_KEXEC
1031 			end = memory + mem_alloc_size;
1032 
1033 			/*
1034 			 * This function automatically merges address regions
1035 			 * next to each other if they are received in
1036 			 * incrementing order
1037 			 */
1038 			if (memory < crashk_base && end >  crashk_end) {
1039 				/* region is fully in */
1040 				add_memory_region(memory,
1041 						  crashk_base - memory,
1042 						  BOOT_MEM_RAM);
1043 				total += crashk_base - memory;
1044 				add_memory_region(crashk_end,
1045 						  end - crashk_end,
1046 						  BOOT_MEM_RAM);
1047 				total += end - crashk_end;
1048 				continue;
1049 			}
1050 
1051 			if (memory >= crashk_base && end <= crashk_end)
1052 				/*
1053 				 * Entire memory region is within the new
1054 				 *  kernel's memory, ignore it.
1055 				 */
1056 				continue;
1057 
1058 			if (memory > crashk_base && memory < crashk_end &&
1059 			    end > crashk_end) {
1060 				/*
1061 				 * Overlap with the beginning of the region,
1062 				 * reserve the beginning.
1063 				  */
1064 				mem_alloc_size -= crashk_end - memory;
1065 				memory = crashk_end;
1066 			} else if (memory < crashk_base && end > crashk_base &&
1067 				   end < crashk_end)
1068 				/*
1069 				 * Overlap with the beginning of the region,
1070 				 * chop of end.
1071 				 */
1072 				mem_alloc_size -= end - crashk_base;
1073 #endif
1074 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1075 			total += mem_alloc_size;
1076 			/* Recovering mem_alloc_size */
1077 			mem_alloc_size = 4 << 20;
1078 		} else {
1079 			break;
1080 		}
1081 	}
1082 	cvmx_bootmem_unlock();
1083 	/* Add the memory region for the kernel. */
1084 	kernel_start = (unsigned long) _text;
1085 	kernel_size = _end - _text;
1086 
1087 	/* Adjust for physical offset. */
1088 	kernel_start &= ~0xffffffff80000000ULL;
1089 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1090 #endif /* CONFIG_CRASH_DUMP */
1091 
1092 #ifdef CONFIG_CAVIUM_RESERVE32
1093 	/*
1094 	 * Now that we've allocated the kernel memory it is safe to
1095 	 * free the reserved region. We free it here so that builtin
1096 	 * drivers can use the memory.
1097 	 */
1098 	if (octeon_reserve32_memory)
1099 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1100 #endif /* CONFIG_CAVIUM_RESERVE32 */
1101 
1102 	if (total == 0)
1103 		panic("Unable to allocate memory from "
1104 		      "cvmx_bootmem_phy_alloc");
1105 }
1106 
1107 /*
1108  * Emit one character to the boot UART.	 Exported for use by the
1109  * watchdog timer.
1110  */
1111 int prom_putchar(char c)
1112 {
1113 	uint64_t lsrval;
1114 
1115 	/* Spin until there is room */
1116 	do {
1117 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1118 	} while ((lsrval & 0x20) == 0);
1119 
1120 	/* Write the byte */
1121 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1122 	return 1;
1123 }
1124 EXPORT_SYMBOL(prom_putchar);
1125 
1126 void __init prom_free_prom_memory(void)
1127 {
1128 	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1129 		/* Check for presence of Core-14449 fix.  */
1130 		u32 insn;
1131 		u32 *foo;
1132 
1133 		foo = &insn;
1134 
1135 		asm volatile("# before" : : : "memory");
1136 		prefetch(foo);
1137 		asm volatile(
1138 			".set push\n\t"
1139 			".set noreorder\n\t"
1140 			"bal 1f\n\t"
1141 			"nop\n"
1142 			"1:\tlw %0,-12($31)\n\t"
1143 			".set pop\n\t"
1144 			: "=r" (insn) : : "$31", "memory");
1145 
1146 		if ((insn >> 26) != 0x33)
1147 			panic("No PREF instruction at Core-14449 probe point.");
1148 
1149 		if (((insn >> 16) & 0x1f) != 28)
1150 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1151 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1152 			      insn);
1153 	}
1154 }
1155 
1156 void __init octeon_fill_mac_addresses(void);
1157 int octeon_prune_device_tree(void);
1158 
1159 extern const char __appended_dtb;
1160 extern const char __dtb_octeon_3xxx_begin;
1161 extern const char __dtb_octeon_68xx_begin;
1162 void __init device_tree_init(void)
1163 {
1164 	const void *fdt;
1165 	bool do_prune;
1166 	bool fill_mac;
1167 
1168 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1169 	if (!fdt_check_header(&__appended_dtb)) {
1170 		fdt = &__appended_dtb;
1171 		do_prune = false;
1172 		fill_mac = true;
1173 		pr_info("Using appended Device Tree.\n");
1174 	} else
1175 #endif
1176 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1177 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1178 		if (fdt_check_header(fdt))
1179 			panic("Corrupt Device Tree passed to kernel.");
1180 		do_prune = false;
1181 		fill_mac = false;
1182 		pr_info("Using passed Device Tree.\n");
1183 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1184 		fdt = &__dtb_octeon_68xx_begin;
1185 		do_prune = true;
1186 		fill_mac = true;
1187 	} else {
1188 		fdt = &__dtb_octeon_3xxx_begin;
1189 		do_prune = true;
1190 		fill_mac = true;
1191 	}
1192 
1193 	initial_boot_params = (void *)fdt;
1194 
1195 	if (do_prune) {
1196 		octeon_prune_device_tree();
1197 		pr_info("Using internal Device Tree.\n");
1198 	}
1199 	if (fill_mac)
1200 		octeon_fill_mac_addresses();
1201 	unflatten_and_copy_device_tree();
1202 	init_octeon_system_type();
1203 }
1204 
1205 static int __initdata disable_octeon_edac_p;
1206 
1207 static int __init disable_octeon_edac(char *str)
1208 {
1209 	disable_octeon_edac_p = 1;
1210 	return 0;
1211 }
1212 early_param("disable_octeon_edac", disable_octeon_edac);
1213 
1214 static char *edac_device_names[] = {
1215 	"octeon_l2c_edac",
1216 	"octeon_pc_edac",
1217 };
1218 
1219 static int __init edac_devinit(void)
1220 {
1221 	struct platform_device *dev;
1222 	int i, err = 0;
1223 	int num_lmc;
1224 	char *name;
1225 
1226 	if (disable_octeon_edac_p)
1227 		return 0;
1228 
1229 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1230 		name = edac_device_names[i];
1231 		dev = platform_device_register_simple(name, -1, NULL, 0);
1232 		if (IS_ERR(dev)) {
1233 			pr_err("Registration of %s failed!\n", name);
1234 			err = PTR_ERR(dev);
1235 		}
1236 	}
1237 
1238 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1239 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1240 	for (i = 0; i < num_lmc; i++) {
1241 		dev = platform_device_register_simple("octeon_lmc_edac",
1242 						      i, NULL, 0);
1243 		if (IS_ERR(dev)) {
1244 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1245 			err = PTR_ERR(dev);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 device_initcall(edac_devinit);
1252 
1253 static void __initdata *octeon_dummy_iospace;
1254 
1255 static int __init octeon_no_pci_init(void)
1256 {
1257 	/*
1258 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1259 	 * later re-initialize these to correct values if they are present.
1260 	 */
1261 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1262 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1263 	ioport_resource.start = MAX_RESOURCE;
1264 	ioport_resource.end = 0;
1265 	return 0;
1266 }
1267 core_initcall(octeon_no_pci_init);
1268 
1269 static int __init octeon_no_pci_release(void)
1270 {
1271 	/*
1272 	 * Release the allocated memory if a real IO space is there.
1273 	 */
1274 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1275 		vfree(octeon_dummy_iospace);
1276 	return 0;
1277 }
1278 late_initcall(octeon_no_pci_release);
1279