xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision 7e035230)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9 #include <linux/init.h>
10 #include <linux/console.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/serial.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18 #include <linux/string.h>	/* for memset */
19 #include <linux/tty.h>
20 #include <linux/time.h>
21 #include <linux/platform_device.h>
22 #include <linux/serial_core.h>
23 #include <linux/serial_8250.h>
24 #include <linux/of_fdt.h>
25 #include <linux/libfdt.h>
26 
27 #include <asm/processor.h>
28 #include <asm/reboot.h>
29 #include <asm/smp-ops.h>
30 #include <asm/irq_cpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/bootinfo.h>
33 #include <asm/sections.h>
34 #include <asm/time.h>
35 
36 #include <asm/octeon/octeon.h>
37 #include <asm/octeon/pci-octeon.h>
38 #include <asm/octeon/cvmx-mio-defs.h>
39 
40 #ifdef CONFIG_CAVIUM_DECODE_RSL
41 extern void cvmx_interrupt_rsl_decode(void);
42 extern int __cvmx_interrupt_ecc_report_single_bit_errors;
43 extern void cvmx_interrupt_rsl_enable(void);
44 #endif
45 
46 extern struct plat_smp_ops octeon_smp_ops;
47 
48 #ifdef CONFIG_PCI
49 extern void pci_console_init(const char *arg);
50 #endif
51 
52 static unsigned long long MAX_MEMORY = 512ull << 20;
53 
54 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
55 
56 struct cvmx_bootinfo *octeon_bootinfo;
57 EXPORT_SYMBOL(octeon_bootinfo);
58 
59 #ifdef CONFIG_CAVIUM_RESERVE32
60 uint64_t octeon_reserve32_memory;
61 EXPORT_SYMBOL(octeon_reserve32_memory);
62 #endif
63 
64 static int octeon_uart;
65 
66 extern asmlinkage void handle_int(void);
67 extern asmlinkage void plat_irq_dispatch(void);
68 
69 /**
70  * Return non zero if we are currently running in the Octeon simulator
71  *
72  * Returns
73  */
74 int octeon_is_simulation(void)
75 {
76 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
77 }
78 EXPORT_SYMBOL(octeon_is_simulation);
79 
80 /**
81  * Return true if Octeon is in PCI Host mode. This means
82  * Linux can control the PCI bus.
83  *
84  * Returns Non zero if Octeon in host mode.
85  */
86 int octeon_is_pci_host(void)
87 {
88 #ifdef CONFIG_PCI
89 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
90 #else
91 	return 0;
92 #endif
93 }
94 
95 /**
96  * Get the clock rate of Octeon
97  *
98  * Returns Clock rate in HZ
99  */
100 uint64_t octeon_get_clock_rate(void)
101 {
102 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
103 
104 	return sysinfo->cpu_clock_hz;
105 }
106 EXPORT_SYMBOL(octeon_get_clock_rate);
107 
108 static u64 octeon_io_clock_rate;
109 
110 u64 octeon_get_io_clock_rate(void)
111 {
112 	return octeon_io_clock_rate;
113 }
114 EXPORT_SYMBOL(octeon_get_io_clock_rate);
115 
116 
117 /**
118  * Write to the LCD display connected to the bootbus. This display
119  * exists on most Cavium evaluation boards. If it doesn't exist, then
120  * this function doesn't do anything.
121  *
122  * @s:      String to write
123  */
124 void octeon_write_lcd(const char *s)
125 {
126 	if (octeon_bootinfo->led_display_base_addr) {
127 		void __iomem *lcd_address =
128 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
129 					8);
130 		int i;
131 		for (i = 0; i < 8; i++, s++) {
132 			if (*s)
133 				iowrite8(*s, lcd_address + i);
134 			else
135 				iowrite8(' ', lcd_address + i);
136 		}
137 		iounmap(lcd_address);
138 	}
139 }
140 
141 /**
142  * Return the console uart passed by the bootloader
143  *
144  * Returns uart   (0 or 1)
145  */
146 int octeon_get_boot_uart(void)
147 {
148 	int uart;
149 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
150 	uart = 1;
151 #else
152 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
153 		1 : 0;
154 #endif
155 	return uart;
156 }
157 
158 /**
159  * Get the coremask Linux was booted on.
160  *
161  * Returns Core mask
162  */
163 int octeon_get_boot_coremask(void)
164 {
165 	return octeon_boot_desc_ptr->core_mask;
166 }
167 
168 /**
169  * Check the hardware BIST results for a CPU
170  */
171 void octeon_check_cpu_bist(void)
172 {
173 	const int coreid = cvmx_get_core_num();
174 	unsigned long long mask;
175 	unsigned long long bist_val;
176 
177 	/* Check BIST results for COP0 registers */
178 	mask = 0x1f00000000ull;
179 	bist_val = read_octeon_c0_icacheerr();
180 	if (bist_val & mask)
181 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
182 		       coreid, bist_val);
183 
184 	bist_val = read_octeon_c0_dcacheerr();
185 	if (bist_val & 1)
186 		pr_err("Core%d L1 Dcache parity error: "
187 		       "CacheErr(dcache) = 0x%llx\n",
188 		       coreid, bist_val);
189 
190 	mask = 0xfc00000000000000ull;
191 	bist_val = read_c0_cvmmemctl();
192 	if (bist_val & mask)
193 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
194 		       coreid, bist_val);
195 
196 	write_octeon_c0_dcacheerr(0);
197 }
198 
199 /**
200  * Reboot Octeon
201  *
202  * @command: Command to pass to the bootloader. Currently ignored.
203  */
204 static void octeon_restart(char *command)
205 {
206 	/* Disable all watchdogs before soft reset. They don't get cleared */
207 #ifdef CONFIG_SMP
208 	int cpu;
209 	for_each_online_cpu(cpu)
210 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
211 #else
212 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
213 #endif
214 
215 	mb();
216 	while (1)
217 		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
218 }
219 
220 
221 /**
222  * Permanently stop a core.
223  *
224  * @arg: Ignored.
225  */
226 static void octeon_kill_core(void *arg)
227 {
228 	mb();
229 	if (octeon_is_simulation()) {
230 		/* The simulator needs the watchdog to stop for dead cores */
231 		cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
232 		/* A break instruction causes the simulator stop a core */
233 		asm volatile ("sync\nbreak");
234 	}
235 }
236 
237 
238 /**
239  * Halt the system
240  */
241 static void octeon_halt(void)
242 {
243 	smp_call_function(octeon_kill_core, NULL, 0);
244 
245 	switch (octeon_bootinfo->board_type) {
246 	case CVMX_BOARD_TYPE_NAO38:
247 		/* Driving a 1 to GPIO 12 shuts off this board */
248 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
249 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
250 		break;
251 	default:
252 		octeon_write_lcd("PowerOff");
253 		break;
254 	}
255 
256 	octeon_kill_core(NULL);
257 }
258 
259 /**
260  * Handle all the error condition interrupts that might occur.
261  *
262  */
263 #ifdef CONFIG_CAVIUM_DECODE_RSL
264 static irqreturn_t octeon_rlm_interrupt(int cpl, void *dev_id)
265 {
266 	cvmx_interrupt_rsl_decode();
267 	return IRQ_HANDLED;
268 }
269 #endif
270 
271 /**
272  * Return a string representing the system type
273  *
274  * Returns
275  */
276 const char *octeon_board_type_string(void)
277 {
278 	static char name[80];
279 	sprintf(name, "%s (%s)",
280 		cvmx_board_type_to_string(octeon_bootinfo->board_type),
281 		octeon_model_get_string(read_c0_prid()));
282 	return name;
283 }
284 
285 const char *get_system_type(void)
286 	__attribute__ ((alias("octeon_board_type_string")));
287 
288 void octeon_user_io_init(void)
289 {
290 	union octeon_cvmemctl cvmmemctl;
291 	union cvmx_iob_fau_timeout fau_timeout;
292 	union cvmx_pow_nw_tim nm_tim;
293 
294 	/* Get the current settings for CP0_CVMMEMCTL_REG */
295 	cvmmemctl.u64 = read_c0_cvmmemctl();
296 	/* R/W If set, marked write-buffer entries time out the same
297 	 * as as other entries; if clear, marked write-buffer entries
298 	 * use the maximum timeout. */
299 	cvmmemctl.s.dismarkwblongto = 1;
300 	/* R/W If set, a merged store does not clear the write-buffer
301 	 * entry timeout state. */
302 	cvmmemctl.s.dismrgclrwbto = 0;
303 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
304 	 * word location for an IOBDMA. The other 8 bits come from the
305 	 * SCRADDR field of the IOBDMA. */
306 	cvmmemctl.s.iobdmascrmsb = 0;
307 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
308 	 * clear, SYNCWS and SYNCS only order unmarked
309 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
310 	 * set. */
311 	cvmmemctl.s.syncwsmarked = 0;
312 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
313 	cvmmemctl.s.dissyncws = 0;
314 	/* R/W If set, no stall happens on write buffer full. */
315 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
316 		cvmmemctl.s.diswbfst = 1;
317 	else
318 		cvmmemctl.s.diswbfst = 0;
319 	/* R/W If set (and SX set), supervisor-level loads/stores can
320 	 * use XKPHYS addresses with <48>==0 */
321 	cvmmemctl.s.xkmemenas = 0;
322 
323 	/* R/W If set (and UX set), user-level loads/stores can use
324 	 * XKPHYS addresses with VA<48>==0 */
325 	cvmmemctl.s.xkmemenau = 0;
326 
327 	/* R/W If set (and SX set), supervisor-level loads/stores can
328 	 * use XKPHYS addresses with VA<48>==1 */
329 	cvmmemctl.s.xkioenas = 0;
330 
331 	/* R/W If set (and UX set), user-level loads/stores can use
332 	 * XKPHYS addresses with VA<48>==1 */
333 	cvmmemctl.s.xkioenau = 0;
334 
335 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
336 	 * when this is set) RW, reset to 0. */
337 	cvmmemctl.s.allsyncw = 0;
338 
339 	/* R/W If set, no stores merge, and all stores reach the
340 	 * coherent bus in order. */
341 	cvmmemctl.s.nomerge = 0;
342 	/* R/W Selects the bit in the counter used for DID time-outs 0
343 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
344 	 * between 1x and 2x this interval. For example, with
345 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
346 	cvmmemctl.s.didtto = 0;
347 	/* R/W If set, the (mem) CSR clock never turns off. */
348 	cvmmemctl.s.csrckalwys = 0;
349 	/* R/W If set, mclk never turns off. */
350 	cvmmemctl.s.mclkalwys = 0;
351 	/* R/W Selects the bit in the counter used for write buffer
352 	 * flush time-outs (WBFLT+11) is the bit position in an
353 	 * internal counter used to determine expiration. The write
354 	 * buffer expires between 1x and 2x this interval. For
355 	 * example, with WBFLT = 0, a write buffer expires between 2K
356 	 * and 4K cycles after the write buffer entry is allocated. */
357 	cvmmemctl.s.wbfltime = 0;
358 	/* R/W If set, do not put Istream in the L2 cache. */
359 	cvmmemctl.s.istrnol2 = 0;
360 
361 	/*
362 	 * R/W The write buffer threshold. As per erratum Core-14752
363 	 * for CN63XX, a sc/scd might fail if the write buffer is
364 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
365 	 * write buffer ever being full and triggering the erratum.
366 	 */
367 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
368 		cvmmemctl.s.wbthresh = 4;
369 	else
370 		cvmmemctl.s.wbthresh = 10;
371 
372 	/* R/W If set, CVMSEG is available for loads/stores in
373 	 * kernel/debug mode. */
374 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
375 	cvmmemctl.s.cvmsegenak = 1;
376 #else
377 	cvmmemctl.s.cvmsegenak = 0;
378 #endif
379 	/* R/W If set, CVMSEG is available for loads/stores in
380 	 * supervisor mode. */
381 	cvmmemctl.s.cvmsegenas = 0;
382 	/* R/W If set, CVMSEG is available for loads/stores in user
383 	 * mode. */
384 	cvmmemctl.s.cvmsegenau = 0;
385 	/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
386 	 * is max legal value. */
387 	cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
388 
389 	write_c0_cvmmemctl(cvmmemctl.u64);
390 
391 	if (smp_processor_id() == 0)
392 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
393 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
394 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
395 
396 	/* Set a default for the hardware timeouts */
397 	fau_timeout.u64 = 0;
398 	fau_timeout.s.tout_val = 0xfff;
399 	/* Disable tagwait FAU timeout */
400 	fau_timeout.s.tout_enb = 0;
401 	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
402 
403 	nm_tim.u64 = 0;
404 	/* 4096 cycles */
405 	nm_tim.s.nw_tim = 3;
406 	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
407 
408 	write_octeon_c0_icacheerr(0);
409 	write_c0_derraddr1(0);
410 }
411 
412 /**
413  * Early entry point for arch setup
414  */
415 void __init prom_init(void)
416 {
417 	struct cvmx_sysinfo *sysinfo;
418 	int i;
419 	int argc;
420 #ifdef CONFIG_CAVIUM_RESERVE32
421 	int64_t addr = -1;
422 #endif
423 	/*
424 	 * The bootloader passes a pointer to the boot descriptor in
425 	 * $a3, this is available as fw_arg3.
426 	 */
427 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
428 	octeon_bootinfo =
429 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
430 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
431 
432 	sysinfo = cvmx_sysinfo_get();
433 	memset(sysinfo, 0, sizeof(*sysinfo));
434 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
435 	sysinfo->phy_mem_desc_ptr =
436 		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
437 	sysinfo->core_mask = octeon_bootinfo->core_mask;
438 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
439 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
440 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
441 	sysinfo->board_type = octeon_bootinfo->board_type;
442 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
443 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
444 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
445 	       sizeof(sysinfo->mac_addr_base));
446 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
447 	memcpy(sysinfo->board_serial_number,
448 	       octeon_bootinfo->board_serial_number,
449 	       sizeof(sysinfo->board_serial_number));
450 	sysinfo->compact_flash_common_base_addr =
451 		octeon_bootinfo->compact_flash_common_base_addr;
452 	sysinfo->compact_flash_attribute_base_addr =
453 		octeon_bootinfo->compact_flash_attribute_base_addr;
454 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
455 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
456 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
457 
458 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
459 		/* I/O clock runs at a different rate than the CPU. */
460 		union cvmx_mio_rst_boot rst_boot;
461 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
462 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
463 	} else {
464 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
465 	}
466 
467 	/*
468 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
469 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
470 	 */
471 	if (!octeon_is_simulation() &&
472 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
473 		cvmx_write_csr(CVMX_LED_EN, 0);
474 		cvmx_write_csr(CVMX_LED_PRT, 0);
475 		cvmx_write_csr(CVMX_LED_DBG, 0);
476 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
477 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
478 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
479 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
480 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
481 		cvmx_write_csr(CVMX_LED_EN, 1);
482 	}
483 #ifdef CONFIG_CAVIUM_RESERVE32
484 	/*
485 	 * We need to temporarily allocate all memory in the reserve32
486 	 * region. This makes sure the kernel doesn't allocate this
487 	 * memory when it is getting memory from the
488 	 * bootloader. Later, after the memory allocations are
489 	 * complete, the reserve32 will be freed.
490 	 *
491 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
492 	 * is in case we later use hugetlb entries with it.
493 	 */
494 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
495 						0, 0, 2 << 20,
496 						"CAVIUM_RESERVE32", 0);
497 	if (addr < 0)
498 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
499 	else
500 		octeon_reserve32_memory = addr;
501 #endif
502 
503 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
504 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
505 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
506 	} else {
507 		uint32_t ebase = read_c0_ebase() & 0x3ffff000;
508 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
509 		/* TLB refill */
510 		cvmx_l2c_lock_mem_region(ebase, 0x100);
511 #endif
512 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
513 		/* General exception */
514 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
515 #endif
516 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
517 		/* Interrupt handler */
518 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
519 #endif
520 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
521 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
522 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
523 #endif
524 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
525 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
526 #endif
527 	}
528 #endif
529 
530 	octeon_check_cpu_bist();
531 
532 	octeon_uart = octeon_get_boot_uart();
533 
534 #ifdef CONFIG_SMP
535 	octeon_write_lcd("LinuxSMP");
536 #else
537 	octeon_write_lcd("Linux");
538 #endif
539 
540 #ifdef CONFIG_CAVIUM_GDB
541 	/*
542 	 * When debugging the linux kernel, force the cores to enter
543 	 * the debug exception handler to break in.
544 	 */
545 	if (octeon_get_boot_debug_flag()) {
546 		cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
547 		cvmx_read_csr(CVMX_CIU_DINT);
548 	}
549 #endif
550 
551 	/*
552 	 * BIST should always be enabled when doing a soft reset. L2
553 	 * Cache locking for instance is not cleared unless BIST is
554 	 * enabled.  Unfortunately due to a chip errata G-200 for
555 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
556 	 */
557 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
558 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
559 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
560 	else
561 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
562 
563 	/* Default to 64MB in the simulator to speed things up */
564 	if (octeon_is_simulation())
565 		MAX_MEMORY = 64ull << 20;
566 
567 	arcs_cmdline[0] = 0;
568 	argc = octeon_boot_desc_ptr->argc;
569 	for (i = 0; i < argc; i++) {
570 		const char *arg =
571 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
572 		if ((strncmp(arg, "MEM=", 4) == 0) ||
573 		    (strncmp(arg, "mem=", 4) == 0)) {
574 			sscanf(arg + 4, "%llu", &MAX_MEMORY);
575 			MAX_MEMORY <<= 20;
576 			if (MAX_MEMORY == 0)
577 				MAX_MEMORY = 32ull << 30;
578 		} else if (strcmp(arg, "ecc_verbose") == 0) {
579 #ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
580 			__cvmx_interrupt_ecc_report_single_bit_errors = 1;
581 			pr_notice("Reporting of single bit ECC errors is "
582 				  "turned on\n");
583 #endif
584 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
585 			   sizeof(arcs_cmdline) - 1) {
586 			strcat(arcs_cmdline, " ");
587 			strcat(arcs_cmdline, arg);
588 		}
589 	}
590 
591 	if (strstr(arcs_cmdline, "console=") == NULL) {
592 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
593 		strcat(arcs_cmdline, " console=ttyS0,115200");
594 #else
595 		if (octeon_uart == 1)
596 			strcat(arcs_cmdline, " console=ttyS1,115200");
597 		else
598 			strcat(arcs_cmdline, " console=ttyS0,115200");
599 #endif
600 	}
601 
602 	if (octeon_is_simulation()) {
603 		/*
604 		 * The simulator uses a mtdram device pre filled with
605 		 * the filesystem. Also specify the calibration delay
606 		 * to avoid calculating it every time.
607 		 */
608 		strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
609 	}
610 
611 	mips_hpt_frequency = octeon_get_clock_rate();
612 
613 	octeon_init_cvmcount();
614 	octeon_setup_delays();
615 
616 	_machine_restart = octeon_restart;
617 	_machine_halt = octeon_halt;
618 
619 	octeon_user_io_init();
620 	register_smp_ops(&octeon_smp_ops);
621 }
622 
623 /* Exclude a single page from the regions obtained in plat_mem_setup. */
624 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
625 {
626 	if (addr > *mem && addr < *mem + *size) {
627 		u64 inc = addr - *mem;
628 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
629 		*mem += inc;
630 		*size -= inc;
631 	}
632 
633 	if (addr == *mem && *size > PAGE_SIZE) {
634 		*mem += PAGE_SIZE;
635 		*size -= PAGE_SIZE;
636 	}
637 }
638 
639 void __init plat_mem_setup(void)
640 {
641 	uint64_t mem_alloc_size;
642 	uint64_t total;
643 	int64_t memory;
644 
645 	total = 0;
646 
647 	/*
648 	 * The Mips memory init uses the first memory location for
649 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
650 	 * verify that the size is big enough for the final
651 	 * vectors. Making the smallest chuck 4MB seems to be enough
652 	 * to consistently work.
653 	 */
654 	mem_alloc_size = 4 << 20;
655 	if (mem_alloc_size > MAX_MEMORY)
656 		mem_alloc_size = MAX_MEMORY;
657 
658 	/*
659 	 * When allocating memory, we want incrementing addresses from
660 	 * bootmem_alloc so the code in add_memory_region can merge
661 	 * regions next to each other.
662 	 */
663 	cvmx_bootmem_lock();
664 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
665 		&& (total < MAX_MEMORY)) {
666 #if defined(CONFIG_64BIT) || defined(CONFIG_64BIT_PHYS_ADDR)
667 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
668 						__pa_symbol(&__init_end), -1,
669 						0x100000,
670 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
671 #elif defined(CONFIG_HIGHMEM)
672 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 0, 1ull << 31,
673 						0x100000,
674 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
675 #else
676 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 0, 512 << 20,
677 						0x100000,
678 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
679 #endif
680 		if (memory >= 0) {
681 			u64 size = mem_alloc_size;
682 
683 			/*
684 			 * exclude a page at the beginning and end of
685 			 * the 256MB PCIe 'hole' so the kernel will not
686 			 * try to allocate multi-page buffers that
687 			 * span the discontinuity.
688 			 */
689 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
690 					    &memory, &size);
691 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
692 					    CVMX_PCIE_BAR1_PHYS_SIZE,
693 					    &memory, &size);
694 
695 			/*
696 			 * This function automatically merges address
697 			 * regions next to each other if they are
698 			 * received in incrementing order.
699 			 */
700 			if (size)
701 				add_memory_region(memory, size, BOOT_MEM_RAM);
702 			total += mem_alloc_size;
703 		} else {
704 			break;
705 		}
706 	}
707 	cvmx_bootmem_unlock();
708 
709 #ifdef CONFIG_CAVIUM_RESERVE32
710 	/*
711 	 * Now that we've allocated the kernel memory it is safe to
712 	 * free the reserved region. We free it here so that builtin
713 	 * drivers can use the memory.
714 	 */
715 	if (octeon_reserve32_memory)
716 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
717 #endif /* CONFIG_CAVIUM_RESERVE32 */
718 
719 	if (total == 0)
720 		panic("Unable to allocate memory from "
721 		      "cvmx_bootmem_phy_alloc\n");
722 }
723 
724 /*
725  * Emit one character to the boot UART.  Exported for use by the
726  * watchdog timer.
727  */
728 int prom_putchar(char c)
729 {
730 	uint64_t lsrval;
731 
732 	/* Spin until there is room */
733 	do {
734 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
735 	} while ((lsrval & 0x20) == 0);
736 
737 	/* Write the byte */
738 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
739 	return 1;
740 }
741 EXPORT_SYMBOL(prom_putchar);
742 
743 void prom_free_prom_memory(void)
744 {
745 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
746 		/* Check for presence of Core-14449 fix.  */
747 		u32 insn;
748 		u32 *foo;
749 
750 		foo = &insn;
751 
752 		asm volatile("# before" : : : "memory");
753 		prefetch(foo);
754 		asm volatile(
755 			".set push\n\t"
756 			".set noreorder\n\t"
757 			"bal 1f\n\t"
758 			"nop\n"
759 			"1:\tlw %0,-12($31)\n\t"
760 			".set pop\n\t"
761 			: "=r" (insn) : : "$31", "memory");
762 
763 		if ((insn >> 26) != 0x33)
764 			panic("No PREF instruction at Core-14449 probe point.");
765 
766 		if (((insn >> 16) & 0x1f) != 28)
767 			panic("Core-14449 WAR not in place (%04x).\n"
768 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
769 	}
770 #ifdef CONFIG_CAVIUM_DECODE_RSL
771 	cvmx_interrupt_rsl_enable();
772 
773 	/* Add an interrupt handler for general failures. */
774 	if (request_irq(OCTEON_IRQ_RML, octeon_rlm_interrupt, IRQF_SHARED,
775 			"RML/RSL", octeon_rlm_interrupt)) {
776 		panic("Unable to request_irq(OCTEON_IRQ_RML)");
777 	}
778 #endif
779 }
780 
781 int octeon_prune_device_tree(void);
782 
783 extern const char __dtb_octeon_3xxx_begin;
784 extern const char __dtb_octeon_3xxx_end;
785 extern const char __dtb_octeon_68xx_begin;
786 extern const char __dtb_octeon_68xx_end;
787 void __init device_tree_init(void)
788 {
789 	int dt_size;
790 	struct boot_param_header *fdt;
791 	bool do_prune;
792 
793 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
794 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
795 		if (fdt_check_header(fdt))
796 			panic("Corrupt Device Tree passed to kernel.");
797 		dt_size = be32_to_cpu(fdt->totalsize);
798 		do_prune = false;
799 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
800 		fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
801 		dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
802 		do_prune = true;
803 	} else {
804 		fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
805 		dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
806 		do_prune = true;
807 	}
808 
809 	/* Copy the default tree from init memory. */
810 	initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
811 	if (initial_boot_params == NULL)
812 		panic("Could not allocate initial_boot_params\n");
813 	memcpy(initial_boot_params, fdt, dt_size);
814 
815 	if (do_prune) {
816 		octeon_prune_device_tree();
817 		pr_info("Using internal Device Tree.\n");
818 	} else {
819 		pr_info("Using passed Device Tree.\n");
820 	}
821 	unflatten_device_tree();
822 }
823