1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2007 Cavium Networks 7 * Copyright (C) 2008, 2009 Wind River Systems 8 * written by Ralf Baechle <ralf@linux-mips.org> 9 */ 10 #include <linux/compiler.h> 11 #include <linux/vmalloc.h> 12 #include <linux/init.h> 13 #include <linux/kernel.h> 14 #include <linux/console.h> 15 #include <linux/delay.h> 16 #include <linux/export.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/serial.h> 20 #include <linux/smp.h> 21 #include <linux/types.h> 22 #include <linux/string.h> /* for memset */ 23 #include <linux/tty.h> 24 #include <linux/time.h> 25 #include <linux/platform_device.h> 26 #include <linux/serial_core.h> 27 #include <linux/serial_8250.h> 28 #include <linux/of_fdt.h> 29 #include <linux/libfdt.h> 30 #include <linux/kexec.h> 31 32 #include <asm/processor.h> 33 #include <asm/reboot.h> 34 #include <asm/smp-ops.h> 35 #include <asm/irq_cpu.h> 36 #include <asm/mipsregs.h> 37 #include <asm/bootinfo.h> 38 #include <asm/sections.h> 39 #include <asm/setup.h> 40 #include <asm/time.h> 41 42 #include <asm/octeon/octeon.h> 43 #include <asm/octeon/pci-octeon.h> 44 #include <asm/octeon/cvmx-rst-defs.h> 45 46 /* 47 * TRUE for devices having registers with little-endian byte 48 * order, FALSE for registers with native-endian byte order. 49 * PCI mandates little-endian, USB and SATA are configuraable, 50 * but we chose little-endian for these. 51 */ 52 const bool octeon_should_swizzle_table[256] = { 53 [0x00] = true, /* bootbus/CF */ 54 [0x1b] = true, /* PCI mmio window */ 55 [0x1c] = true, /* PCI mmio window */ 56 [0x1d] = true, /* PCI mmio window */ 57 [0x1e] = true, /* PCI mmio window */ 58 [0x68] = true, /* OCTEON III USB */ 59 [0x69] = true, /* OCTEON III USB */ 60 [0x6c] = true, /* OCTEON III SATA */ 61 [0x6f] = true, /* OCTEON II USB */ 62 }; 63 EXPORT_SYMBOL(octeon_should_swizzle_table); 64 65 #ifdef CONFIG_PCI 66 extern void pci_console_init(const char *arg); 67 #endif 68 69 static unsigned long long max_memory = ULLONG_MAX; 70 static unsigned long long reserve_low_mem; 71 72 DEFINE_SEMAPHORE(octeon_bootbus_sem); 73 EXPORT_SYMBOL(octeon_bootbus_sem); 74 75 struct octeon_boot_descriptor *octeon_boot_desc_ptr; 76 77 struct cvmx_bootinfo *octeon_bootinfo; 78 EXPORT_SYMBOL(octeon_bootinfo); 79 80 #ifdef CONFIG_KEXEC 81 #ifdef CONFIG_SMP 82 /* 83 * Wait for relocation code is prepared and send 84 * secondary CPUs to spin until kernel is relocated. 85 */ 86 static void octeon_kexec_smp_down(void *ignored) 87 { 88 int cpu = smp_processor_id(); 89 90 local_irq_disable(); 91 set_cpu_online(cpu, false); 92 while (!atomic_read(&kexec_ready_to_reboot)) 93 cpu_relax(); 94 95 asm volatile ( 96 " sync \n" 97 " synci ($0) \n"); 98 99 relocated_kexec_smp_wait(NULL); 100 } 101 #endif 102 103 #define OCTEON_DDR0_BASE (0x0ULL) 104 #define OCTEON_DDR0_SIZE (0x010000000ULL) 105 #define OCTEON_DDR1_BASE (0x410000000ULL) 106 #define OCTEON_DDR1_SIZE (0x010000000ULL) 107 #define OCTEON_DDR2_BASE (0x020000000ULL) 108 #define OCTEON_DDR2_SIZE (0x3e0000000ULL) 109 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL) 110 111 static struct kimage *kimage_ptr; 112 113 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes) 114 { 115 int64_t addr; 116 struct cvmx_bootmem_desc *bootmem_desc; 117 118 bootmem_desc = cvmx_bootmem_get_desc(); 119 120 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { 121 mem_size = OCTEON_MAX_PHY_MEM_SIZE; 122 pr_err("Error: requested memory too large," 123 "truncating to maximum size\n"); 124 } 125 126 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER; 127 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER; 128 129 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes); 130 bootmem_desc->head_addr = 0; 131 132 if (mem_size <= OCTEON_DDR0_SIZE) { 133 __cvmx_bootmem_phy_free(addr, 134 mem_size - reserve_low_mem - 135 low_reserved_bytes, 0); 136 return; 137 } 138 139 __cvmx_bootmem_phy_free(addr, 140 OCTEON_DDR0_SIZE - reserve_low_mem - 141 low_reserved_bytes, 0); 142 143 mem_size -= OCTEON_DDR0_SIZE; 144 145 if (mem_size > OCTEON_DDR1_SIZE) { 146 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); 147 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, 148 mem_size - OCTEON_DDR1_SIZE, 0); 149 } else 150 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); 151 } 152 153 static int octeon_kexec_prepare(struct kimage *image) 154 { 155 int i; 156 char *bootloader = "kexec"; 157 158 octeon_boot_desc_ptr->argc = 0; 159 for (i = 0; i < image->nr_segments; i++) { 160 if (!strncmp(bootloader, (char *)image->segment[i].buf, 161 strlen(bootloader))) { 162 /* 163 * convert command line string to array 164 * of parameters (as bootloader does). 165 */ 166 int argc = 0, offt; 167 char *str = (char *)image->segment[i].buf; 168 char *ptr = strchr(str, ' '); 169 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) { 170 *ptr = '\0'; 171 if (ptr[1] != ' ') { 172 offt = (int)(ptr - str + 1); 173 octeon_boot_desc_ptr->argv[argc] = 174 image->segment[i].mem + offt; 175 argc++; 176 } 177 ptr = strchr(ptr + 1, ' '); 178 } 179 octeon_boot_desc_ptr->argc = argc; 180 break; 181 } 182 } 183 184 /* 185 * Information about segments will be needed during pre-boot memory 186 * initialization. 187 */ 188 kimage_ptr = image; 189 return 0; 190 } 191 192 static void octeon_generic_shutdown(void) 193 { 194 int i; 195 #ifdef CONFIG_SMP 196 int cpu; 197 #endif 198 struct cvmx_bootmem_desc *bootmem_desc; 199 void *named_block_array_ptr; 200 201 bootmem_desc = cvmx_bootmem_get_desc(); 202 named_block_array_ptr = 203 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr); 204 205 #ifdef CONFIG_SMP 206 /* disable watchdogs */ 207 for_each_online_cpu(cpu) 208 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 209 #else 210 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 211 #endif 212 if (kimage_ptr != kexec_crash_image) { 213 memset(named_block_array_ptr, 214 0x0, 215 CVMX_BOOTMEM_NUM_NAMED_BLOCKS * 216 sizeof(struct cvmx_bootmem_named_block_desc)); 217 /* 218 * Mark all memory (except low 0x100000 bytes) as free. 219 * It is the same thing that bootloader does. 220 */ 221 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL, 222 0x100000); 223 /* 224 * Allocate all segments to avoid their corruption during boot. 225 */ 226 for (i = 0; i < kimage_ptr->nr_segments; i++) 227 cvmx_bootmem_alloc_address( 228 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE, 229 kimage_ptr->segment[i].mem - PAGE_SIZE, 230 PAGE_SIZE); 231 } else { 232 /* 233 * Do not mark all memory as free. Free only named sections 234 * leaving the rest of memory unchanged. 235 */ 236 struct cvmx_bootmem_named_block_desc *ptr = 237 (struct cvmx_bootmem_named_block_desc *) 238 named_block_array_ptr; 239 240 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++) 241 if (ptr[i].size) 242 cvmx_bootmem_free_named(ptr[i].name); 243 } 244 kexec_args[2] = 1UL; /* running on octeon_main_processor */ 245 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 246 #ifdef CONFIG_SMP 247 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */ 248 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr; 249 #endif 250 } 251 252 static void octeon_shutdown(void) 253 { 254 octeon_generic_shutdown(); 255 #ifdef CONFIG_SMP 256 smp_call_function(octeon_kexec_smp_down, NULL, 0); 257 smp_wmb(); 258 while (num_online_cpus() > 1) { 259 cpu_relax(); 260 mdelay(1); 261 } 262 #endif 263 } 264 265 static void octeon_crash_shutdown(struct pt_regs *regs) 266 { 267 octeon_generic_shutdown(); 268 default_machine_crash_shutdown(regs); 269 } 270 271 #ifdef CONFIG_SMP 272 void octeon_crash_smp_send_stop(void) 273 { 274 int cpu; 275 276 /* disable watchdogs */ 277 for_each_online_cpu(cpu) 278 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 279 } 280 #endif 281 282 #endif /* CONFIG_KEXEC */ 283 284 #ifdef CONFIG_CAVIUM_RESERVE32 285 uint64_t octeon_reserve32_memory; 286 EXPORT_SYMBOL(octeon_reserve32_memory); 287 #endif 288 289 #ifdef CONFIG_KEXEC 290 /* crashkernel cmdline parameter is parsed _after_ memory setup 291 * we also parse it here (workaround for EHB5200) */ 292 static uint64_t crashk_size, crashk_base; 293 #endif 294 295 static int octeon_uart; 296 297 extern asmlinkage void handle_int(void); 298 299 /** 300 * Return non zero if we are currently running in the Octeon simulator 301 * 302 * Returns 303 */ 304 int octeon_is_simulation(void) 305 { 306 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM; 307 } 308 EXPORT_SYMBOL(octeon_is_simulation); 309 310 /** 311 * Return true if Octeon is in PCI Host mode. This means 312 * Linux can control the PCI bus. 313 * 314 * Returns Non zero if Octeon in host mode. 315 */ 316 int octeon_is_pci_host(void) 317 { 318 #ifdef CONFIG_PCI 319 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST; 320 #else 321 return 0; 322 #endif 323 } 324 325 /** 326 * Get the clock rate of Octeon 327 * 328 * Returns Clock rate in HZ 329 */ 330 uint64_t octeon_get_clock_rate(void) 331 { 332 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get(); 333 334 return sysinfo->cpu_clock_hz; 335 } 336 EXPORT_SYMBOL(octeon_get_clock_rate); 337 338 static u64 octeon_io_clock_rate; 339 340 u64 octeon_get_io_clock_rate(void) 341 { 342 return octeon_io_clock_rate; 343 } 344 EXPORT_SYMBOL(octeon_get_io_clock_rate); 345 346 347 /** 348 * Write to the LCD display connected to the bootbus. This display 349 * exists on most Cavium evaluation boards. If it doesn't exist, then 350 * this function doesn't do anything. 351 * 352 * @s: String to write 353 */ 354 void octeon_write_lcd(const char *s) 355 { 356 if (octeon_bootinfo->led_display_base_addr) { 357 void __iomem *lcd_address = 358 ioremap_nocache(octeon_bootinfo->led_display_base_addr, 359 8); 360 int i; 361 for (i = 0; i < 8; i++, s++) { 362 if (*s) 363 iowrite8(*s, lcd_address + i); 364 else 365 iowrite8(' ', lcd_address + i); 366 } 367 iounmap(lcd_address); 368 } 369 } 370 371 /** 372 * Return the console uart passed by the bootloader 373 * 374 * Returns uart (0 or 1) 375 */ 376 int octeon_get_boot_uart(void) 377 { 378 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ? 379 1 : 0; 380 } 381 382 /** 383 * Get the coremask Linux was booted on. 384 * 385 * Returns Core mask 386 */ 387 int octeon_get_boot_coremask(void) 388 { 389 return octeon_boot_desc_ptr->core_mask; 390 } 391 392 /** 393 * Check the hardware BIST results for a CPU 394 */ 395 void octeon_check_cpu_bist(void) 396 { 397 const int coreid = cvmx_get_core_num(); 398 unsigned long long mask; 399 unsigned long long bist_val; 400 401 /* Check BIST results for COP0 registers */ 402 mask = 0x1f00000000ull; 403 bist_val = read_octeon_c0_icacheerr(); 404 if (bist_val & mask) 405 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n", 406 coreid, bist_val); 407 408 bist_val = read_octeon_c0_dcacheerr(); 409 if (bist_val & 1) 410 pr_err("Core%d L1 Dcache parity error: " 411 "CacheErr(dcache) = 0x%llx\n", 412 coreid, bist_val); 413 414 mask = 0xfc00000000000000ull; 415 bist_val = read_c0_cvmmemctl(); 416 if (bist_val & mask) 417 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n", 418 coreid, bist_val); 419 420 write_octeon_c0_dcacheerr(0); 421 } 422 423 /** 424 * Reboot Octeon 425 * 426 * @command: Command to pass to the bootloader. Currently ignored. 427 */ 428 static void octeon_restart(char *command) 429 { 430 /* Disable all watchdogs before soft reset. They don't get cleared */ 431 #ifdef CONFIG_SMP 432 int cpu; 433 for_each_online_cpu(cpu) 434 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0); 435 #else 436 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 437 #endif 438 439 mb(); 440 while (1) 441 if (OCTEON_IS_OCTEON3()) 442 cvmx_write_csr(CVMX_RST_SOFT_RST, 1); 443 else 444 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1); 445 } 446 447 448 /** 449 * Permanently stop a core. 450 * 451 * @arg: Ignored. 452 */ 453 static void octeon_kill_core(void *arg) 454 { 455 if (octeon_is_simulation()) 456 /* A break instruction causes the simulator stop a core */ 457 asm volatile ("break" ::: "memory"); 458 459 local_irq_disable(); 460 /* Disable watchdog on this core. */ 461 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0); 462 /* Spin in a low power mode. */ 463 while (true) 464 asm volatile ("wait" ::: "memory"); 465 } 466 467 468 /** 469 * Halt the system 470 */ 471 static void octeon_halt(void) 472 { 473 smp_call_function(octeon_kill_core, NULL, 0); 474 475 switch (octeon_bootinfo->board_type) { 476 case CVMX_BOARD_TYPE_NAO38: 477 /* Driving a 1 to GPIO 12 shuts off this board */ 478 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1); 479 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000); 480 break; 481 default: 482 octeon_write_lcd("PowerOff"); 483 break; 484 } 485 486 octeon_kill_core(NULL); 487 } 488 489 static char __read_mostly octeon_system_type[80]; 490 491 static void __init init_octeon_system_type(void) 492 { 493 char const *board_type; 494 495 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type); 496 if (board_type == NULL) { 497 struct device_node *root; 498 int ret; 499 500 root = of_find_node_by_path("/"); 501 ret = of_property_read_string(root, "model", &board_type); 502 of_node_put(root); 503 if (ret) 504 board_type = "Unsupported Board"; 505 } 506 507 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)", 508 board_type, octeon_model_get_string(read_c0_prid())); 509 } 510 511 /** 512 * Return a string representing the system type 513 * 514 * Returns 515 */ 516 const char *octeon_board_type_string(void) 517 { 518 return octeon_system_type; 519 } 520 521 const char *get_system_type(void) 522 __attribute__ ((alias("octeon_board_type_string"))); 523 524 void octeon_user_io_init(void) 525 { 526 union octeon_cvmemctl cvmmemctl; 527 528 /* Get the current settings for CP0_CVMMEMCTL_REG */ 529 cvmmemctl.u64 = read_c0_cvmmemctl(); 530 /* R/W If set, marked write-buffer entries time out the same 531 * as as other entries; if clear, marked write-buffer entries 532 * use the maximum timeout. */ 533 cvmmemctl.s.dismarkwblongto = 1; 534 /* R/W If set, a merged store does not clear the write-buffer 535 * entry timeout state. */ 536 cvmmemctl.s.dismrgclrwbto = 0; 537 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM 538 * word location for an IOBDMA. The other 8 bits come from the 539 * SCRADDR field of the IOBDMA. */ 540 cvmmemctl.s.iobdmascrmsb = 0; 541 /* R/W If set, SYNCWS and SYNCS only order marked stores; if 542 * clear, SYNCWS and SYNCS only order unmarked 543 * stores. SYNCWSMARKED has no effect when DISSYNCWS is 544 * set. */ 545 cvmmemctl.s.syncwsmarked = 0; 546 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */ 547 cvmmemctl.s.dissyncws = 0; 548 /* R/W If set, no stall happens on write buffer full. */ 549 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) 550 cvmmemctl.s.diswbfst = 1; 551 else 552 cvmmemctl.s.diswbfst = 0; 553 /* R/W If set (and SX set), supervisor-level loads/stores can 554 * use XKPHYS addresses with <48>==0 */ 555 cvmmemctl.s.xkmemenas = 0; 556 557 /* R/W If set (and UX set), user-level loads/stores can use 558 * XKPHYS addresses with VA<48>==0 */ 559 cvmmemctl.s.xkmemenau = 0; 560 561 /* R/W If set (and SX set), supervisor-level loads/stores can 562 * use XKPHYS addresses with VA<48>==1 */ 563 cvmmemctl.s.xkioenas = 0; 564 565 /* R/W If set (and UX set), user-level loads/stores can use 566 * XKPHYS addresses with VA<48>==1 */ 567 cvmmemctl.s.xkioenau = 0; 568 569 /* R/W If set, all stores act as SYNCW (NOMERGE must be set 570 * when this is set) RW, reset to 0. */ 571 cvmmemctl.s.allsyncw = 0; 572 573 /* R/W If set, no stores merge, and all stores reach the 574 * coherent bus in order. */ 575 cvmmemctl.s.nomerge = 0; 576 /* R/W Selects the bit in the counter used for DID time-outs 0 577 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is 578 * between 1x and 2x this interval. For example, with 579 * DIDTTO=3, expiration interval is between 16K and 32K. */ 580 cvmmemctl.s.didtto = 0; 581 /* R/W If set, the (mem) CSR clock never turns off. */ 582 cvmmemctl.s.csrckalwys = 0; 583 /* R/W If set, mclk never turns off. */ 584 cvmmemctl.s.mclkalwys = 0; 585 /* R/W Selects the bit in the counter used for write buffer 586 * flush time-outs (WBFLT+11) is the bit position in an 587 * internal counter used to determine expiration. The write 588 * buffer expires between 1x and 2x this interval. For 589 * example, with WBFLT = 0, a write buffer expires between 2K 590 * and 4K cycles after the write buffer entry is allocated. */ 591 cvmmemctl.s.wbfltime = 0; 592 /* R/W If set, do not put Istream in the L2 cache. */ 593 cvmmemctl.s.istrnol2 = 0; 594 595 /* 596 * R/W The write buffer threshold. As per erratum Core-14752 597 * for CN63XX, a sc/scd might fail if the write buffer is 598 * full. Lowering WBTHRESH greatly lowers the chances of the 599 * write buffer ever being full and triggering the erratum. 600 */ 601 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) 602 cvmmemctl.s.wbthresh = 4; 603 else 604 cvmmemctl.s.wbthresh = 10; 605 606 /* R/W If set, CVMSEG is available for loads/stores in 607 * kernel/debug mode. */ 608 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 609 cvmmemctl.s.cvmsegenak = 1; 610 #else 611 cvmmemctl.s.cvmsegenak = 0; 612 #endif 613 /* R/W If set, CVMSEG is available for loads/stores in 614 * supervisor mode. */ 615 cvmmemctl.s.cvmsegenas = 0; 616 /* R/W If set, CVMSEG is available for loads/stores in user 617 * mode. */ 618 cvmmemctl.s.cvmsegenau = 0; 619 620 write_c0_cvmmemctl(cvmmemctl.u64); 621 622 /* Setup of CVMSEG is done in kernel-entry-init.h */ 623 if (smp_processor_id() == 0) 624 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n", 625 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE, 626 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128); 627 628 if (octeon_has_feature(OCTEON_FEATURE_FAU)) { 629 union cvmx_iob_fau_timeout fau_timeout; 630 631 /* Set a default for the hardware timeouts */ 632 fau_timeout.u64 = 0; 633 fau_timeout.s.tout_val = 0xfff; 634 /* Disable tagwait FAU timeout */ 635 fau_timeout.s.tout_enb = 0; 636 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64); 637 } 638 639 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) && 640 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) || 641 OCTEON_IS_MODEL(OCTEON_CN70XX)) { 642 union cvmx_pow_nw_tim nm_tim; 643 644 nm_tim.u64 = 0; 645 /* 4096 cycles */ 646 nm_tim.s.nw_tim = 3; 647 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64); 648 } 649 650 write_octeon_c0_icacheerr(0); 651 write_c0_derraddr1(0); 652 } 653 654 /** 655 * Early entry point for arch setup 656 */ 657 void __init prom_init(void) 658 { 659 struct cvmx_sysinfo *sysinfo; 660 const char *arg; 661 char *p; 662 int i; 663 u64 t; 664 int argc; 665 #ifdef CONFIG_CAVIUM_RESERVE32 666 int64_t addr = -1; 667 #endif 668 /* 669 * The bootloader passes a pointer to the boot descriptor in 670 * $a3, this is available as fw_arg3. 671 */ 672 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 673 octeon_bootinfo = 674 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 675 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr)); 676 677 sysinfo = cvmx_sysinfo_get(); 678 memset(sysinfo, 0, sizeof(*sysinfo)); 679 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20; 680 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr); 681 682 if ((octeon_bootinfo->major_version > 1) || 683 (octeon_bootinfo->major_version == 1 && 684 octeon_bootinfo->minor_version >= 4)) 685 cvmx_coremask_copy(&sysinfo->core_mask, 686 &octeon_bootinfo->ext_core_mask); 687 else 688 cvmx_coremask_set64(&sysinfo->core_mask, 689 octeon_bootinfo->core_mask); 690 691 /* Some broken u-boot pass garbage in upper bits, clear them out */ 692 if (!OCTEON_IS_MODEL(OCTEON_CN78XX)) 693 for (i = 512; i < 1024; i++) 694 cvmx_coremask_clear_core(&sysinfo->core_mask, i); 695 696 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr; 697 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz; 698 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2; 699 sysinfo->board_type = octeon_bootinfo->board_type; 700 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major; 701 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor; 702 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base, 703 sizeof(sysinfo->mac_addr_base)); 704 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count; 705 memcpy(sysinfo->board_serial_number, 706 octeon_bootinfo->board_serial_number, 707 sizeof(sysinfo->board_serial_number)); 708 sysinfo->compact_flash_common_base_addr = 709 octeon_bootinfo->compact_flash_common_base_addr; 710 sysinfo->compact_flash_attribute_base_addr = 711 octeon_bootinfo->compact_flash_attribute_base_addr; 712 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr; 713 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz; 714 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags; 715 716 if (OCTEON_IS_OCTEON2()) { 717 /* I/O clock runs at a different rate than the CPU. */ 718 union cvmx_mio_rst_boot rst_boot; 719 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT); 720 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 721 } else if (OCTEON_IS_OCTEON3()) { 722 /* I/O clock runs at a different rate than the CPU. */ 723 union cvmx_rst_boot rst_boot; 724 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT); 725 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul; 726 } else { 727 octeon_io_clock_rate = sysinfo->cpu_clock_hz; 728 } 729 730 t = read_c0_cvmctl(); 731 if ((t & (1ull << 27)) == 0) { 732 /* 733 * Setup the multiplier save/restore code if 734 * CvmCtl[NOMUL] clear. 735 */ 736 void *save; 737 void *save_end; 738 void *restore; 739 void *restore_end; 740 int save_len; 741 int restore_len; 742 int save_max = (char *)octeon_mult_save_end - 743 (char *)octeon_mult_save; 744 int restore_max = (char *)octeon_mult_restore_end - 745 (char *)octeon_mult_restore; 746 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) { 747 save = octeon_mult_save3; 748 save_end = octeon_mult_save3_end; 749 restore = octeon_mult_restore3; 750 restore_end = octeon_mult_restore3_end; 751 } else { 752 save = octeon_mult_save2; 753 save_end = octeon_mult_save2_end; 754 restore = octeon_mult_restore2; 755 restore_end = octeon_mult_restore2_end; 756 } 757 save_len = (char *)save_end - (char *)save; 758 restore_len = (char *)restore_end - (char *)restore; 759 if (!WARN_ON(save_len > save_max || 760 restore_len > restore_max)) { 761 memcpy(octeon_mult_save, save, save_len); 762 memcpy(octeon_mult_restore, restore, restore_len); 763 } 764 } 765 766 /* 767 * Only enable the LED controller if we're running on a CN38XX, CN58XX, 768 * or CN56XX. The CN30XX and CN31XX don't have an LED controller. 769 */ 770 if (!octeon_is_simulation() && 771 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) { 772 cvmx_write_csr(CVMX_LED_EN, 0); 773 cvmx_write_csr(CVMX_LED_PRT, 0); 774 cvmx_write_csr(CVMX_LED_DBG, 0); 775 cvmx_write_csr(CVMX_LED_PRT_FMT, 0); 776 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32); 777 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32); 778 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0); 779 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0); 780 cvmx_write_csr(CVMX_LED_EN, 1); 781 } 782 #ifdef CONFIG_CAVIUM_RESERVE32 783 /* 784 * We need to temporarily allocate all memory in the reserve32 785 * region. This makes sure the kernel doesn't allocate this 786 * memory when it is getting memory from the 787 * bootloader. Later, after the memory allocations are 788 * complete, the reserve32 will be freed. 789 * 790 * Allocate memory for RESERVED32 aligned on 2MB boundary. This 791 * is in case we later use hugetlb entries with it. 792 */ 793 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20, 794 0, 0, 2 << 20, 795 "CAVIUM_RESERVE32", 0); 796 if (addr < 0) 797 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n"); 798 else 799 octeon_reserve32_memory = addr; 800 #endif 801 802 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2 803 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) { 804 pr_info("Skipping L2 locking due to reduced L2 cache size\n"); 805 } else { 806 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000; 807 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB 808 /* TLB refill */ 809 cvmx_l2c_lock_mem_region(ebase, 0x100); 810 #endif 811 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION 812 /* General exception */ 813 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80); 814 #endif 815 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT 816 /* Interrupt handler */ 817 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80); 818 #endif 819 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT 820 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100); 821 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80); 822 #endif 823 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY 824 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480); 825 #endif 826 } 827 #endif 828 829 octeon_check_cpu_bist(); 830 831 octeon_uart = octeon_get_boot_uart(); 832 833 #ifdef CONFIG_SMP 834 octeon_write_lcd("LinuxSMP"); 835 #else 836 octeon_write_lcd("Linux"); 837 #endif 838 839 octeon_setup_delays(); 840 841 /* 842 * BIST should always be enabled when doing a soft reset. L2 843 * Cache locking for instance is not cleared unless BIST is 844 * enabled. Unfortunately due to a chip errata G-200 for 845 * Cn38XX and CN31XX, BIST msut be disabled on these parts. 846 */ 847 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 848 OCTEON_IS_MODEL(OCTEON_CN31XX)) 849 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0); 850 else 851 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1); 852 853 /* Default to 64MB in the simulator to speed things up */ 854 if (octeon_is_simulation()) 855 max_memory = 64ull << 20; 856 857 arg = strstr(arcs_cmdline, "mem="); 858 if (arg) { 859 max_memory = memparse(arg + 4, &p); 860 if (max_memory == 0) 861 max_memory = 32ull << 30; 862 if (*p == '@') 863 reserve_low_mem = memparse(p + 1, &p); 864 } 865 866 arcs_cmdline[0] = 0; 867 argc = octeon_boot_desc_ptr->argc; 868 for (i = 0; i < argc; i++) { 869 const char *arg = 870 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 871 if ((strncmp(arg, "MEM=", 4) == 0) || 872 (strncmp(arg, "mem=", 4) == 0)) { 873 max_memory = memparse(arg + 4, &p); 874 if (max_memory == 0) 875 max_memory = 32ull << 30; 876 if (*p == '@') 877 reserve_low_mem = memparse(p + 1, &p); 878 #ifdef CONFIG_KEXEC 879 } else if (strncmp(arg, "crashkernel=", 12) == 0) { 880 crashk_size = memparse(arg+12, &p); 881 if (*p == '@') 882 crashk_base = memparse(p+1, &p); 883 strcat(arcs_cmdline, " "); 884 strcat(arcs_cmdline, arg); 885 /* 886 * To do: switch parsing to new style, something like: 887 * parse_crashkernel(arg, sysinfo->system_dram_size, 888 * &crashk_size, &crashk_base); 889 */ 890 #endif 891 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 < 892 sizeof(arcs_cmdline) - 1) { 893 strcat(arcs_cmdline, " "); 894 strcat(arcs_cmdline, arg); 895 } 896 } 897 898 if (strstr(arcs_cmdline, "console=") == NULL) { 899 if (octeon_uart == 1) 900 strcat(arcs_cmdline, " console=ttyS1,115200"); 901 else 902 strcat(arcs_cmdline, " console=ttyS0,115200"); 903 } 904 905 mips_hpt_frequency = octeon_get_clock_rate(); 906 907 octeon_init_cvmcount(); 908 909 _machine_restart = octeon_restart; 910 _machine_halt = octeon_halt; 911 912 #ifdef CONFIG_KEXEC 913 _machine_kexec_shutdown = octeon_shutdown; 914 _machine_crash_shutdown = octeon_crash_shutdown; 915 _machine_kexec_prepare = octeon_kexec_prepare; 916 #ifdef CONFIG_SMP 917 _crash_smp_send_stop = octeon_crash_smp_send_stop; 918 #endif 919 #endif 920 921 octeon_user_io_init(); 922 octeon_setup_smp(); 923 } 924 925 /* Exclude a single page from the regions obtained in plat_mem_setup. */ 926 #ifndef CONFIG_CRASH_DUMP 927 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size) 928 { 929 if (addr > *mem && addr < *mem + *size) { 930 u64 inc = addr - *mem; 931 add_memory_region(*mem, inc, BOOT_MEM_RAM); 932 *mem += inc; 933 *size -= inc; 934 } 935 936 if (addr == *mem && *size > PAGE_SIZE) { 937 *mem += PAGE_SIZE; 938 *size -= PAGE_SIZE; 939 } 940 } 941 #endif /* CONFIG_CRASH_DUMP */ 942 943 void __init fw_init_cmdline(void) 944 { 945 int i; 946 947 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3; 948 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) { 949 const char *arg = 950 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]); 951 if (strlen(arcs_cmdline) + strlen(arg) + 1 < 952 sizeof(arcs_cmdline) - 1) { 953 strcat(arcs_cmdline, " "); 954 strcat(arcs_cmdline, arg); 955 } 956 } 957 } 958 959 void __init *plat_get_fdt(void) 960 { 961 octeon_bootinfo = 962 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr); 963 return phys_to_virt(octeon_bootinfo->fdt_addr); 964 } 965 966 void __init plat_mem_setup(void) 967 { 968 uint64_t mem_alloc_size; 969 uint64_t total; 970 uint64_t crashk_end; 971 #ifndef CONFIG_CRASH_DUMP 972 int64_t memory; 973 uint64_t kernel_start; 974 uint64_t kernel_size; 975 #endif 976 977 total = 0; 978 crashk_end = 0; 979 980 /* 981 * The Mips memory init uses the first memory location for 982 * some memory vectors. When SPARSEMEM is in use, it doesn't 983 * verify that the size is big enough for the final 984 * vectors. Making the smallest chuck 4MB seems to be enough 985 * to consistently work. 986 */ 987 mem_alloc_size = 4 << 20; 988 if (mem_alloc_size > max_memory) 989 mem_alloc_size = max_memory; 990 991 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */ 992 #ifdef CONFIG_CRASH_DUMP 993 add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM); 994 total += max_memory; 995 #else 996 #ifdef CONFIG_KEXEC 997 if (crashk_size > 0) { 998 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM); 999 crashk_end = crashk_base + crashk_size; 1000 } 1001 #endif 1002 /* 1003 * When allocating memory, we want incrementing addresses from 1004 * bootmem_alloc so the code in add_memory_region can merge 1005 * regions next to each other. 1006 */ 1007 cvmx_bootmem_lock(); 1008 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX) 1009 && (total < max_memory)) { 1010 memory = cvmx_bootmem_phy_alloc(mem_alloc_size, 1011 __pa_symbol(&_end), -1, 1012 0x100000, 1013 CVMX_BOOTMEM_FLAG_NO_LOCKING); 1014 if (memory >= 0) { 1015 u64 size = mem_alloc_size; 1016 #ifdef CONFIG_KEXEC 1017 uint64_t end; 1018 #endif 1019 1020 /* 1021 * exclude a page at the beginning and end of 1022 * the 256MB PCIe 'hole' so the kernel will not 1023 * try to allocate multi-page buffers that 1024 * span the discontinuity. 1025 */ 1026 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE, 1027 &memory, &size); 1028 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE + 1029 CVMX_PCIE_BAR1_PHYS_SIZE, 1030 &memory, &size); 1031 #ifdef CONFIG_KEXEC 1032 end = memory + mem_alloc_size; 1033 1034 /* 1035 * This function automatically merges address regions 1036 * next to each other if they are received in 1037 * incrementing order 1038 */ 1039 if (memory < crashk_base && end > crashk_end) { 1040 /* region is fully in */ 1041 add_memory_region(memory, 1042 crashk_base - memory, 1043 BOOT_MEM_RAM); 1044 total += crashk_base - memory; 1045 add_memory_region(crashk_end, 1046 end - crashk_end, 1047 BOOT_MEM_RAM); 1048 total += end - crashk_end; 1049 continue; 1050 } 1051 1052 if (memory >= crashk_base && end <= crashk_end) 1053 /* 1054 * Entire memory region is within the new 1055 * kernel's memory, ignore it. 1056 */ 1057 continue; 1058 1059 if (memory > crashk_base && memory < crashk_end && 1060 end > crashk_end) { 1061 /* 1062 * Overlap with the beginning of the region, 1063 * reserve the beginning. 1064 */ 1065 mem_alloc_size -= crashk_end - memory; 1066 memory = crashk_end; 1067 } else if (memory < crashk_base && end > crashk_base && 1068 end < crashk_end) 1069 /* 1070 * Overlap with the beginning of the region, 1071 * chop of end. 1072 */ 1073 mem_alloc_size -= end - crashk_base; 1074 #endif 1075 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM); 1076 total += mem_alloc_size; 1077 /* Recovering mem_alloc_size */ 1078 mem_alloc_size = 4 << 20; 1079 } else { 1080 break; 1081 } 1082 } 1083 cvmx_bootmem_unlock(); 1084 /* Add the memory region for the kernel. */ 1085 kernel_start = (unsigned long) _text; 1086 kernel_size = _end - _text; 1087 1088 /* Adjust for physical offset. */ 1089 kernel_start &= ~0xffffffff80000000ULL; 1090 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM); 1091 #endif /* CONFIG_CRASH_DUMP */ 1092 1093 #ifdef CONFIG_CAVIUM_RESERVE32 1094 /* 1095 * Now that we've allocated the kernel memory it is safe to 1096 * free the reserved region. We free it here so that builtin 1097 * drivers can use the memory. 1098 */ 1099 if (octeon_reserve32_memory) 1100 cvmx_bootmem_free_named("CAVIUM_RESERVE32"); 1101 #endif /* CONFIG_CAVIUM_RESERVE32 */ 1102 1103 if (total == 0) 1104 panic("Unable to allocate memory from " 1105 "cvmx_bootmem_phy_alloc"); 1106 } 1107 1108 /* 1109 * Emit one character to the boot UART. Exported for use by the 1110 * watchdog timer. 1111 */ 1112 void prom_putchar(char c) 1113 { 1114 uint64_t lsrval; 1115 1116 /* Spin until there is room */ 1117 do { 1118 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart)); 1119 } while ((lsrval & 0x20) == 0); 1120 1121 /* Write the byte */ 1122 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull); 1123 } 1124 EXPORT_SYMBOL(prom_putchar); 1125 1126 void __init prom_free_prom_memory(void) 1127 { 1128 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) { 1129 /* Check for presence of Core-14449 fix. */ 1130 u32 insn; 1131 u32 *foo; 1132 1133 foo = &insn; 1134 1135 asm volatile("# before" : : : "memory"); 1136 prefetch(foo); 1137 asm volatile( 1138 ".set push\n\t" 1139 ".set noreorder\n\t" 1140 "bal 1f\n\t" 1141 "nop\n" 1142 "1:\tlw %0,-12($31)\n\t" 1143 ".set pop\n\t" 1144 : "=r" (insn) : : "$31", "memory"); 1145 1146 if ((insn >> 26) != 0x33) 1147 panic("No PREF instruction at Core-14449 probe point."); 1148 1149 if (((insn >> 16) & 0x1f) != 28) 1150 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n" 1151 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", 1152 insn); 1153 } 1154 } 1155 1156 void __init octeon_fill_mac_addresses(void); 1157 1158 void __init device_tree_init(void) 1159 { 1160 const void *fdt; 1161 bool do_prune; 1162 bool fill_mac; 1163 1164 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB 1165 if (!fdt_check_header(&__appended_dtb)) { 1166 fdt = &__appended_dtb; 1167 do_prune = false; 1168 fill_mac = true; 1169 pr_info("Using appended Device Tree.\n"); 1170 } else 1171 #endif 1172 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) { 1173 fdt = phys_to_virt(octeon_bootinfo->fdt_addr); 1174 if (fdt_check_header(fdt)) 1175 panic("Corrupt Device Tree passed to kernel."); 1176 do_prune = false; 1177 fill_mac = false; 1178 pr_info("Using passed Device Tree.\n"); 1179 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) { 1180 fdt = &__dtb_octeon_68xx_begin; 1181 do_prune = true; 1182 fill_mac = true; 1183 } else { 1184 fdt = &__dtb_octeon_3xxx_begin; 1185 do_prune = true; 1186 fill_mac = true; 1187 } 1188 1189 initial_boot_params = (void *)fdt; 1190 1191 if (do_prune) { 1192 octeon_prune_device_tree(); 1193 pr_info("Using internal Device Tree.\n"); 1194 } 1195 if (fill_mac) 1196 octeon_fill_mac_addresses(); 1197 unflatten_and_copy_device_tree(); 1198 init_octeon_system_type(); 1199 } 1200 1201 static int __initdata disable_octeon_edac_p; 1202 1203 static int __init disable_octeon_edac(char *str) 1204 { 1205 disable_octeon_edac_p = 1; 1206 return 0; 1207 } 1208 early_param("disable_octeon_edac", disable_octeon_edac); 1209 1210 static char *edac_device_names[] = { 1211 "octeon_l2c_edac", 1212 "octeon_pc_edac", 1213 }; 1214 1215 static int __init edac_devinit(void) 1216 { 1217 struct platform_device *dev; 1218 int i, err = 0; 1219 int num_lmc; 1220 char *name; 1221 1222 if (disable_octeon_edac_p) 1223 return 0; 1224 1225 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) { 1226 name = edac_device_names[i]; 1227 dev = platform_device_register_simple(name, -1, NULL, 0); 1228 if (IS_ERR(dev)) { 1229 pr_err("Registration of %s failed!\n", name); 1230 err = PTR_ERR(dev); 1231 } 1232 } 1233 1234 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 : 1235 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1); 1236 for (i = 0; i < num_lmc; i++) { 1237 dev = platform_device_register_simple("octeon_lmc_edac", 1238 i, NULL, 0); 1239 if (IS_ERR(dev)) { 1240 pr_err("Registration of octeon_lmc_edac %d failed!\n", i); 1241 err = PTR_ERR(dev); 1242 } 1243 } 1244 1245 return err; 1246 } 1247 device_initcall(edac_devinit); 1248 1249 static void __initdata *octeon_dummy_iospace; 1250 1251 static int __init octeon_no_pci_init(void) 1252 { 1253 /* 1254 * Initially assume there is no PCI. The PCI/PCIe platform code will 1255 * later re-initialize these to correct values if they are present. 1256 */ 1257 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT); 1258 set_io_port_base((unsigned long)octeon_dummy_iospace); 1259 ioport_resource.start = MAX_RESOURCE; 1260 ioport_resource.end = 0; 1261 return 0; 1262 } 1263 core_initcall(octeon_no_pci_init); 1264 1265 static int __init octeon_no_pci_release(void) 1266 { 1267 /* 1268 * Release the allocated memory if a real IO space is there. 1269 */ 1270 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base) 1271 vfree(octeon_dummy_iospace); 1272 return 0; 1273 } 1274 late_initcall(octeon_no_pci_release); 1275