xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision 293d5b43)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40 
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-rst-defs.h>
44 
45 /*
46  * TRUE for devices having registers with little-endian byte
47  * order, FALSE for registers with native-endian byte order.
48  * PCI mandates little-endian, USB and SATA are configuraable,
49  * but we chose little-endian for these.
50  */
51 const bool octeon_should_swizzle_table[256] = {
52 	[0x00] = true,	/* bootbus/CF */
53 	[0x1b] = true,	/* PCI mmio window */
54 	[0x1c] = true,	/* PCI mmio window */
55 	[0x1d] = true,	/* PCI mmio window */
56 	[0x1e] = true,	/* PCI mmio window */
57 	[0x68] = true,	/* OCTEON III USB */
58 	[0x69] = true,	/* OCTEON III USB */
59 	[0x6c] = true,	/* OCTEON III SATA */
60 	[0x6f] = true,	/* OCTEON II USB */
61 };
62 EXPORT_SYMBOL(octeon_should_swizzle_table);
63 
64 #ifdef CONFIG_PCI
65 extern void pci_console_init(const char *arg);
66 #endif
67 
68 static unsigned long long MAX_MEMORY = 512ull << 20;
69 
70 DEFINE_SEMAPHORE(octeon_bootbus_sem);
71 EXPORT_SYMBOL(octeon_bootbus_sem);
72 
73 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
74 
75 struct cvmx_bootinfo *octeon_bootinfo;
76 EXPORT_SYMBOL(octeon_bootinfo);
77 
78 static unsigned long long RESERVE_LOW_MEM = 0ull;
79 #ifdef CONFIG_KEXEC
80 #ifdef CONFIG_SMP
81 /*
82  * Wait for relocation code is prepared and send
83  * secondary CPUs to spin until kernel is relocated.
84  */
85 static void octeon_kexec_smp_down(void *ignored)
86 {
87 	int cpu = smp_processor_id();
88 
89 	local_irq_disable();
90 	set_cpu_online(cpu, false);
91 	while (!atomic_read(&kexec_ready_to_reboot))
92 		cpu_relax();
93 
94 	asm volatile (
95 	"	sync						\n"
96 	"	synci	($0)					\n");
97 
98 	relocated_kexec_smp_wait(NULL);
99 }
100 #endif
101 
102 #define OCTEON_DDR0_BASE    (0x0ULL)
103 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
104 #define OCTEON_DDR1_BASE    (0x410000000ULL)
105 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
106 #define OCTEON_DDR2_BASE    (0x020000000ULL)
107 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
108 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
109 
110 static struct kimage *kimage_ptr;
111 
112 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
113 {
114 	int64_t addr;
115 	struct cvmx_bootmem_desc *bootmem_desc;
116 
117 	bootmem_desc = cvmx_bootmem_get_desc();
118 
119 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
120 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
121 		pr_err("Error: requested memory too large,"
122 		       "truncating to maximum size\n");
123 	}
124 
125 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
126 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
127 
128 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
129 	bootmem_desc->head_addr = 0;
130 
131 	if (mem_size <= OCTEON_DDR0_SIZE) {
132 		__cvmx_bootmem_phy_free(addr,
133 				mem_size - RESERVE_LOW_MEM -
134 				low_reserved_bytes, 0);
135 		return;
136 	}
137 
138 	__cvmx_bootmem_phy_free(addr,
139 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
140 			low_reserved_bytes, 0);
141 
142 	mem_size -= OCTEON_DDR0_SIZE;
143 
144 	if (mem_size > OCTEON_DDR1_SIZE) {
145 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
146 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
147 				mem_size - OCTEON_DDR1_SIZE, 0);
148 	} else
149 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
150 }
151 
152 static int octeon_kexec_prepare(struct kimage *image)
153 {
154 	int i;
155 	char *bootloader = "kexec";
156 
157 	octeon_boot_desc_ptr->argc = 0;
158 	for (i = 0; i < image->nr_segments; i++) {
159 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
160 				strlen(bootloader))) {
161 			/*
162 			 * convert command line string to array
163 			 * of parameters (as bootloader does).
164 			 */
165 			int argc = 0, offt;
166 			char *str = (char *)image->segment[i].buf;
167 			char *ptr = strchr(str, ' ');
168 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
169 				*ptr = '\0';
170 				if (ptr[1] != ' ') {
171 					offt = (int)(ptr - str + 1);
172 					octeon_boot_desc_ptr->argv[argc] =
173 						image->segment[i].mem + offt;
174 					argc++;
175 				}
176 				ptr = strchr(ptr + 1, ' ');
177 			}
178 			octeon_boot_desc_ptr->argc = argc;
179 			break;
180 		}
181 	}
182 
183 	/*
184 	 * Information about segments will be needed during pre-boot memory
185 	 * initialization.
186 	 */
187 	kimage_ptr = image;
188 	return 0;
189 }
190 
191 static void octeon_generic_shutdown(void)
192 {
193 	int i;
194 #ifdef CONFIG_SMP
195 	int cpu;
196 #endif
197 	struct cvmx_bootmem_desc *bootmem_desc;
198 	void *named_block_array_ptr;
199 
200 	bootmem_desc = cvmx_bootmem_get_desc();
201 	named_block_array_ptr =
202 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
203 
204 #ifdef CONFIG_SMP
205 	/* disable watchdogs */
206 	for_each_online_cpu(cpu)
207 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
208 #else
209 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
210 #endif
211 	if (kimage_ptr != kexec_crash_image) {
212 		memset(named_block_array_ptr,
213 			0x0,
214 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
215 			sizeof(struct cvmx_bootmem_named_block_desc));
216 		/*
217 		 * Mark all memory (except low 0x100000 bytes) as free.
218 		 * It is the same thing that bootloader does.
219 		 */
220 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
221 				0x100000);
222 		/*
223 		 * Allocate all segments to avoid their corruption during boot.
224 		 */
225 		for (i = 0; i < kimage_ptr->nr_segments; i++)
226 			cvmx_bootmem_alloc_address(
227 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
228 				kimage_ptr->segment[i].mem - PAGE_SIZE,
229 				PAGE_SIZE);
230 	} else {
231 		/*
232 		 * Do not mark all memory as free. Free only named sections
233 		 * leaving the rest of memory unchanged.
234 		 */
235 		struct cvmx_bootmem_named_block_desc *ptr =
236 			(struct cvmx_bootmem_named_block_desc *)
237 			named_block_array_ptr;
238 
239 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
240 			if (ptr[i].size)
241 				cvmx_bootmem_free_named(ptr[i].name);
242 	}
243 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
244 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
245 #ifdef CONFIG_SMP
246 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
247 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #endif
249 }
250 
251 static void octeon_shutdown(void)
252 {
253 	octeon_generic_shutdown();
254 #ifdef CONFIG_SMP
255 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
256 	smp_wmb();
257 	while (num_online_cpus() > 1) {
258 		cpu_relax();
259 		mdelay(1);
260 	}
261 #endif
262 }
263 
264 static void octeon_crash_shutdown(struct pt_regs *regs)
265 {
266 	octeon_generic_shutdown();
267 	default_machine_crash_shutdown(regs);
268 }
269 
270 #endif /* CONFIG_KEXEC */
271 
272 #ifdef CONFIG_CAVIUM_RESERVE32
273 uint64_t octeon_reserve32_memory;
274 EXPORT_SYMBOL(octeon_reserve32_memory);
275 #endif
276 
277 #ifdef CONFIG_KEXEC
278 /* crashkernel cmdline parameter is parsed _after_ memory setup
279  * we also parse it here (workaround for EHB5200) */
280 static uint64_t crashk_size, crashk_base;
281 #endif
282 
283 static int octeon_uart;
284 
285 extern asmlinkage void handle_int(void);
286 
287 /**
288  * Return non zero if we are currently running in the Octeon simulator
289  *
290  * Returns
291  */
292 int octeon_is_simulation(void)
293 {
294 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
295 }
296 EXPORT_SYMBOL(octeon_is_simulation);
297 
298 /**
299  * Return true if Octeon is in PCI Host mode. This means
300  * Linux can control the PCI bus.
301  *
302  * Returns Non zero if Octeon in host mode.
303  */
304 int octeon_is_pci_host(void)
305 {
306 #ifdef CONFIG_PCI
307 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
308 #else
309 	return 0;
310 #endif
311 }
312 
313 /**
314  * Get the clock rate of Octeon
315  *
316  * Returns Clock rate in HZ
317  */
318 uint64_t octeon_get_clock_rate(void)
319 {
320 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
321 
322 	return sysinfo->cpu_clock_hz;
323 }
324 EXPORT_SYMBOL(octeon_get_clock_rate);
325 
326 static u64 octeon_io_clock_rate;
327 
328 u64 octeon_get_io_clock_rate(void)
329 {
330 	return octeon_io_clock_rate;
331 }
332 EXPORT_SYMBOL(octeon_get_io_clock_rate);
333 
334 
335 /**
336  * Write to the LCD display connected to the bootbus. This display
337  * exists on most Cavium evaluation boards. If it doesn't exist, then
338  * this function doesn't do anything.
339  *
340  * @s:	    String to write
341  */
342 void octeon_write_lcd(const char *s)
343 {
344 	if (octeon_bootinfo->led_display_base_addr) {
345 		void __iomem *lcd_address =
346 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
347 					8);
348 		int i;
349 		for (i = 0; i < 8; i++, s++) {
350 			if (*s)
351 				iowrite8(*s, lcd_address + i);
352 			else
353 				iowrite8(' ', lcd_address + i);
354 		}
355 		iounmap(lcd_address);
356 	}
357 }
358 
359 /**
360  * Return the console uart passed by the bootloader
361  *
362  * Returns uart	  (0 or 1)
363  */
364 int octeon_get_boot_uart(void)
365 {
366 	int uart;
367 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
368 	uart = 1;
369 #else
370 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
371 		1 : 0;
372 #endif
373 	return uart;
374 }
375 
376 /**
377  * Get the coremask Linux was booted on.
378  *
379  * Returns Core mask
380  */
381 int octeon_get_boot_coremask(void)
382 {
383 	return octeon_boot_desc_ptr->core_mask;
384 }
385 
386 /**
387  * Check the hardware BIST results for a CPU
388  */
389 void octeon_check_cpu_bist(void)
390 {
391 	const int coreid = cvmx_get_core_num();
392 	unsigned long long mask;
393 	unsigned long long bist_val;
394 
395 	/* Check BIST results for COP0 registers */
396 	mask = 0x1f00000000ull;
397 	bist_val = read_octeon_c0_icacheerr();
398 	if (bist_val & mask)
399 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
400 		       coreid, bist_val);
401 
402 	bist_val = read_octeon_c0_dcacheerr();
403 	if (bist_val & 1)
404 		pr_err("Core%d L1 Dcache parity error: "
405 		       "CacheErr(dcache) = 0x%llx\n",
406 		       coreid, bist_val);
407 
408 	mask = 0xfc00000000000000ull;
409 	bist_val = read_c0_cvmmemctl();
410 	if (bist_val & mask)
411 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
412 		       coreid, bist_val);
413 
414 	write_octeon_c0_dcacheerr(0);
415 }
416 
417 /**
418  * Reboot Octeon
419  *
420  * @command: Command to pass to the bootloader. Currently ignored.
421  */
422 static void octeon_restart(char *command)
423 {
424 	/* Disable all watchdogs before soft reset. They don't get cleared */
425 #ifdef CONFIG_SMP
426 	int cpu;
427 	for_each_online_cpu(cpu)
428 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
429 #else
430 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
431 #endif
432 
433 	mb();
434 	while (1)
435 		if (OCTEON_IS_OCTEON3())
436 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
437 		else
438 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
439 }
440 
441 
442 /**
443  * Permanently stop a core.
444  *
445  * @arg: Ignored.
446  */
447 static void octeon_kill_core(void *arg)
448 {
449 	if (octeon_is_simulation())
450 		/* A break instruction causes the simulator stop a core */
451 		asm volatile ("break" ::: "memory");
452 
453 	local_irq_disable();
454 	/* Disable watchdog on this core. */
455 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
456 	/* Spin in a low power mode. */
457 	while (true)
458 		asm volatile ("wait" ::: "memory");
459 }
460 
461 
462 /**
463  * Halt the system
464  */
465 static void octeon_halt(void)
466 {
467 	smp_call_function(octeon_kill_core, NULL, 0);
468 
469 	switch (octeon_bootinfo->board_type) {
470 	case CVMX_BOARD_TYPE_NAO38:
471 		/* Driving a 1 to GPIO 12 shuts off this board */
472 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
473 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
474 		break;
475 	default:
476 		octeon_write_lcd("PowerOff");
477 		break;
478 	}
479 
480 	octeon_kill_core(NULL);
481 }
482 
483 static char __read_mostly octeon_system_type[80];
484 
485 static void __init init_octeon_system_type(void)
486 {
487 	char const *board_type;
488 
489 	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
490 	if (board_type == NULL) {
491 		struct device_node *root;
492 		int ret;
493 
494 		root = of_find_node_by_path("/");
495 		ret = of_property_read_string(root, "model", &board_type);
496 		of_node_put(root);
497 		if (ret)
498 			board_type = "Unsupported Board";
499 	}
500 
501 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
502 		 board_type, octeon_model_get_string(read_c0_prid()));
503 }
504 
505 /**
506  * Return a string representing the system type
507  *
508  * Returns
509  */
510 const char *octeon_board_type_string(void)
511 {
512 	return octeon_system_type;
513 }
514 
515 const char *get_system_type(void)
516 	__attribute__ ((alias("octeon_board_type_string")));
517 
518 void octeon_user_io_init(void)
519 {
520 	union octeon_cvmemctl cvmmemctl;
521 
522 	/* Get the current settings for CP0_CVMMEMCTL_REG */
523 	cvmmemctl.u64 = read_c0_cvmmemctl();
524 	/* R/W If set, marked write-buffer entries time out the same
525 	 * as as other entries; if clear, marked write-buffer entries
526 	 * use the maximum timeout. */
527 	cvmmemctl.s.dismarkwblongto = 1;
528 	/* R/W If set, a merged store does not clear the write-buffer
529 	 * entry timeout state. */
530 	cvmmemctl.s.dismrgclrwbto = 0;
531 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
532 	 * word location for an IOBDMA. The other 8 bits come from the
533 	 * SCRADDR field of the IOBDMA. */
534 	cvmmemctl.s.iobdmascrmsb = 0;
535 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
536 	 * clear, SYNCWS and SYNCS only order unmarked
537 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
538 	 * set. */
539 	cvmmemctl.s.syncwsmarked = 0;
540 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
541 	cvmmemctl.s.dissyncws = 0;
542 	/* R/W If set, no stall happens on write buffer full. */
543 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
544 		cvmmemctl.s.diswbfst = 1;
545 	else
546 		cvmmemctl.s.diswbfst = 0;
547 	/* R/W If set (and SX set), supervisor-level loads/stores can
548 	 * use XKPHYS addresses with <48>==0 */
549 	cvmmemctl.s.xkmemenas = 0;
550 
551 	/* R/W If set (and UX set), user-level loads/stores can use
552 	 * XKPHYS addresses with VA<48>==0 */
553 	cvmmemctl.s.xkmemenau = 0;
554 
555 	/* R/W If set (and SX set), supervisor-level loads/stores can
556 	 * use XKPHYS addresses with VA<48>==1 */
557 	cvmmemctl.s.xkioenas = 0;
558 
559 	/* R/W If set (and UX set), user-level loads/stores can use
560 	 * XKPHYS addresses with VA<48>==1 */
561 	cvmmemctl.s.xkioenau = 0;
562 
563 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
564 	 * when this is set) RW, reset to 0. */
565 	cvmmemctl.s.allsyncw = 0;
566 
567 	/* R/W If set, no stores merge, and all stores reach the
568 	 * coherent bus in order. */
569 	cvmmemctl.s.nomerge = 0;
570 	/* R/W Selects the bit in the counter used for DID time-outs 0
571 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
572 	 * between 1x and 2x this interval. For example, with
573 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
574 	cvmmemctl.s.didtto = 0;
575 	/* R/W If set, the (mem) CSR clock never turns off. */
576 	cvmmemctl.s.csrckalwys = 0;
577 	/* R/W If set, mclk never turns off. */
578 	cvmmemctl.s.mclkalwys = 0;
579 	/* R/W Selects the bit in the counter used for write buffer
580 	 * flush time-outs (WBFLT+11) is the bit position in an
581 	 * internal counter used to determine expiration. The write
582 	 * buffer expires between 1x and 2x this interval. For
583 	 * example, with WBFLT = 0, a write buffer expires between 2K
584 	 * and 4K cycles after the write buffer entry is allocated. */
585 	cvmmemctl.s.wbfltime = 0;
586 	/* R/W If set, do not put Istream in the L2 cache. */
587 	cvmmemctl.s.istrnol2 = 0;
588 
589 	/*
590 	 * R/W The write buffer threshold. As per erratum Core-14752
591 	 * for CN63XX, a sc/scd might fail if the write buffer is
592 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
593 	 * write buffer ever being full and triggering the erratum.
594 	 */
595 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
596 		cvmmemctl.s.wbthresh = 4;
597 	else
598 		cvmmemctl.s.wbthresh = 10;
599 
600 	/* R/W If set, CVMSEG is available for loads/stores in
601 	 * kernel/debug mode. */
602 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
603 	cvmmemctl.s.cvmsegenak = 1;
604 #else
605 	cvmmemctl.s.cvmsegenak = 0;
606 #endif
607 	/* R/W If set, CVMSEG is available for loads/stores in
608 	 * supervisor mode. */
609 	cvmmemctl.s.cvmsegenas = 0;
610 	/* R/W If set, CVMSEG is available for loads/stores in user
611 	 * mode. */
612 	cvmmemctl.s.cvmsegenau = 0;
613 
614 	write_c0_cvmmemctl(cvmmemctl.u64);
615 
616 	/* Setup of CVMSEG is done in kernel-entry-init.h */
617 	if (smp_processor_id() == 0)
618 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
619 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
620 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
621 
622 	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
623 		union cvmx_iob_fau_timeout fau_timeout;
624 
625 		/* Set a default for the hardware timeouts */
626 		fau_timeout.u64 = 0;
627 		fau_timeout.s.tout_val = 0xfff;
628 		/* Disable tagwait FAU timeout */
629 		fau_timeout.s.tout_enb = 0;
630 		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
631 	}
632 
633 	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
634 	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
635 	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
636 		union cvmx_pow_nw_tim nm_tim;
637 
638 		nm_tim.u64 = 0;
639 		/* 4096 cycles */
640 		nm_tim.s.nw_tim = 3;
641 		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
642 	}
643 
644 	write_octeon_c0_icacheerr(0);
645 	write_c0_derraddr1(0);
646 }
647 
648 /**
649  * Early entry point for arch setup
650  */
651 void __init prom_init(void)
652 {
653 	struct cvmx_sysinfo *sysinfo;
654 	const char *arg;
655 	char *p;
656 	int i;
657 	u64 t;
658 	int argc;
659 #ifdef CONFIG_CAVIUM_RESERVE32
660 	int64_t addr = -1;
661 #endif
662 	/*
663 	 * The bootloader passes a pointer to the boot descriptor in
664 	 * $a3, this is available as fw_arg3.
665 	 */
666 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
667 	octeon_bootinfo =
668 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
669 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
670 
671 	sysinfo = cvmx_sysinfo_get();
672 	memset(sysinfo, 0, sizeof(*sysinfo));
673 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
674 	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
675 
676 	if ((octeon_bootinfo->major_version > 1) ||
677 	    (octeon_bootinfo->major_version == 1 &&
678 	     octeon_bootinfo->minor_version >= 4))
679 		cvmx_coremask_copy(&sysinfo->core_mask,
680 				   &octeon_bootinfo->ext_core_mask);
681 	else
682 		cvmx_coremask_set64(&sysinfo->core_mask,
683 				    octeon_bootinfo->core_mask);
684 
685 	/* Some broken u-boot pass garbage in upper bits, clear them out */
686 	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
687 		for (i = 512; i < 1024; i++)
688 			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
689 
690 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
691 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
692 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
693 	sysinfo->board_type = octeon_bootinfo->board_type;
694 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
695 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
696 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
697 	       sizeof(sysinfo->mac_addr_base));
698 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
699 	memcpy(sysinfo->board_serial_number,
700 	       octeon_bootinfo->board_serial_number,
701 	       sizeof(sysinfo->board_serial_number));
702 	sysinfo->compact_flash_common_base_addr =
703 		octeon_bootinfo->compact_flash_common_base_addr;
704 	sysinfo->compact_flash_attribute_base_addr =
705 		octeon_bootinfo->compact_flash_attribute_base_addr;
706 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
707 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
708 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
709 
710 	if (OCTEON_IS_OCTEON2()) {
711 		/* I/O clock runs at a different rate than the CPU. */
712 		union cvmx_mio_rst_boot rst_boot;
713 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
714 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
715 	} else if (OCTEON_IS_OCTEON3()) {
716 		/* I/O clock runs at a different rate than the CPU. */
717 		union cvmx_rst_boot rst_boot;
718 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
719 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720 	} else {
721 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
722 	}
723 
724 	t = read_c0_cvmctl();
725 	if ((t & (1ull << 27)) == 0) {
726 		/*
727 		 * Setup the multiplier save/restore code if
728 		 * CvmCtl[NOMUL] clear.
729 		 */
730 		void *save;
731 		void *save_end;
732 		void *restore;
733 		void *restore_end;
734 		int save_len;
735 		int restore_len;
736 		int save_max = (char *)octeon_mult_save_end -
737 			(char *)octeon_mult_save;
738 		int restore_max = (char *)octeon_mult_restore_end -
739 			(char *)octeon_mult_restore;
740 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
741 			save = octeon_mult_save3;
742 			save_end = octeon_mult_save3_end;
743 			restore = octeon_mult_restore3;
744 			restore_end = octeon_mult_restore3_end;
745 		} else {
746 			save = octeon_mult_save2;
747 			save_end = octeon_mult_save2_end;
748 			restore = octeon_mult_restore2;
749 			restore_end = octeon_mult_restore2_end;
750 		}
751 		save_len = (char *)save_end - (char *)save;
752 		restore_len = (char *)restore_end - (char *)restore;
753 		if (!WARN_ON(save_len > save_max ||
754 				restore_len > restore_max)) {
755 			memcpy(octeon_mult_save, save, save_len);
756 			memcpy(octeon_mult_restore, restore, restore_len);
757 		}
758 	}
759 
760 	/*
761 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
762 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
763 	 */
764 	if (!octeon_is_simulation() &&
765 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
766 		cvmx_write_csr(CVMX_LED_EN, 0);
767 		cvmx_write_csr(CVMX_LED_PRT, 0);
768 		cvmx_write_csr(CVMX_LED_DBG, 0);
769 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
770 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
771 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
772 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
773 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
774 		cvmx_write_csr(CVMX_LED_EN, 1);
775 	}
776 #ifdef CONFIG_CAVIUM_RESERVE32
777 	/*
778 	 * We need to temporarily allocate all memory in the reserve32
779 	 * region. This makes sure the kernel doesn't allocate this
780 	 * memory when it is getting memory from the
781 	 * bootloader. Later, after the memory allocations are
782 	 * complete, the reserve32 will be freed.
783 	 *
784 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
785 	 * is in case we later use hugetlb entries with it.
786 	 */
787 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
788 						0, 0, 2 << 20,
789 						"CAVIUM_RESERVE32", 0);
790 	if (addr < 0)
791 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
792 	else
793 		octeon_reserve32_memory = addr;
794 #endif
795 
796 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
797 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
798 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
799 	} else {
800 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
801 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
802 		/* TLB refill */
803 		cvmx_l2c_lock_mem_region(ebase, 0x100);
804 #endif
805 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
806 		/* General exception */
807 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
808 #endif
809 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
810 		/* Interrupt handler */
811 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
812 #endif
813 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
814 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
815 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
816 #endif
817 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
818 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
819 #endif
820 	}
821 #endif
822 
823 	octeon_check_cpu_bist();
824 
825 	octeon_uart = octeon_get_boot_uart();
826 
827 #ifdef CONFIG_SMP
828 	octeon_write_lcd("LinuxSMP");
829 #else
830 	octeon_write_lcd("Linux");
831 #endif
832 
833 	octeon_setup_delays();
834 
835 	/*
836 	 * BIST should always be enabled when doing a soft reset. L2
837 	 * Cache locking for instance is not cleared unless BIST is
838 	 * enabled.  Unfortunately due to a chip errata G-200 for
839 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
840 	 */
841 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
842 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
843 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
844 	else
845 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
846 
847 	/* Default to 64MB in the simulator to speed things up */
848 	if (octeon_is_simulation())
849 		MAX_MEMORY = 64ull << 20;
850 
851 	arg = strstr(arcs_cmdline, "mem=");
852 	if (arg) {
853 		MAX_MEMORY = memparse(arg + 4, &p);
854 		if (MAX_MEMORY == 0)
855 			MAX_MEMORY = 32ull << 30;
856 		if (*p == '@')
857 			RESERVE_LOW_MEM = memparse(p + 1, &p);
858 	}
859 
860 	arcs_cmdline[0] = 0;
861 	argc = octeon_boot_desc_ptr->argc;
862 	for (i = 0; i < argc; i++) {
863 		const char *arg =
864 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
865 		if ((strncmp(arg, "MEM=", 4) == 0) ||
866 		    (strncmp(arg, "mem=", 4) == 0)) {
867 			MAX_MEMORY = memparse(arg + 4, &p);
868 			if (MAX_MEMORY == 0)
869 				MAX_MEMORY = 32ull << 30;
870 			if (*p == '@')
871 				RESERVE_LOW_MEM = memparse(p + 1, &p);
872 #ifdef CONFIG_KEXEC
873 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
874 			crashk_size = memparse(arg+12, &p);
875 			if (*p == '@')
876 				crashk_base = memparse(p+1, &p);
877 			strcat(arcs_cmdline, " ");
878 			strcat(arcs_cmdline, arg);
879 			/*
880 			 * To do: switch parsing to new style, something like:
881 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
882 			 *		  &crashk_size, &crashk_base);
883 			 */
884 #endif
885 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
886 			   sizeof(arcs_cmdline) - 1) {
887 			strcat(arcs_cmdline, " ");
888 			strcat(arcs_cmdline, arg);
889 		}
890 	}
891 
892 	if (strstr(arcs_cmdline, "console=") == NULL) {
893 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
894 		strcat(arcs_cmdline, " console=ttyS0,115200");
895 #else
896 		if (octeon_uart == 1)
897 			strcat(arcs_cmdline, " console=ttyS1,115200");
898 		else
899 			strcat(arcs_cmdline, " console=ttyS0,115200");
900 #endif
901 	}
902 
903 	mips_hpt_frequency = octeon_get_clock_rate();
904 
905 	octeon_init_cvmcount();
906 
907 	_machine_restart = octeon_restart;
908 	_machine_halt = octeon_halt;
909 
910 #ifdef CONFIG_KEXEC
911 	_machine_kexec_shutdown = octeon_shutdown;
912 	_machine_crash_shutdown = octeon_crash_shutdown;
913 	_machine_kexec_prepare = octeon_kexec_prepare;
914 #endif
915 
916 	octeon_user_io_init();
917 	octeon_setup_smp();
918 }
919 
920 /* Exclude a single page from the regions obtained in plat_mem_setup. */
921 #ifndef CONFIG_CRASH_DUMP
922 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
923 {
924 	if (addr > *mem && addr < *mem + *size) {
925 		u64 inc = addr - *mem;
926 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
927 		*mem += inc;
928 		*size -= inc;
929 	}
930 
931 	if (addr == *mem && *size > PAGE_SIZE) {
932 		*mem += PAGE_SIZE;
933 		*size -= PAGE_SIZE;
934 	}
935 }
936 #endif /* CONFIG_CRASH_DUMP */
937 
938 void __init plat_mem_setup(void)
939 {
940 	uint64_t mem_alloc_size;
941 	uint64_t total;
942 	uint64_t crashk_end;
943 #ifndef CONFIG_CRASH_DUMP
944 	int64_t memory;
945 	uint64_t kernel_start;
946 	uint64_t kernel_size;
947 #endif
948 
949 	total = 0;
950 	crashk_end = 0;
951 
952 	/*
953 	 * The Mips memory init uses the first memory location for
954 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
955 	 * verify that the size is big enough for the final
956 	 * vectors. Making the smallest chuck 4MB seems to be enough
957 	 * to consistently work.
958 	 */
959 	mem_alloc_size = 4 << 20;
960 	if (mem_alloc_size > MAX_MEMORY)
961 		mem_alloc_size = MAX_MEMORY;
962 
963 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
964 #ifdef CONFIG_CRASH_DUMP
965 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
966 	total += MAX_MEMORY;
967 #else
968 #ifdef CONFIG_KEXEC
969 	if (crashk_size > 0) {
970 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
971 		crashk_end = crashk_base + crashk_size;
972 	}
973 #endif
974 	/*
975 	 * When allocating memory, we want incrementing addresses from
976 	 * bootmem_alloc so the code in add_memory_region can merge
977 	 * regions next to each other.
978 	 */
979 	cvmx_bootmem_lock();
980 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
981 		&& (total < MAX_MEMORY)) {
982 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
983 						__pa_symbol(&_end), -1,
984 						0x100000,
985 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
986 		if (memory >= 0) {
987 			u64 size = mem_alloc_size;
988 #ifdef CONFIG_KEXEC
989 			uint64_t end;
990 #endif
991 
992 			/*
993 			 * exclude a page at the beginning and end of
994 			 * the 256MB PCIe 'hole' so the kernel will not
995 			 * try to allocate multi-page buffers that
996 			 * span the discontinuity.
997 			 */
998 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
999 					    &memory, &size);
1000 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1001 					    CVMX_PCIE_BAR1_PHYS_SIZE,
1002 					    &memory, &size);
1003 #ifdef CONFIG_KEXEC
1004 			end = memory + mem_alloc_size;
1005 
1006 			/*
1007 			 * This function automatically merges address regions
1008 			 * next to each other if they are received in
1009 			 * incrementing order
1010 			 */
1011 			if (memory < crashk_base && end >  crashk_end) {
1012 				/* region is fully in */
1013 				add_memory_region(memory,
1014 						  crashk_base - memory,
1015 						  BOOT_MEM_RAM);
1016 				total += crashk_base - memory;
1017 				add_memory_region(crashk_end,
1018 						  end - crashk_end,
1019 						  BOOT_MEM_RAM);
1020 				total += end - crashk_end;
1021 				continue;
1022 			}
1023 
1024 			if (memory >= crashk_base && end <= crashk_end)
1025 				/*
1026 				 * Entire memory region is within the new
1027 				 *  kernel's memory, ignore it.
1028 				 */
1029 				continue;
1030 
1031 			if (memory > crashk_base && memory < crashk_end &&
1032 			    end > crashk_end) {
1033 				/*
1034 				 * Overlap with the beginning of the region,
1035 				 * reserve the beginning.
1036 				  */
1037 				mem_alloc_size -= crashk_end - memory;
1038 				memory = crashk_end;
1039 			} else if (memory < crashk_base && end > crashk_base &&
1040 				   end < crashk_end)
1041 				/*
1042 				 * Overlap with the beginning of the region,
1043 				 * chop of end.
1044 				 */
1045 				mem_alloc_size -= end - crashk_base;
1046 #endif
1047 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1048 			total += mem_alloc_size;
1049 			/* Recovering mem_alloc_size */
1050 			mem_alloc_size = 4 << 20;
1051 		} else {
1052 			break;
1053 		}
1054 	}
1055 	cvmx_bootmem_unlock();
1056 	/* Add the memory region for the kernel. */
1057 	kernel_start = (unsigned long) _text;
1058 	kernel_size = _end - _text;
1059 
1060 	/* Adjust for physical offset. */
1061 	kernel_start &= ~0xffffffff80000000ULL;
1062 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1063 #endif /* CONFIG_CRASH_DUMP */
1064 
1065 #ifdef CONFIG_CAVIUM_RESERVE32
1066 	/*
1067 	 * Now that we've allocated the kernel memory it is safe to
1068 	 * free the reserved region. We free it here so that builtin
1069 	 * drivers can use the memory.
1070 	 */
1071 	if (octeon_reserve32_memory)
1072 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1073 #endif /* CONFIG_CAVIUM_RESERVE32 */
1074 
1075 	if (total == 0)
1076 		panic("Unable to allocate memory from "
1077 		      "cvmx_bootmem_phy_alloc");
1078 }
1079 
1080 /*
1081  * Emit one character to the boot UART.	 Exported for use by the
1082  * watchdog timer.
1083  */
1084 int prom_putchar(char c)
1085 {
1086 	uint64_t lsrval;
1087 
1088 	/* Spin until there is room */
1089 	do {
1090 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1091 	} while ((lsrval & 0x20) == 0);
1092 
1093 	/* Write the byte */
1094 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1095 	return 1;
1096 }
1097 EXPORT_SYMBOL(prom_putchar);
1098 
1099 void __init prom_free_prom_memory(void)
1100 {
1101 	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1102 		/* Check for presence of Core-14449 fix.  */
1103 		u32 insn;
1104 		u32 *foo;
1105 
1106 		foo = &insn;
1107 
1108 		asm volatile("# before" : : : "memory");
1109 		prefetch(foo);
1110 		asm volatile(
1111 			".set push\n\t"
1112 			".set noreorder\n\t"
1113 			"bal 1f\n\t"
1114 			"nop\n"
1115 			"1:\tlw %0,-12($31)\n\t"
1116 			".set pop\n\t"
1117 			: "=r" (insn) : : "$31", "memory");
1118 
1119 		if ((insn >> 26) != 0x33)
1120 			panic("No PREF instruction at Core-14449 probe point.");
1121 
1122 		if (((insn >> 16) & 0x1f) != 28)
1123 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1124 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1125 			      insn);
1126 	}
1127 }
1128 
1129 void __init octeon_fill_mac_addresses(void);
1130 int octeon_prune_device_tree(void);
1131 
1132 extern const char __appended_dtb;
1133 extern const char __dtb_octeon_3xxx_begin;
1134 extern const char __dtb_octeon_68xx_begin;
1135 void __init device_tree_init(void)
1136 {
1137 	const void *fdt;
1138 	bool do_prune;
1139 	bool fill_mac;
1140 
1141 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1142 	if (!fdt_check_header(&__appended_dtb)) {
1143 		fdt = &__appended_dtb;
1144 		do_prune = false;
1145 		fill_mac = true;
1146 		pr_info("Using appended Device Tree.\n");
1147 	} else
1148 #endif
1149 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1150 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1151 		if (fdt_check_header(fdt))
1152 			panic("Corrupt Device Tree passed to kernel.");
1153 		do_prune = false;
1154 		fill_mac = false;
1155 		pr_info("Using passed Device Tree.\n");
1156 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1157 		fdt = &__dtb_octeon_68xx_begin;
1158 		do_prune = true;
1159 		fill_mac = true;
1160 	} else {
1161 		fdt = &__dtb_octeon_3xxx_begin;
1162 		do_prune = true;
1163 		fill_mac = true;
1164 	}
1165 
1166 	initial_boot_params = (void *)fdt;
1167 
1168 	if (do_prune) {
1169 		octeon_prune_device_tree();
1170 		pr_info("Using internal Device Tree.\n");
1171 	}
1172 	if (fill_mac)
1173 		octeon_fill_mac_addresses();
1174 	unflatten_and_copy_device_tree();
1175 	init_octeon_system_type();
1176 }
1177 
1178 static int __initdata disable_octeon_edac_p;
1179 
1180 static int __init disable_octeon_edac(char *str)
1181 {
1182 	disable_octeon_edac_p = 1;
1183 	return 0;
1184 }
1185 early_param("disable_octeon_edac", disable_octeon_edac);
1186 
1187 static char *edac_device_names[] = {
1188 	"octeon_l2c_edac",
1189 	"octeon_pc_edac",
1190 };
1191 
1192 static int __init edac_devinit(void)
1193 {
1194 	struct platform_device *dev;
1195 	int i, err = 0;
1196 	int num_lmc;
1197 	char *name;
1198 
1199 	if (disable_octeon_edac_p)
1200 		return 0;
1201 
1202 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1203 		name = edac_device_names[i];
1204 		dev = platform_device_register_simple(name, -1, NULL, 0);
1205 		if (IS_ERR(dev)) {
1206 			pr_err("Registration of %s failed!\n", name);
1207 			err = PTR_ERR(dev);
1208 		}
1209 	}
1210 
1211 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1212 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1213 	for (i = 0; i < num_lmc; i++) {
1214 		dev = platform_device_register_simple("octeon_lmc_edac",
1215 						      i, NULL, 0);
1216 		if (IS_ERR(dev)) {
1217 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1218 			err = PTR_ERR(dev);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 device_initcall(edac_devinit);
1225 
1226 static void __initdata *octeon_dummy_iospace;
1227 
1228 static int __init octeon_no_pci_init(void)
1229 {
1230 	/*
1231 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1232 	 * later re-initialize these to correct values if they are present.
1233 	 */
1234 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1235 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1236 	ioport_resource.start = MAX_RESOURCE;
1237 	ioport_resource.end = 0;
1238 	return 0;
1239 }
1240 core_initcall(octeon_no_pci_init);
1241 
1242 static int __init octeon_no_pci_release(void)
1243 {
1244 	/*
1245 	 * Release the allocated memory if a real IO space is there.
1246 	 */
1247 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1248 		vfree(octeon_dummy_iospace);
1249 	return 0;
1250 }
1251 late_initcall(octeon_no_pci_release);
1252