xref: /openbmc/linux/arch/mips/cavium-octeon/setup.c (revision 15b7cc78)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2007 Cavium Networks
7  * Copyright (C) 2008, 2009 Wind River Systems
8  *   written by Ralf Baechle <ralf@linux-mips.org>
9  */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h>	/* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31 
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40 
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-mio-defs.h>
44 #include <asm/octeon/cvmx-rst-defs.h>
45 
46 #ifdef CONFIG_PCI
47 extern void pci_console_init(const char *arg);
48 #endif
49 
50 static unsigned long long MAX_MEMORY = 512ull << 20;
51 
52 DEFINE_SEMAPHORE(octeon_bootbus_sem);
53 EXPORT_SYMBOL(octeon_bootbus_sem);
54 
55 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
56 
57 struct cvmx_bootinfo *octeon_bootinfo;
58 EXPORT_SYMBOL(octeon_bootinfo);
59 
60 static unsigned long long RESERVE_LOW_MEM = 0ull;
61 #ifdef CONFIG_KEXEC
62 #ifdef CONFIG_SMP
63 /*
64  * Wait for relocation code is prepared and send
65  * secondary CPUs to spin until kernel is relocated.
66  */
67 static void octeon_kexec_smp_down(void *ignored)
68 {
69 	int cpu = smp_processor_id();
70 
71 	local_irq_disable();
72 	set_cpu_online(cpu, false);
73 	while (!atomic_read(&kexec_ready_to_reboot))
74 		cpu_relax();
75 
76 	asm volatile (
77 	"	sync						\n"
78 	"	synci	($0)					\n");
79 
80 	relocated_kexec_smp_wait(NULL);
81 }
82 #endif
83 
84 #define OCTEON_DDR0_BASE    (0x0ULL)
85 #define OCTEON_DDR0_SIZE    (0x010000000ULL)
86 #define OCTEON_DDR1_BASE    (0x410000000ULL)
87 #define OCTEON_DDR1_SIZE    (0x010000000ULL)
88 #define OCTEON_DDR2_BASE    (0x020000000ULL)
89 #define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
90 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
91 
92 static struct kimage *kimage_ptr;
93 
94 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
95 {
96 	int64_t addr;
97 	struct cvmx_bootmem_desc *bootmem_desc;
98 
99 	bootmem_desc = cvmx_bootmem_get_desc();
100 
101 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
102 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
103 		pr_err("Error: requested memory too large,"
104 		       "truncating to maximum size\n");
105 	}
106 
107 	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
108 	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
109 
110 	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
111 	bootmem_desc->head_addr = 0;
112 
113 	if (mem_size <= OCTEON_DDR0_SIZE) {
114 		__cvmx_bootmem_phy_free(addr,
115 				mem_size - RESERVE_LOW_MEM -
116 				low_reserved_bytes, 0);
117 		return;
118 	}
119 
120 	__cvmx_bootmem_phy_free(addr,
121 			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
122 			low_reserved_bytes, 0);
123 
124 	mem_size -= OCTEON_DDR0_SIZE;
125 
126 	if (mem_size > OCTEON_DDR1_SIZE) {
127 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
128 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
129 				mem_size - OCTEON_DDR1_SIZE, 0);
130 	} else
131 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
132 }
133 
134 static int octeon_kexec_prepare(struct kimage *image)
135 {
136 	int i;
137 	char *bootloader = "kexec";
138 
139 	octeon_boot_desc_ptr->argc = 0;
140 	for (i = 0; i < image->nr_segments; i++) {
141 		if (!strncmp(bootloader, (char *)image->segment[i].buf,
142 				strlen(bootloader))) {
143 			/*
144 			 * convert command line string to array
145 			 * of parameters (as bootloader does).
146 			 */
147 			int argc = 0, offt;
148 			char *str = (char *)image->segment[i].buf;
149 			char *ptr = strchr(str, ' ');
150 			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
151 				*ptr = '\0';
152 				if (ptr[1] != ' ') {
153 					offt = (int)(ptr - str + 1);
154 					octeon_boot_desc_ptr->argv[argc] =
155 						image->segment[i].mem + offt;
156 					argc++;
157 				}
158 				ptr = strchr(ptr + 1, ' ');
159 			}
160 			octeon_boot_desc_ptr->argc = argc;
161 			break;
162 		}
163 	}
164 
165 	/*
166 	 * Information about segments will be needed during pre-boot memory
167 	 * initialization.
168 	 */
169 	kimage_ptr = image;
170 	return 0;
171 }
172 
173 static void octeon_generic_shutdown(void)
174 {
175 	int i;
176 #ifdef CONFIG_SMP
177 	int cpu;
178 #endif
179 	struct cvmx_bootmem_desc *bootmem_desc;
180 	void *named_block_array_ptr;
181 
182 	bootmem_desc = cvmx_bootmem_get_desc();
183 	named_block_array_ptr =
184 		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
185 
186 #ifdef CONFIG_SMP
187 	/* disable watchdogs */
188 	for_each_online_cpu(cpu)
189 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
190 #else
191 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
192 #endif
193 	if (kimage_ptr != kexec_crash_image) {
194 		memset(named_block_array_ptr,
195 			0x0,
196 			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
197 			sizeof(struct cvmx_bootmem_named_block_desc));
198 		/*
199 		 * Mark all memory (except low 0x100000 bytes) as free.
200 		 * It is the same thing that bootloader does.
201 		 */
202 		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
203 				0x100000);
204 		/*
205 		 * Allocate all segments to avoid their corruption during boot.
206 		 */
207 		for (i = 0; i < kimage_ptr->nr_segments; i++)
208 			cvmx_bootmem_alloc_address(
209 				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
210 				kimage_ptr->segment[i].mem - PAGE_SIZE,
211 				PAGE_SIZE);
212 	} else {
213 		/*
214 		 * Do not mark all memory as free. Free only named sections
215 		 * leaving the rest of memory unchanged.
216 		 */
217 		struct cvmx_bootmem_named_block_desc *ptr =
218 			(struct cvmx_bootmem_named_block_desc *)
219 			named_block_array_ptr;
220 
221 		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
222 			if (ptr[i].size)
223 				cvmx_bootmem_free_named(ptr[i].name);
224 	}
225 	kexec_args[2] = 1UL; /* running on octeon_main_processor */
226 	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
227 #ifdef CONFIG_SMP
228 	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
229 	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
230 #endif
231 }
232 
233 static void octeon_shutdown(void)
234 {
235 	octeon_generic_shutdown();
236 #ifdef CONFIG_SMP
237 	smp_call_function(octeon_kexec_smp_down, NULL, 0);
238 	smp_wmb();
239 	while (num_online_cpus() > 1) {
240 		cpu_relax();
241 		mdelay(1);
242 	}
243 #endif
244 }
245 
246 static void octeon_crash_shutdown(struct pt_regs *regs)
247 {
248 	octeon_generic_shutdown();
249 	default_machine_crash_shutdown(regs);
250 }
251 
252 #endif /* CONFIG_KEXEC */
253 
254 #ifdef CONFIG_CAVIUM_RESERVE32
255 uint64_t octeon_reserve32_memory;
256 EXPORT_SYMBOL(octeon_reserve32_memory);
257 #endif
258 
259 #ifdef CONFIG_KEXEC
260 /* crashkernel cmdline parameter is parsed _after_ memory setup
261  * we also parse it here (workaround for EHB5200) */
262 static uint64_t crashk_size, crashk_base;
263 #endif
264 
265 static int octeon_uart;
266 
267 extern asmlinkage void handle_int(void);
268 
269 /**
270  * Return non zero if we are currently running in the Octeon simulator
271  *
272  * Returns
273  */
274 int octeon_is_simulation(void)
275 {
276 	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
277 }
278 EXPORT_SYMBOL(octeon_is_simulation);
279 
280 /**
281  * Return true if Octeon is in PCI Host mode. This means
282  * Linux can control the PCI bus.
283  *
284  * Returns Non zero if Octeon in host mode.
285  */
286 int octeon_is_pci_host(void)
287 {
288 #ifdef CONFIG_PCI
289 	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
290 #else
291 	return 0;
292 #endif
293 }
294 
295 /**
296  * Get the clock rate of Octeon
297  *
298  * Returns Clock rate in HZ
299  */
300 uint64_t octeon_get_clock_rate(void)
301 {
302 	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
303 
304 	return sysinfo->cpu_clock_hz;
305 }
306 EXPORT_SYMBOL(octeon_get_clock_rate);
307 
308 static u64 octeon_io_clock_rate;
309 
310 u64 octeon_get_io_clock_rate(void)
311 {
312 	return octeon_io_clock_rate;
313 }
314 EXPORT_SYMBOL(octeon_get_io_clock_rate);
315 
316 
317 /**
318  * Write to the LCD display connected to the bootbus. This display
319  * exists on most Cavium evaluation boards. If it doesn't exist, then
320  * this function doesn't do anything.
321  *
322  * @s:	    String to write
323  */
324 void octeon_write_lcd(const char *s)
325 {
326 	if (octeon_bootinfo->led_display_base_addr) {
327 		void __iomem *lcd_address =
328 			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
329 					8);
330 		int i;
331 		for (i = 0; i < 8; i++, s++) {
332 			if (*s)
333 				iowrite8(*s, lcd_address + i);
334 			else
335 				iowrite8(' ', lcd_address + i);
336 		}
337 		iounmap(lcd_address);
338 	}
339 }
340 
341 /**
342  * Return the console uart passed by the bootloader
343  *
344  * Returns uart	  (0 or 1)
345  */
346 int octeon_get_boot_uart(void)
347 {
348 	int uart;
349 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
350 	uart = 1;
351 #else
352 	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
353 		1 : 0;
354 #endif
355 	return uart;
356 }
357 
358 /**
359  * Get the coremask Linux was booted on.
360  *
361  * Returns Core mask
362  */
363 int octeon_get_boot_coremask(void)
364 {
365 	return octeon_boot_desc_ptr->core_mask;
366 }
367 
368 /**
369  * Check the hardware BIST results for a CPU
370  */
371 void octeon_check_cpu_bist(void)
372 {
373 	const int coreid = cvmx_get_core_num();
374 	unsigned long long mask;
375 	unsigned long long bist_val;
376 
377 	/* Check BIST results for COP0 registers */
378 	mask = 0x1f00000000ull;
379 	bist_val = read_octeon_c0_icacheerr();
380 	if (bist_val & mask)
381 		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
382 		       coreid, bist_val);
383 
384 	bist_val = read_octeon_c0_dcacheerr();
385 	if (bist_val & 1)
386 		pr_err("Core%d L1 Dcache parity error: "
387 		       "CacheErr(dcache) = 0x%llx\n",
388 		       coreid, bist_val);
389 
390 	mask = 0xfc00000000000000ull;
391 	bist_val = read_c0_cvmmemctl();
392 	if (bist_val & mask)
393 		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
394 		       coreid, bist_val);
395 
396 	write_octeon_c0_dcacheerr(0);
397 }
398 
399 /**
400  * Reboot Octeon
401  *
402  * @command: Command to pass to the bootloader. Currently ignored.
403  */
404 static void octeon_restart(char *command)
405 {
406 	/* Disable all watchdogs before soft reset. They don't get cleared */
407 #ifdef CONFIG_SMP
408 	int cpu;
409 	for_each_online_cpu(cpu)
410 		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
411 #else
412 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
413 #endif
414 
415 	mb();
416 	while (1)
417 		if (OCTEON_IS_OCTEON3())
418 			cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
419 		else
420 			cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
421 }
422 
423 
424 /**
425  * Permanently stop a core.
426  *
427  * @arg: Ignored.
428  */
429 static void octeon_kill_core(void *arg)
430 {
431 	if (octeon_is_simulation())
432 		/* A break instruction causes the simulator stop a core */
433 		asm volatile ("break" ::: "memory");
434 
435 	local_irq_disable();
436 	/* Disable watchdog on this core. */
437 	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
438 	/* Spin in a low power mode. */
439 	while (true)
440 		asm volatile ("wait" ::: "memory");
441 }
442 
443 
444 /**
445  * Halt the system
446  */
447 static void octeon_halt(void)
448 {
449 	smp_call_function(octeon_kill_core, NULL, 0);
450 
451 	switch (octeon_bootinfo->board_type) {
452 	case CVMX_BOARD_TYPE_NAO38:
453 		/* Driving a 1 to GPIO 12 shuts off this board */
454 		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
455 		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
456 		break;
457 	default:
458 		octeon_write_lcd("PowerOff");
459 		break;
460 	}
461 
462 	octeon_kill_core(NULL);
463 }
464 
465 static char __read_mostly octeon_system_type[80];
466 
467 static void __init init_octeon_system_type(void)
468 {
469 	char const *board_type;
470 
471 	board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
472 	if (board_type == NULL) {
473 		struct device_node *root;
474 		int ret;
475 
476 		root = of_find_node_by_path("/");
477 		ret = of_property_read_string(root, "model", &board_type);
478 		of_node_put(root);
479 		if (ret)
480 			board_type = "Unsupported Board";
481 	}
482 
483 	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
484 		 board_type, octeon_model_get_string(read_c0_prid()));
485 }
486 
487 /**
488  * Return a string representing the system type
489  *
490  * Returns
491  */
492 const char *octeon_board_type_string(void)
493 {
494 	return octeon_system_type;
495 }
496 
497 const char *get_system_type(void)
498 	__attribute__ ((alias("octeon_board_type_string")));
499 
500 void octeon_user_io_init(void)
501 {
502 	union octeon_cvmemctl cvmmemctl;
503 
504 	/* Get the current settings for CP0_CVMMEMCTL_REG */
505 	cvmmemctl.u64 = read_c0_cvmmemctl();
506 	/* R/W If set, marked write-buffer entries time out the same
507 	 * as as other entries; if clear, marked write-buffer entries
508 	 * use the maximum timeout. */
509 	cvmmemctl.s.dismarkwblongto = 1;
510 	/* R/W If set, a merged store does not clear the write-buffer
511 	 * entry timeout state. */
512 	cvmmemctl.s.dismrgclrwbto = 0;
513 	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
514 	 * word location for an IOBDMA. The other 8 bits come from the
515 	 * SCRADDR field of the IOBDMA. */
516 	cvmmemctl.s.iobdmascrmsb = 0;
517 	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
518 	 * clear, SYNCWS and SYNCS only order unmarked
519 	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
520 	 * set. */
521 	cvmmemctl.s.syncwsmarked = 0;
522 	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
523 	cvmmemctl.s.dissyncws = 0;
524 	/* R/W If set, no stall happens on write buffer full. */
525 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
526 		cvmmemctl.s.diswbfst = 1;
527 	else
528 		cvmmemctl.s.diswbfst = 0;
529 	/* R/W If set (and SX set), supervisor-level loads/stores can
530 	 * use XKPHYS addresses with <48>==0 */
531 	cvmmemctl.s.xkmemenas = 0;
532 
533 	/* R/W If set (and UX set), user-level loads/stores can use
534 	 * XKPHYS addresses with VA<48>==0 */
535 	cvmmemctl.s.xkmemenau = 0;
536 
537 	/* R/W If set (and SX set), supervisor-level loads/stores can
538 	 * use XKPHYS addresses with VA<48>==1 */
539 	cvmmemctl.s.xkioenas = 0;
540 
541 	/* R/W If set (and UX set), user-level loads/stores can use
542 	 * XKPHYS addresses with VA<48>==1 */
543 	cvmmemctl.s.xkioenau = 0;
544 
545 	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
546 	 * when this is set) RW, reset to 0. */
547 	cvmmemctl.s.allsyncw = 0;
548 
549 	/* R/W If set, no stores merge, and all stores reach the
550 	 * coherent bus in order. */
551 	cvmmemctl.s.nomerge = 0;
552 	/* R/W Selects the bit in the counter used for DID time-outs 0
553 	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
554 	 * between 1x and 2x this interval. For example, with
555 	 * DIDTTO=3, expiration interval is between 16K and 32K. */
556 	cvmmemctl.s.didtto = 0;
557 	/* R/W If set, the (mem) CSR clock never turns off. */
558 	cvmmemctl.s.csrckalwys = 0;
559 	/* R/W If set, mclk never turns off. */
560 	cvmmemctl.s.mclkalwys = 0;
561 	/* R/W Selects the bit in the counter used for write buffer
562 	 * flush time-outs (WBFLT+11) is the bit position in an
563 	 * internal counter used to determine expiration. The write
564 	 * buffer expires between 1x and 2x this interval. For
565 	 * example, with WBFLT = 0, a write buffer expires between 2K
566 	 * and 4K cycles after the write buffer entry is allocated. */
567 	cvmmemctl.s.wbfltime = 0;
568 	/* R/W If set, do not put Istream in the L2 cache. */
569 	cvmmemctl.s.istrnol2 = 0;
570 
571 	/*
572 	 * R/W The write buffer threshold. As per erratum Core-14752
573 	 * for CN63XX, a sc/scd might fail if the write buffer is
574 	 * full.  Lowering WBTHRESH greatly lowers the chances of the
575 	 * write buffer ever being full and triggering the erratum.
576 	 */
577 	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
578 		cvmmemctl.s.wbthresh = 4;
579 	else
580 		cvmmemctl.s.wbthresh = 10;
581 
582 	/* R/W If set, CVMSEG is available for loads/stores in
583 	 * kernel/debug mode. */
584 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
585 	cvmmemctl.s.cvmsegenak = 1;
586 #else
587 	cvmmemctl.s.cvmsegenak = 0;
588 #endif
589 	/* R/W If set, CVMSEG is available for loads/stores in
590 	 * supervisor mode. */
591 	cvmmemctl.s.cvmsegenas = 0;
592 	/* R/W If set, CVMSEG is available for loads/stores in user
593 	 * mode. */
594 	cvmmemctl.s.cvmsegenau = 0;
595 
596 	write_c0_cvmmemctl(cvmmemctl.u64);
597 
598 	/* Setup of CVMSEG is done in kernel-entry-init.h */
599 	if (smp_processor_id() == 0)
600 		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
601 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
602 			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
603 
604 	if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
605 		union cvmx_iob_fau_timeout fau_timeout;
606 
607 		/* Set a default for the hardware timeouts */
608 		fau_timeout.u64 = 0;
609 		fau_timeout.s.tout_val = 0xfff;
610 		/* Disable tagwait FAU timeout */
611 		fau_timeout.s.tout_enb = 0;
612 		cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
613 	}
614 
615 	if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
616 	     !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
617 	    OCTEON_IS_MODEL(OCTEON_CN70XX)) {
618 		union cvmx_pow_nw_tim nm_tim;
619 
620 		nm_tim.u64 = 0;
621 		/* 4096 cycles */
622 		nm_tim.s.nw_tim = 3;
623 		cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
624 	}
625 
626 	write_octeon_c0_icacheerr(0);
627 	write_c0_derraddr1(0);
628 }
629 
630 /**
631  * Early entry point for arch setup
632  */
633 void __init prom_init(void)
634 {
635 	struct cvmx_sysinfo *sysinfo;
636 	const char *arg;
637 	char *p;
638 	int i;
639 	u64 t;
640 	int argc;
641 #ifdef CONFIG_CAVIUM_RESERVE32
642 	int64_t addr = -1;
643 #endif
644 	/*
645 	 * The bootloader passes a pointer to the boot descriptor in
646 	 * $a3, this is available as fw_arg3.
647 	 */
648 	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
649 	octeon_bootinfo =
650 		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
651 	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
652 
653 	sysinfo = cvmx_sysinfo_get();
654 	memset(sysinfo, 0, sizeof(*sysinfo));
655 	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
656 	sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
657 
658 	if ((octeon_bootinfo->major_version > 1) ||
659 	    (octeon_bootinfo->major_version == 1 &&
660 	     octeon_bootinfo->minor_version >= 4))
661 		cvmx_coremask_copy(&sysinfo->core_mask,
662 				   &octeon_bootinfo->ext_core_mask);
663 	else
664 		cvmx_coremask_set64(&sysinfo->core_mask,
665 				    octeon_bootinfo->core_mask);
666 
667 	/* Some broken u-boot pass garbage in upper bits, clear them out */
668 	if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
669 		for (i = 512; i < 1024; i++)
670 			cvmx_coremask_clear_core(&sysinfo->core_mask, i);
671 
672 	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
673 	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
674 	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
675 	sysinfo->board_type = octeon_bootinfo->board_type;
676 	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
677 	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
678 	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
679 	       sizeof(sysinfo->mac_addr_base));
680 	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
681 	memcpy(sysinfo->board_serial_number,
682 	       octeon_bootinfo->board_serial_number,
683 	       sizeof(sysinfo->board_serial_number));
684 	sysinfo->compact_flash_common_base_addr =
685 		octeon_bootinfo->compact_flash_common_base_addr;
686 	sysinfo->compact_flash_attribute_base_addr =
687 		octeon_bootinfo->compact_flash_attribute_base_addr;
688 	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
689 	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
690 	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
691 
692 	if (OCTEON_IS_OCTEON2()) {
693 		/* I/O clock runs at a different rate than the CPU. */
694 		union cvmx_mio_rst_boot rst_boot;
695 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
696 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
697 	} else if (OCTEON_IS_OCTEON3()) {
698 		/* I/O clock runs at a different rate than the CPU. */
699 		union cvmx_rst_boot rst_boot;
700 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
701 		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
702 	} else {
703 		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
704 	}
705 
706 	t = read_c0_cvmctl();
707 	if ((t & (1ull << 27)) == 0) {
708 		/*
709 		 * Setup the multiplier save/restore code if
710 		 * CvmCtl[NOMUL] clear.
711 		 */
712 		void *save;
713 		void *save_end;
714 		void *restore;
715 		void *restore_end;
716 		int save_len;
717 		int restore_len;
718 		int save_max = (char *)octeon_mult_save_end -
719 			(char *)octeon_mult_save;
720 		int restore_max = (char *)octeon_mult_restore_end -
721 			(char *)octeon_mult_restore;
722 		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
723 			save = octeon_mult_save3;
724 			save_end = octeon_mult_save3_end;
725 			restore = octeon_mult_restore3;
726 			restore_end = octeon_mult_restore3_end;
727 		} else {
728 			save = octeon_mult_save2;
729 			save_end = octeon_mult_save2_end;
730 			restore = octeon_mult_restore2;
731 			restore_end = octeon_mult_restore2_end;
732 		}
733 		save_len = (char *)save_end - (char *)save;
734 		restore_len = (char *)restore_end - (char *)restore;
735 		if (!WARN_ON(save_len > save_max ||
736 				restore_len > restore_max)) {
737 			memcpy(octeon_mult_save, save, save_len);
738 			memcpy(octeon_mult_restore, restore, restore_len);
739 		}
740 	}
741 
742 	/*
743 	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
744 	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
745 	 */
746 	if (!octeon_is_simulation() &&
747 	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
748 		cvmx_write_csr(CVMX_LED_EN, 0);
749 		cvmx_write_csr(CVMX_LED_PRT, 0);
750 		cvmx_write_csr(CVMX_LED_DBG, 0);
751 		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
752 		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
753 		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
754 		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
755 		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
756 		cvmx_write_csr(CVMX_LED_EN, 1);
757 	}
758 #ifdef CONFIG_CAVIUM_RESERVE32
759 	/*
760 	 * We need to temporarily allocate all memory in the reserve32
761 	 * region. This makes sure the kernel doesn't allocate this
762 	 * memory when it is getting memory from the
763 	 * bootloader. Later, after the memory allocations are
764 	 * complete, the reserve32 will be freed.
765 	 *
766 	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
767 	 * is in case we later use hugetlb entries with it.
768 	 */
769 	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
770 						0, 0, 2 << 20,
771 						"CAVIUM_RESERVE32", 0);
772 	if (addr < 0)
773 		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
774 	else
775 		octeon_reserve32_memory = addr;
776 #endif
777 
778 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
779 	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
780 		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
781 	} else {
782 		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
783 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
784 		/* TLB refill */
785 		cvmx_l2c_lock_mem_region(ebase, 0x100);
786 #endif
787 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
788 		/* General exception */
789 		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
790 #endif
791 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
792 		/* Interrupt handler */
793 		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
794 #endif
795 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
796 		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
797 		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
798 #endif
799 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
800 		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
801 #endif
802 	}
803 #endif
804 
805 	octeon_check_cpu_bist();
806 
807 	octeon_uart = octeon_get_boot_uart();
808 
809 #ifdef CONFIG_SMP
810 	octeon_write_lcd("LinuxSMP");
811 #else
812 	octeon_write_lcd("Linux");
813 #endif
814 
815 	octeon_setup_delays();
816 
817 	/*
818 	 * BIST should always be enabled when doing a soft reset. L2
819 	 * Cache locking for instance is not cleared unless BIST is
820 	 * enabled.  Unfortunately due to a chip errata G-200 for
821 	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
822 	 */
823 	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
824 	    OCTEON_IS_MODEL(OCTEON_CN31XX))
825 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
826 	else
827 		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
828 
829 	/* Default to 64MB in the simulator to speed things up */
830 	if (octeon_is_simulation())
831 		MAX_MEMORY = 64ull << 20;
832 
833 	arg = strstr(arcs_cmdline, "mem=");
834 	if (arg) {
835 		MAX_MEMORY = memparse(arg + 4, &p);
836 		if (MAX_MEMORY == 0)
837 			MAX_MEMORY = 32ull << 30;
838 		if (*p == '@')
839 			RESERVE_LOW_MEM = memparse(p + 1, &p);
840 	}
841 
842 	arcs_cmdline[0] = 0;
843 	argc = octeon_boot_desc_ptr->argc;
844 	for (i = 0; i < argc; i++) {
845 		const char *arg =
846 			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
847 		if ((strncmp(arg, "MEM=", 4) == 0) ||
848 		    (strncmp(arg, "mem=", 4) == 0)) {
849 			MAX_MEMORY = memparse(arg + 4, &p);
850 			if (MAX_MEMORY == 0)
851 				MAX_MEMORY = 32ull << 30;
852 			if (*p == '@')
853 				RESERVE_LOW_MEM = memparse(p + 1, &p);
854 #ifdef CONFIG_KEXEC
855 		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
856 			crashk_size = memparse(arg+12, &p);
857 			if (*p == '@')
858 				crashk_base = memparse(p+1, &p);
859 			strcat(arcs_cmdline, " ");
860 			strcat(arcs_cmdline, arg);
861 			/*
862 			 * To do: switch parsing to new style, something like:
863 			 * parse_crashkernel(arg, sysinfo->system_dram_size,
864 			 *		  &crashk_size, &crashk_base);
865 			 */
866 #endif
867 		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
868 			   sizeof(arcs_cmdline) - 1) {
869 			strcat(arcs_cmdline, " ");
870 			strcat(arcs_cmdline, arg);
871 		}
872 	}
873 
874 	if (strstr(arcs_cmdline, "console=") == NULL) {
875 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
876 		strcat(arcs_cmdline, " console=ttyS0,115200");
877 #else
878 		if (octeon_uart == 1)
879 			strcat(arcs_cmdline, " console=ttyS1,115200");
880 		else
881 			strcat(arcs_cmdline, " console=ttyS0,115200");
882 #endif
883 	}
884 
885 	mips_hpt_frequency = octeon_get_clock_rate();
886 
887 	octeon_init_cvmcount();
888 
889 	_machine_restart = octeon_restart;
890 	_machine_halt = octeon_halt;
891 
892 #ifdef CONFIG_KEXEC
893 	_machine_kexec_shutdown = octeon_shutdown;
894 	_machine_crash_shutdown = octeon_crash_shutdown;
895 	_machine_kexec_prepare = octeon_kexec_prepare;
896 #endif
897 
898 	octeon_user_io_init();
899 	octeon_setup_smp();
900 }
901 
902 /* Exclude a single page from the regions obtained in plat_mem_setup. */
903 #ifndef CONFIG_CRASH_DUMP
904 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
905 {
906 	if (addr > *mem && addr < *mem + *size) {
907 		u64 inc = addr - *mem;
908 		add_memory_region(*mem, inc, BOOT_MEM_RAM);
909 		*mem += inc;
910 		*size -= inc;
911 	}
912 
913 	if (addr == *mem && *size > PAGE_SIZE) {
914 		*mem += PAGE_SIZE;
915 		*size -= PAGE_SIZE;
916 	}
917 }
918 #endif /* CONFIG_CRASH_DUMP */
919 
920 void __init plat_mem_setup(void)
921 {
922 	uint64_t mem_alloc_size;
923 	uint64_t total;
924 	uint64_t crashk_end;
925 #ifndef CONFIG_CRASH_DUMP
926 	int64_t memory;
927 	uint64_t kernel_start;
928 	uint64_t kernel_size;
929 #endif
930 
931 	total = 0;
932 	crashk_end = 0;
933 
934 	/*
935 	 * The Mips memory init uses the first memory location for
936 	 * some memory vectors. When SPARSEMEM is in use, it doesn't
937 	 * verify that the size is big enough for the final
938 	 * vectors. Making the smallest chuck 4MB seems to be enough
939 	 * to consistently work.
940 	 */
941 	mem_alloc_size = 4 << 20;
942 	if (mem_alloc_size > MAX_MEMORY)
943 		mem_alloc_size = MAX_MEMORY;
944 
945 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
946 #ifdef CONFIG_CRASH_DUMP
947 	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
948 	total += MAX_MEMORY;
949 #else
950 #ifdef CONFIG_KEXEC
951 	if (crashk_size > 0) {
952 		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
953 		crashk_end = crashk_base + crashk_size;
954 	}
955 #endif
956 	/*
957 	 * When allocating memory, we want incrementing addresses from
958 	 * bootmem_alloc so the code in add_memory_region can merge
959 	 * regions next to each other.
960 	 */
961 	cvmx_bootmem_lock();
962 	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
963 		&& (total < MAX_MEMORY)) {
964 		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
965 						__pa_symbol(&_end), -1,
966 						0x100000,
967 						CVMX_BOOTMEM_FLAG_NO_LOCKING);
968 		if (memory >= 0) {
969 			u64 size = mem_alloc_size;
970 #ifdef CONFIG_KEXEC
971 			uint64_t end;
972 #endif
973 
974 			/*
975 			 * exclude a page at the beginning and end of
976 			 * the 256MB PCIe 'hole' so the kernel will not
977 			 * try to allocate multi-page buffers that
978 			 * span the discontinuity.
979 			 */
980 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
981 					    &memory, &size);
982 			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
983 					    CVMX_PCIE_BAR1_PHYS_SIZE,
984 					    &memory, &size);
985 #ifdef CONFIG_KEXEC
986 			end = memory + mem_alloc_size;
987 
988 			/*
989 			 * This function automatically merges address regions
990 			 * next to each other if they are received in
991 			 * incrementing order
992 			 */
993 			if (memory < crashk_base && end >  crashk_end) {
994 				/* region is fully in */
995 				add_memory_region(memory,
996 						  crashk_base - memory,
997 						  BOOT_MEM_RAM);
998 				total += crashk_base - memory;
999 				add_memory_region(crashk_end,
1000 						  end - crashk_end,
1001 						  BOOT_MEM_RAM);
1002 				total += end - crashk_end;
1003 				continue;
1004 			}
1005 
1006 			if (memory >= crashk_base && end <= crashk_end)
1007 				/*
1008 				 * Entire memory region is within the new
1009 				 *  kernel's memory, ignore it.
1010 				 */
1011 				continue;
1012 
1013 			if (memory > crashk_base && memory < crashk_end &&
1014 			    end > crashk_end) {
1015 				/*
1016 				 * Overlap with the beginning of the region,
1017 				 * reserve the beginning.
1018 				  */
1019 				mem_alloc_size -= crashk_end - memory;
1020 				memory = crashk_end;
1021 			} else if (memory < crashk_base && end > crashk_base &&
1022 				   end < crashk_end)
1023 				/*
1024 				 * Overlap with the beginning of the region,
1025 				 * chop of end.
1026 				 */
1027 				mem_alloc_size -= end - crashk_base;
1028 #endif
1029 			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1030 			total += mem_alloc_size;
1031 			/* Recovering mem_alloc_size */
1032 			mem_alloc_size = 4 << 20;
1033 		} else {
1034 			break;
1035 		}
1036 	}
1037 	cvmx_bootmem_unlock();
1038 	/* Add the memory region for the kernel. */
1039 	kernel_start = (unsigned long) _text;
1040 	kernel_size = _end - _text;
1041 
1042 	/* Adjust for physical offset. */
1043 	kernel_start &= ~0xffffffff80000000ULL;
1044 	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1045 #endif /* CONFIG_CRASH_DUMP */
1046 
1047 #ifdef CONFIG_CAVIUM_RESERVE32
1048 	/*
1049 	 * Now that we've allocated the kernel memory it is safe to
1050 	 * free the reserved region. We free it here so that builtin
1051 	 * drivers can use the memory.
1052 	 */
1053 	if (octeon_reserve32_memory)
1054 		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1055 #endif /* CONFIG_CAVIUM_RESERVE32 */
1056 
1057 	if (total == 0)
1058 		panic("Unable to allocate memory from "
1059 		      "cvmx_bootmem_phy_alloc");
1060 }
1061 
1062 /*
1063  * Emit one character to the boot UART.	 Exported for use by the
1064  * watchdog timer.
1065  */
1066 int prom_putchar(char c)
1067 {
1068 	uint64_t lsrval;
1069 
1070 	/* Spin until there is room */
1071 	do {
1072 		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1073 	} while ((lsrval & 0x20) == 0);
1074 
1075 	/* Write the byte */
1076 	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1077 	return 1;
1078 }
1079 EXPORT_SYMBOL(prom_putchar);
1080 
1081 void __init prom_free_prom_memory(void)
1082 {
1083 	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1084 		/* Check for presence of Core-14449 fix.  */
1085 		u32 insn;
1086 		u32 *foo;
1087 
1088 		foo = &insn;
1089 
1090 		asm volatile("# before" : : : "memory");
1091 		prefetch(foo);
1092 		asm volatile(
1093 			".set push\n\t"
1094 			".set noreorder\n\t"
1095 			"bal 1f\n\t"
1096 			"nop\n"
1097 			"1:\tlw %0,-12($31)\n\t"
1098 			".set pop\n\t"
1099 			: "=r" (insn) : : "$31", "memory");
1100 
1101 		if ((insn >> 26) != 0x33)
1102 			panic("No PREF instruction at Core-14449 probe point.");
1103 
1104 		if (((insn >> 16) & 0x1f) != 28)
1105 			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1106 			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1107 			      insn);
1108 	}
1109 }
1110 
1111 void __init octeon_fill_mac_addresses(void);
1112 int octeon_prune_device_tree(void);
1113 
1114 extern const char __appended_dtb;
1115 extern const char __dtb_octeon_3xxx_begin;
1116 extern const char __dtb_octeon_68xx_begin;
1117 void __init device_tree_init(void)
1118 {
1119 	const void *fdt;
1120 	bool do_prune;
1121 	bool fill_mac;
1122 
1123 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1124 	if (!fdt_check_header(&__appended_dtb)) {
1125 		fdt = &__appended_dtb;
1126 		do_prune = false;
1127 		fill_mac = true;
1128 		pr_info("Using appended Device Tree.\n");
1129 	} else
1130 #endif
1131 	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1132 		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1133 		if (fdt_check_header(fdt))
1134 			panic("Corrupt Device Tree passed to kernel.");
1135 		do_prune = false;
1136 		fill_mac = false;
1137 		pr_info("Using passed Device Tree.\n");
1138 	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1139 		fdt = &__dtb_octeon_68xx_begin;
1140 		do_prune = true;
1141 		fill_mac = true;
1142 	} else {
1143 		fdt = &__dtb_octeon_3xxx_begin;
1144 		do_prune = true;
1145 		fill_mac = true;
1146 	}
1147 
1148 	initial_boot_params = (void *)fdt;
1149 
1150 	if (do_prune) {
1151 		octeon_prune_device_tree();
1152 		pr_info("Using internal Device Tree.\n");
1153 	}
1154 	if (fill_mac)
1155 		octeon_fill_mac_addresses();
1156 	unflatten_and_copy_device_tree();
1157 	init_octeon_system_type();
1158 }
1159 
1160 static int __initdata disable_octeon_edac_p;
1161 
1162 static int __init disable_octeon_edac(char *str)
1163 {
1164 	disable_octeon_edac_p = 1;
1165 	return 0;
1166 }
1167 early_param("disable_octeon_edac", disable_octeon_edac);
1168 
1169 static char *edac_device_names[] = {
1170 	"octeon_l2c_edac",
1171 	"octeon_pc_edac",
1172 };
1173 
1174 static int __init edac_devinit(void)
1175 {
1176 	struct platform_device *dev;
1177 	int i, err = 0;
1178 	int num_lmc;
1179 	char *name;
1180 
1181 	if (disable_octeon_edac_p)
1182 		return 0;
1183 
1184 	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1185 		name = edac_device_names[i];
1186 		dev = platform_device_register_simple(name, -1, NULL, 0);
1187 		if (IS_ERR(dev)) {
1188 			pr_err("Registration of %s failed!\n", name);
1189 			err = PTR_ERR(dev);
1190 		}
1191 	}
1192 
1193 	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1194 		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1195 	for (i = 0; i < num_lmc; i++) {
1196 		dev = platform_device_register_simple("octeon_lmc_edac",
1197 						      i, NULL, 0);
1198 		if (IS_ERR(dev)) {
1199 			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1200 			err = PTR_ERR(dev);
1201 		}
1202 	}
1203 
1204 	return err;
1205 }
1206 device_initcall(edac_devinit);
1207 
1208 static void __initdata *octeon_dummy_iospace;
1209 
1210 static int __init octeon_no_pci_init(void)
1211 {
1212 	/*
1213 	 * Initially assume there is no PCI. The PCI/PCIe platform code will
1214 	 * later re-initialize these to correct values if they are present.
1215 	 */
1216 	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1217 	set_io_port_base((unsigned long)octeon_dummy_iospace);
1218 	ioport_resource.start = MAX_RESOURCE;
1219 	ioport_resource.end = 0;
1220 	return 0;
1221 }
1222 core_initcall(octeon_no_pci_init);
1223 
1224 static int __init octeon_no_pci_release(void)
1225 {
1226 	/*
1227 	 * Release the allocated memory if a real IO space is there.
1228 	 */
1229 	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1230 		vfree(octeon_dummy_iospace);
1231 	return 0;
1232 }
1233 late_initcall(octeon_no_pci_release);
1234