1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2004-2016 Cavium Networks 7 * Copyright (C) 2008 Wind River Systems 8 */ 9 10 #include <linux/init.h> 11 #include <linux/delay.h> 12 #include <linux/etherdevice.h> 13 #include <linux/of_platform.h> 14 #include <linux/of_fdt.h> 15 #include <linux/libfdt.h> 16 #include <linux/usb/ehci_def.h> 17 #include <linux/usb/ehci_pdriver.h> 18 #include <linux/usb/ohci_pdriver.h> 19 20 #include <asm/octeon/octeon.h> 21 #include <asm/octeon/cvmx-helper-board.h> 22 #include <asm/octeon/cvmx-uctlx-defs.h> 23 24 #define CVMX_UAHCX_EHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000010ull)) 25 #define CVMX_UAHCX_OHCI_USBCMD (CVMX_ADD_IO_SEG(0x00016F0000000408ull)) 26 27 /* Octeon Random Number Generator. */ 28 static int __init octeon_rng_device_init(void) 29 { 30 struct platform_device *pd; 31 int ret = 0; 32 33 struct resource rng_resources[] = { 34 { 35 .flags = IORESOURCE_MEM, 36 .start = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS), 37 .end = XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf 38 }, { 39 .flags = IORESOURCE_MEM, 40 .start = cvmx_build_io_address(8, 0), 41 .end = cvmx_build_io_address(8, 0) + 0x7 42 } 43 }; 44 45 pd = platform_device_alloc("octeon_rng", -1); 46 if (!pd) { 47 ret = -ENOMEM; 48 goto out; 49 } 50 51 ret = platform_device_add_resources(pd, rng_resources, 52 ARRAY_SIZE(rng_resources)); 53 if (ret) 54 goto fail; 55 56 ret = platform_device_add(pd); 57 if (ret) 58 goto fail; 59 60 return ret; 61 fail: 62 platform_device_put(pd); 63 64 out: 65 return ret; 66 } 67 device_initcall(octeon_rng_device_init); 68 69 #ifdef CONFIG_USB 70 71 static DEFINE_MUTEX(octeon2_usb_clocks_mutex); 72 73 static int octeon2_usb_clock_start_cnt; 74 75 static int __init octeon2_usb_reset(void) 76 { 77 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; 78 u32 ucmd; 79 80 if (!OCTEON_IS_OCTEON2()) 81 return 0; 82 83 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 84 if (clk_rst_ctl.s.hrst) { 85 ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD); 86 ucmd &= ~CMD_RUN; 87 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd); 88 mdelay(2); 89 ucmd |= CMD_RESET; 90 cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd); 91 ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD); 92 ucmd |= CMD_RUN; 93 cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd); 94 } 95 96 return 0; 97 } 98 arch_initcall(octeon2_usb_reset); 99 100 static void octeon2_usb_clocks_start(struct device *dev) 101 { 102 u64 div; 103 union cvmx_uctlx_if_ena if_ena; 104 union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; 105 union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status; 106 int i; 107 unsigned long io_clk_64_to_ns; 108 u32 clock_rate = 12000000; 109 bool is_crystal_clock = false; 110 111 112 mutex_lock(&octeon2_usb_clocks_mutex); 113 114 octeon2_usb_clock_start_cnt++; 115 if (octeon2_usb_clock_start_cnt != 1) 116 goto exit; 117 118 io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate(); 119 120 if (dev->of_node) { 121 struct device_node *uctl_node; 122 const char *clock_type; 123 124 uctl_node = of_get_parent(dev->of_node); 125 if (!uctl_node) { 126 dev_err(dev, "No UCTL device node\n"); 127 goto exit; 128 } 129 i = of_property_read_u32(uctl_node, 130 "refclk-frequency", &clock_rate); 131 if (i) { 132 dev_err(dev, "No UCTL \"refclk-frequency\"\n"); 133 goto exit; 134 } 135 i = of_property_read_string(uctl_node, 136 "refclk-type", &clock_type); 137 138 if (!i && strcmp("crystal", clock_type) == 0) 139 is_crystal_clock = true; 140 } 141 142 /* 143 * Step 1: Wait for voltages stable. That surely happened 144 * before starting the kernel. 145 * 146 * Step 2: Enable SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1 147 */ 148 if_ena.u64 = 0; 149 if_ena.s.en = 1; 150 cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64); 151 152 for (i = 0; i <= 1; i++) { 153 port_ctl_status.u64 = 154 cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0)); 155 /* Set txvreftune to 15 to obtain compliant 'eye' diagram. */ 156 port_ctl_status.s.txvreftune = 15; 157 port_ctl_status.s.txrisetune = 1; 158 port_ctl_status.s.txpreemphasistune = 1; 159 cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0), 160 port_ctl_status.u64); 161 } 162 163 /* Step 3: Configure the reference clock, PHY, and HCLK */ 164 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 165 166 /* 167 * If the UCTL looks like it has already been started, skip 168 * the initialization, otherwise bus errors are obtained. 169 */ 170 if (clk_rst_ctl.s.hrst) 171 goto end_clock; 172 /* 3a */ 173 clk_rst_ctl.s.p_por = 1; 174 clk_rst_ctl.s.hrst = 0; 175 clk_rst_ctl.s.p_prst = 0; 176 clk_rst_ctl.s.h_clkdiv_rst = 0; 177 clk_rst_ctl.s.o_clkdiv_rst = 0; 178 clk_rst_ctl.s.h_clkdiv_en = 0; 179 clk_rst_ctl.s.o_clkdiv_en = 0; 180 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 181 182 /* 3b */ 183 clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1; 184 switch (clock_rate) { 185 default: 186 pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n", 187 clock_rate); 188 /* Fall through */ 189 case 12000000: 190 clk_rst_ctl.s.p_refclk_div = 0; 191 break; 192 case 24000000: 193 clk_rst_ctl.s.p_refclk_div = 1; 194 break; 195 case 48000000: 196 clk_rst_ctl.s.p_refclk_div = 2; 197 break; 198 } 199 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 200 201 /* 3c */ 202 div = octeon_get_io_clock_rate() / 130000000ull; 203 204 switch (div) { 205 case 0: 206 div = 1; 207 break; 208 case 1: 209 case 2: 210 case 3: 211 case 4: 212 break; 213 case 5: 214 div = 4; 215 break; 216 case 6: 217 case 7: 218 div = 6; 219 break; 220 case 8: 221 case 9: 222 case 10: 223 case 11: 224 div = 8; 225 break; 226 default: 227 div = 12; 228 break; 229 } 230 clk_rst_ctl.s.h_div = div; 231 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 232 /* Read it back, */ 233 clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); 234 clk_rst_ctl.s.h_clkdiv_en = 1; 235 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 236 /* 3d */ 237 clk_rst_ctl.s.h_clkdiv_rst = 1; 238 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 239 240 /* 3e: delay 64 io clocks */ 241 ndelay(io_clk_64_to_ns); 242 243 /* 244 * Step 4: Program the power-on reset field in the UCTL 245 * clock-reset-control register. 246 */ 247 clk_rst_ctl.s.p_por = 0; 248 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 249 250 /* Step 5: Wait 3 ms for the PHY clock to start. */ 251 mdelay(3); 252 253 /* Steps 6..9 for ATE only, are skipped. */ 254 255 /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */ 256 /* 10a */ 257 clk_rst_ctl.s.o_clkdiv_rst = 1; 258 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 259 260 /* 10b */ 261 clk_rst_ctl.s.o_clkdiv_en = 1; 262 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 263 264 /* 10c */ 265 ndelay(io_clk_64_to_ns); 266 267 /* 268 * Step 11: Program the PHY reset field: 269 * UCTL0_CLK_RST_CTL[P_PRST] = 1 270 */ 271 clk_rst_ctl.s.p_prst = 1; 272 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 273 274 /* Step 11b */ 275 udelay(1); 276 277 /* Step 11c */ 278 clk_rst_ctl.s.p_prst = 0; 279 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 280 281 /* Step 11d */ 282 mdelay(1); 283 284 /* Step 11e */ 285 clk_rst_ctl.s.p_prst = 1; 286 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 287 288 /* Step 12: Wait 1 uS. */ 289 udelay(1); 290 291 /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */ 292 clk_rst_ctl.s.hrst = 1; 293 cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); 294 295 end_clock: 296 /* Set uSOF cycle period to 60,000 bits. */ 297 cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull); 298 299 exit: 300 mutex_unlock(&octeon2_usb_clocks_mutex); 301 } 302 303 static void octeon2_usb_clocks_stop(void) 304 { 305 mutex_lock(&octeon2_usb_clocks_mutex); 306 octeon2_usb_clock_start_cnt--; 307 mutex_unlock(&octeon2_usb_clocks_mutex); 308 } 309 310 static int octeon_ehci_power_on(struct platform_device *pdev) 311 { 312 octeon2_usb_clocks_start(&pdev->dev); 313 return 0; 314 } 315 316 static void octeon_ehci_power_off(struct platform_device *pdev) 317 { 318 octeon2_usb_clocks_stop(); 319 } 320 321 static struct usb_ehci_pdata octeon_ehci_pdata = { 322 /* Octeon EHCI matches CPU endianness. */ 323 #ifdef __BIG_ENDIAN 324 .big_endian_mmio = 1, 325 #endif 326 /* 327 * We can DMA from anywhere. But the descriptors must be in 328 * the lower 4GB. 329 */ 330 .dma_mask_64 = 0, 331 .power_on = octeon_ehci_power_on, 332 .power_off = octeon_ehci_power_off, 333 }; 334 335 static void __init octeon_ehci_hw_start(struct device *dev) 336 { 337 union cvmx_uctlx_ehci_ctl ehci_ctl; 338 339 octeon2_usb_clocks_start(dev); 340 341 ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0)); 342 /* Use 64-bit addressing. */ 343 ehci_ctl.s.ehci_64b_addr_en = 1; 344 ehci_ctl.s.l2c_addr_msb = 0; 345 #ifdef __BIG_ENDIAN 346 ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ 347 ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ 348 #else 349 ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ 350 ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ 351 ehci_ctl.s.inv_reg_a2 = 1; 352 #endif 353 cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64); 354 355 octeon2_usb_clocks_stop(); 356 } 357 358 static int __init octeon_ehci_device_init(void) 359 { 360 struct platform_device *pd; 361 struct device_node *ehci_node; 362 int ret = 0; 363 364 ehci_node = of_find_node_by_name(NULL, "ehci"); 365 if (!ehci_node) 366 return 0; 367 368 pd = of_find_device_by_node(ehci_node); 369 if (!pd) 370 return 0; 371 372 pd->dev.platform_data = &octeon_ehci_pdata; 373 octeon_ehci_hw_start(&pd->dev); 374 375 return ret; 376 } 377 device_initcall(octeon_ehci_device_init); 378 379 static int octeon_ohci_power_on(struct platform_device *pdev) 380 { 381 octeon2_usb_clocks_start(&pdev->dev); 382 return 0; 383 } 384 385 static void octeon_ohci_power_off(struct platform_device *pdev) 386 { 387 octeon2_usb_clocks_stop(); 388 } 389 390 static struct usb_ohci_pdata octeon_ohci_pdata = { 391 /* Octeon OHCI matches CPU endianness. */ 392 #ifdef __BIG_ENDIAN 393 .big_endian_mmio = 1, 394 #endif 395 .power_on = octeon_ohci_power_on, 396 .power_off = octeon_ohci_power_off, 397 }; 398 399 static void __init octeon_ohci_hw_start(struct device *dev) 400 { 401 union cvmx_uctlx_ohci_ctl ohci_ctl; 402 403 octeon2_usb_clocks_start(dev); 404 405 ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0)); 406 ohci_ctl.s.l2c_addr_msb = 0; 407 #ifdef __BIG_ENDIAN 408 ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */ 409 ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */ 410 #else 411 ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */ 412 ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */ 413 ohci_ctl.s.inv_reg_a2 = 1; 414 #endif 415 cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64); 416 417 octeon2_usb_clocks_stop(); 418 } 419 420 static int __init octeon_ohci_device_init(void) 421 { 422 struct platform_device *pd; 423 struct device_node *ohci_node; 424 int ret = 0; 425 426 ohci_node = of_find_node_by_name(NULL, "ohci"); 427 if (!ohci_node) 428 return 0; 429 430 pd = of_find_device_by_node(ohci_node); 431 if (!pd) 432 return 0; 433 434 pd->dev.platform_data = &octeon_ohci_pdata; 435 octeon_ohci_hw_start(&pd->dev); 436 437 return ret; 438 } 439 device_initcall(octeon_ohci_device_init); 440 441 #endif /* CONFIG_USB */ 442 443 444 static struct of_device_id __initdata octeon_ids[] = { 445 { .compatible = "simple-bus", }, 446 { .compatible = "cavium,octeon-6335-uctl", }, 447 { .compatible = "cavium,octeon-5750-usbn", }, 448 { .compatible = "cavium,octeon-3860-bootbus", }, 449 { .compatible = "cavium,mdio-mux", }, 450 { .compatible = "gpio-leds", }, 451 {}, 452 }; 453 454 static bool __init octeon_has_88e1145(void) 455 { 456 return !OCTEON_IS_MODEL(OCTEON_CN52XX) && 457 !OCTEON_IS_MODEL(OCTEON_CN6XXX) && 458 !OCTEON_IS_MODEL(OCTEON_CN56XX); 459 } 460 461 static void __init octeon_fdt_set_phy(int eth, int phy_addr) 462 { 463 const __be32 *phy_handle; 464 const __be32 *alt_phy_handle; 465 const __be32 *reg; 466 u32 phandle; 467 int phy; 468 int alt_phy; 469 const char *p; 470 int current_len; 471 char new_name[20]; 472 473 phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL); 474 if (!phy_handle) 475 return; 476 477 phandle = be32_to_cpup(phy_handle); 478 phy = fdt_node_offset_by_phandle(initial_boot_params, phandle); 479 480 alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); 481 if (alt_phy_handle) { 482 u32 alt_phandle = be32_to_cpup(alt_phy_handle); 483 alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle); 484 } else { 485 alt_phy = -1; 486 } 487 488 if (phy_addr < 0 || phy < 0) { 489 /* Delete the PHY things */ 490 fdt_nop_property(initial_boot_params, eth, "phy-handle"); 491 /* This one may fail */ 492 fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle"); 493 if (phy >= 0) 494 fdt_nop_node(initial_boot_params, phy); 495 if (alt_phy >= 0) 496 fdt_nop_node(initial_boot_params, alt_phy); 497 return; 498 } 499 500 if (phy_addr >= 256 && alt_phy > 0) { 501 const struct fdt_property *phy_prop; 502 struct fdt_property *alt_prop; 503 u32 phy_handle_name; 504 505 /* Use the alt phy node instead.*/ 506 phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL); 507 phy_handle_name = phy_prop->nameoff; 508 fdt_nop_node(initial_boot_params, phy); 509 fdt_nop_property(initial_boot_params, eth, "phy-handle"); 510 alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL); 511 alt_prop->nameoff = phy_handle_name; 512 phy = alt_phy; 513 } 514 515 phy_addr &= 0xff; 516 517 if (octeon_has_88e1145()) { 518 fdt_nop_property(initial_boot_params, phy, "marvell,reg-init"); 519 memset(new_name, 0, sizeof(new_name)); 520 strcpy(new_name, "marvell,88e1145"); 521 p = fdt_getprop(initial_boot_params, phy, "compatible", 522 ¤t_len); 523 if (p && current_len >= strlen(new_name)) 524 fdt_setprop_inplace(initial_boot_params, phy, 525 "compatible", new_name, current_len); 526 } 527 528 reg = fdt_getprop(initial_boot_params, phy, "reg", NULL); 529 if (phy_addr == be32_to_cpup(reg)) 530 return; 531 532 fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr); 533 534 snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr); 535 536 p = fdt_get_name(initial_boot_params, phy, ¤t_len); 537 if (p && current_len == strlen(new_name)) 538 fdt_set_name(initial_boot_params, phy, new_name); 539 else 540 pr_err("Error: could not rename ethernet phy: <%s>", p); 541 } 542 543 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac) 544 { 545 const u8 *old_mac; 546 int old_len; 547 u8 new_mac[6]; 548 u64 mac = *pmac; 549 int r; 550 551 old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address", 552 &old_len); 553 if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac)) 554 return; 555 556 new_mac[0] = (mac >> 40) & 0xff; 557 new_mac[1] = (mac >> 32) & 0xff; 558 new_mac[2] = (mac >> 24) & 0xff; 559 new_mac[3] = (mac >> 16) & 0xff; 560 new_mac[4] = (mac >> 8) & 0xff; 561 new_mac[5] = mac & 0xff; 562 563 r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address", 564 new_mac, sizeof(new_mac)); 565 566 if (r) { 567 pr_err("Setting \"local-mac-address\" failed %d", r); 568 return; 569 } 570 *pmac = mac + 1; 571 } 572 573 static void __init octeon_fdt_rm_ethernet(int node) 574 { 575 const __be32 *phy_handle; 576 577 phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL); 578 if (phy_handle) { 579 u32 ph = be32_to_cpup(phy_handle); 580 int p = fdt_node_offset_by_phandle(initial_boot_params, ph); 581 if (p >= 0) 582 fdt_nop_node(initial_boot_params, p); 583 } 584 fdt_nop_node(initial_boot_params, node); 585 } 586 587 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max) 588 { 589 char name_buffer[20]; 590 int eth; 591 int phy_addr; 592 int ipd_port; 593 594 snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p); 595 eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer); 596 if (eth < 0) 597 return; 598 if (p > max) { 599 pr_debug("Deleting port %x:%x\n", i, p); 600 octeon_fdt_rm_ethernet(eth); 601 return; 602 } 603 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) 604 ipd_port = (0x100 * i) + (0x10 * p) + 0x800; 605 else 606 ipd_port = 16 * i + p; 607 608 phy_addr = cvmx_helper_board_get_mii_address(ipd_port); 609 octeon_fdt_set_phy(eth, phy_addr); 610 } 611 612 static void __init octeon_fdt_pip_iface(int pip, int idx) 613 { 614 char name_buffer[20]; 615 int iface; 616 int p; 617 int count = 0; 618 619 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx); 620 iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer); 621 if (iface < 0) 622 return; 623 624 if (cvmx_helper_interface_enumerate(idx) == 0) 625 count = cvmx_helper_ports_on_interface(idx); 626 627 for (p = 0; p < 16; p++) 628 octeon_fdt_pip_port(iface, idx, p, count - 1); 629 } 630 631 void __init octeon_fill_mac_addresses(void) 632 { 633 const char *alias_prop; 634 char name_buffer[20]; 635 u64 mac_addr_base; 636 int aliases; 637 int pip; 638 int i; 639 640 aliases = fdt_path_offset(initial_boot_params, "/aliases"); 641 if (aliases < 0) 642 return; 643 644 mac_addr_base = 645 ((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 | 646 ((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 | 647 ((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 | 648 ((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 | 649 ((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 | 650 (octeon_bootinfo->mac_addr_base[5] & 0xffull); 651 652 for (i = 0; i < 2; i++) { 653 int mgmt; 654 655 snprintf(name_buffer, sizeof(name_buffer), "mix%d", i); 656 alias_prop = fdt_getprop(initial_boot_params, aliases, 657 name_buffer, NULL); 658 if (!alias_prop) 659 continue; 660 mgmt = fdt_path_offset(initial_boot_params, alias_prop); 661 if (mgmt < 0) 662 continue; 663 octeon_fdt_set_mac_addr(mgmt, &mac_addr_base); 664 } 665 666 alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL); 667 if (!alias_prop) 668 return; 669 670 pip = fdt_path_offset(initial_boot_params, alias_prop); 671 if (pip < 0) 672 return; 673 674 for (i = 0; i <= 4; i++) { 675 int iface; 676 int p; 677 678 snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i); 679 iface = fdt_subnode_offset(initial_boot_params, pip, 680 name_buffer); 681 if (iface < 0) 682 continue; 683 for (p = 0; p < 16; p++) { 684 int eth; 685 686 snprintf(name_buffer, sizeof(name_buffer), 687 "ethernet@%x", p); 688 eth = fdt_subnode_offset(initial_boot_params, iface, 689 name_buffer); 690 if (eth < 0) 691 continue; 692 octeon_fdt_set_mac_addr(eth, &mac_addr_base); 693 } 694 } 695 } 696 697 int __init octeon_prune_device_tree(void) 698 { 699 int i, max_port, uart_mask; 700 const char *pip_path; 701 const char *alias_prop; 702 char name_buffer[20]; 703 int aliases; 704 705 if (fdt_check_header(initial_boot_params)) 706 panic("Corrupt Device Tree."); 707 708 WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N, 709 "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.", 710 cvmx_board_type_to_string(octeon_bootinfo->board_type)); 711 712 aliases = fdt_path_offset(initial_boot_params, "/aliases"); 713 if (aliases < 0) { 714 pr_err("Error: No /aliases node in device tree."); 715 return -EINVAL; 716 } 717 718 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)) 719 max_port = 2; 720 else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)) 721 max_port = 1; 722 else 723 max_port = 0; 724 725 if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E) 726 max_port = 0; 727 728 for (i = 0; i < 2; i++) { 729 int mgmt; 730 snprintf(name_buffer, sizeof(name_buffer), 731 "mix%d", i); 732 alias_prop = fdt_getprop(initial_boot_params, aliases, 733 name_buffer, NULL); 734 if (alias_prop) { 735 mgmt = fdt_path_offset(initial_boot_params, alias_prop); 736 if (mgmt < 0) 737 continue; 738 if (i >= max_port) { 739 pr_debug("Deleting mix%d\n", i); 740 octeon_fdt_rm_ethernet(mgmt); 741 fdt_nop_property(initial_boot_params, aliases, 742 name_buffer); 743 } else { 744 int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i); 745 octeon_fdt_set_phy(mgmt, phy_addr); 746 } 747 } 748 } 749 750 pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL); 751 if (pip_path) { 752 int pip = fdt_path_offset(initial_boot_params, pip_path); 753 if (pip >= 0) 754 for (i = 0; i <= 4; i++) 755 octeon_fdt_pip_iface(pip, i); 756 } 757 758 /* I2C */ 759 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || 760 OCTEON_IS_MODEL(OCTEON_CN63XX) || 761 OCTEON_IS_MODEL(OCTEON_CN68XX) || 762 OCTEON_IS_MODEL(OCTEON_CN56XX)) 763 max_port = 2; 764 else 765 max_port = 1; 766 767 for (i = 0; i < 2; i++) { 768 int i2c; 769 snprintf(name_buffer, sizeof(name_buffer), 770 "twsi%d", i); 771 alias_prop = fdt_getprop(initial_boot_params, aliases, 772 name_buffer, NULL); 773 774 if (alias_prop) { 775 i2c = fdt_path_offset(initial_boot_params, alias_prop); 776 if (i2c < 0) 777 continue; 778 if (i >= max_port) { 779 pr_debug("Deleting twsi%d\n", i); 780 fdt_nop_node(initial_boot_params, i2c); 781 fdt_nop_property(initial_boot_params, aliases, 782 name_buffer); 783 } 784 } 785 } 786 787 /* SMI/MDIO */ 788 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) 789 max_port = 4; 790 else if (OCTEON_IS_MODEL(OCTEON_CN52XX) || 791 OCTEON_IS_MODEL(OCTEON_CN63XX) || 792 OCTEON_IS_MODEL(OCTEON_CN56XX)) 793 max_port = 2; 794 else 795 max_port = 1; 796 797 for (i = 0; i < 2; i++) { 798 int i2c; 799 snprintf(name_buffer, sizeof(name_buffer), 800 "smi%d", i); 801 alias_prop = fdt_getprop(initial_boot_params, aliases, 802 name_buffer, NULL); 803 804 if (alias_prop) { 805 i2c = fdt_path_offset(initial_boot_params, alias_prop); 806 if (i2c < 0) 807 continue; 808 if (i >= max_port) { 809 pr_debug("Deleting smi%d\n", i); 810 fdt_nop_node(initial_boot_params, i2c); 811 fdt_nop_property(initial_boot_params, aliases, 812 name_buffer); 813 } 814 } 815 } 816 817 /* Serial */ 818 uart_mask = 3; 819 820 /* Right now CN52XX is the only chip with a third uart */ 821 if (OCTEON_IS_MODEL(OCTEON_CN52XX)) 822 uart_mask |= 4; /* uart2 */ 823 824 for (i = 0; i < 3; i++) { 825 int uart; 826 snprintf(name_buffer, sizeof(name_buffer), 827 "uart%d", i); 828 alias_prop = fdt_getprop(initial_boot_params, aliases, 829 name_buffer, NULL); 830 831 if (alias_prop) { 832 uart = fdt_path_offset(initial_boot_params, alias_prop); 833 if (uart_mask & (1 << i)) { 834 __be32 f; 835 836 f = cpu_to_be32(octeon_get_io_clock_rate()); 837 fdt_setprop_inplace(initial_boot_params, 838 uart, "clock-frequency", 839 &f, sizeof(f)); 840 continue; 841 } 842 pr_debug("Deleting uart%d\n", i); 843 fdt_nop_node(initial_boot_params, uart); 844 fdt_nop_property(initial_boot_params, aliases, 845 name_buffer); 846 } 847 } 848 849 /* Compact Flash */ 850 alias_prop = fdt_getprop(initial_boot_params, aliases, 851 "cf0", NULL); 852 if (alias_prop) { 853 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; 854 unsigned long base_ptr, region_base, region_size; 855 unsigned long region1_base = 0; 856 unsigned long region1_size = 0; 857 int cs, bootbus; 858 bool is_16bit = false; 859 bool is_true_ide = false; 860 __be32 new_reg[6]; 861 __be32 *ranges; 862 int len; 863 864 int cf = fdt_path_offset(initial_boot_params, alias_prop); 865 base_ptr = 0; 866 if (octeon_bootinfo->major_version == 1 867 && octeon_bootinfo->minor_version >= 1) { 868 if (octeon_bootinfo->compact_flash_common_base_addr) 869 base_ptr = octeon_bootinfo->compact_flash_common_base_addr; 870 } else { 871 base_ptr = 0x1d000800; 872 } 873 874 if (!base_ptr) 875 goto no_cf; 876 877 /* Find CS0 region. */ 878 for (cs = 0; cs < 8; cs++) { 879 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 880 region_base = mio_boot_reg_cfg.s.base << 16; 881 region_size = (mio_boot_reg_cfg.s.size + 1) << 16; 882 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base 883 && base_ptr < region_base + region_size) { 884 is_16bit = mio_boot_reg_cfg.s.width; 885 break; 886 } 887 } 888 if (cs >= 7) { 889 /* cs and cs + 1 are CS0 and CS1, both must be less than 8. */ 890 goto no_cf; 891 } 892 893 if (!(base_ptr & 0xfffful)) { 894 /* 895 * Boot loader signals availability of DMA (true_ide 896 * mode) by setting low order bits of base_ptr to 897 * zero. 898 */ 899 900 /* Asume that CS1 immediately follows. */ 901 mio_boot_reg_cfg.u64 = 902 cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1)); 903 region1_base = mio_boot_reg_cfg.s.base << 16; 904 region1_size = (mio_boot_reg_cfg.s.size + 1) << 16; 905 if (!mio_boot_reg_cfg.s.en) 906 goto no_cf; 907 is_true_ide = true; 908 909 } else { 910 fdt_nop_property(initial_boot_params, cf, "cavium,true-ide"); 911 fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle"); 912 if (!is_16bit) { 913 __be32 width = cpu_to_be32(8); 914 fdt_setprop_inplace(initial_boot_params, cf, 915 "cavium,bus-width", &width, sizeof(width)); 916 } 917 } 918 new_reg[0] = cpu_to_be32(cs); 919 new_reg[1] = cpu_to_be32(0); 920 new_reg[2] = cpu_to_be32(0x10000); 921 new_reg[3] = cpu_to_be32(cs + 1); 922 new_reg[4] = cpu_to_be32(0); 923 new_reg[5] = cpu_to_be32(0x10000); 924 fdt_setprop_inplace(initial_boot_params, cf, 925 "reg", new_reg, sizeof(new_reg)); 926 927 bootbus = fdt_parent_offset(initial_boot_params, cf); 928 if (bootbus < 0) 929 goto no_cf; 930 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); 931 if (!ranges || len < (5 * 8 * sizeof(__be32))) 932 goto no_cf; 933 934 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); 935 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); 936 ranges[(cs * 5) + 4] = cpu_to_be32(region_size); 937 if (is_true_ide) { 938 cs++; 939 ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32); 940 ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff); 941 ranges[(cs * 5) + 4] = cpu_to_be32(region1_size); 942 } 943 goto end_cf; 944 no_cf: 945 fdt_nop_node(initial_boot_params, cf); 946 947 end_cf: 948 ; 949 } 950 951 /* 8 char LED */ 952 alias_prop = fdt_getprop(initial_boot_params, aliases, 953 "led0", NULL); 954 if (alias_prop) { 955 union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg; 956 unsigned long base_ptr, region_base, region_size; 957 int cs, bootbus; 958 __be32 new_reg[6]; 959 __be32 *ranges; 960 int len; 961 int led = fdt_path_offset(initial_boot_params, alias_prop); 962 963 base_ptr = octeon_bootinfo->led_display_base_addr; 964 if (base_ptr == 0) 965 goto no_led; 966 /* Find CS0 region. */ 967 for (cs = 0; cs < 8; cs++) { 968 mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); 969 region_base = mio_boot_reg_cfg.s.base << 16; 970 region_size = (mio_boot_reg_cfg.s.size + 1) << 16; 971 if (mio_boot_reg_cfg.s.en && base_ptr >= region_base 972 && base_ptr < region_base + region_size) 973 break; 974 } 975 976 if (cs > 7) 977 goto no_led; 978 979 new_reg[0] = cpu_to_be32(cs); 980 new_reg[1] = cpu_to_be32(0x20); 981 new_reg[2] = cpu_to_be32(0x20); 982 new_reg[3] = cpu_to_be32(cs); 983 new_reg[4] = cpu_to_be32(0); 984 new_reg[5] = cpu_to_be32(0x20); 985 fdt_setprop_inplace(initial_boot_params, led, 986 "reg", new_reg, sizeof(new_reg)); 987 988 bootbus = fdt_parent_offset(initial_boot_params, led); 989 if (bootbus < 0) 990 goto no_led; 991 ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len); 992 if (!ranges || len < (5 * 8 * sizeof(__be32))) 993 goto no_led; 994 995 ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32); 996 ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff); 997 ranges[(cs * 5) + 4] = cpu_to_be32(region_size); 998 goto end_led; 999 1000 no_led: 1001 fdt_nop_node(initial_boot_params, led); 1002 end_led: 1003 ; 1004 } 1005 1006 /* OHCI/UHCI USB */ 1007 alias_prop = fdt_getprop(initial_boot_params, aliases, 1008 "uctl", NULL); 1009 if (alias_prop) { 1010 int uctl = fdt_path_offset(initial_boot_params, alias_prop); 1011 1012 if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) || 1013 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) { 1014 pr_debug("Deleting uctl\n"); 1015 fdt_nop_node(initial_boot_params, uctl); 1016 fdt_nop_property(initial_boot_params, aliases, "uctl"); 1017 } else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E || 1018 octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) { 1019 /* Missing "refclk-type" defaults to crystal. */ 1020 fdt_nop_property(initial_boot_params, uctl, "refclk-type"); 1021 } 1022 } 1023 1024 /* DWC2 USB */ 1025 alias_prop = fdt_getprop(initial_boot_params, aliases, 1026 "usbn", NULL); 1027 if (alias_prop) { 1028 int usbn = fdt_path_offset(initial_boot_params, alias_prop); 1029 1030 if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 || 1031 !octeon_has_feature(OCTEON_FEATURE_USB))) { 1032 pr_debug("Deleting usbn\n"); 1033 fdt_nop_node(initial_boot_params, usbn); 1034 fdt_nop_property(initial_boot_params, aliases, "usbn"); 1035 } else { 1036 __be32 new_f[1]; 1037 enum cvmx_helper_board_usb_clock_types c; 1038 c = __cvmx_helper_board_usb_get_clock_type(); 1039 switch (c) { 1040 case USB_CLOCK_TYPE_REF_48: 1041 new_f[0] = cpu_to_be32(48000000); 1042 fdt_setprop_inplace(initial_boot_params, usbn, 1043 "refclk-frequency", new_f, sizeof(new_f)); 1044 /* Fall through ...*/ 1045 case USB_CLOCK_TYPE_REF_12: 1046 /* Missing "refclk-type" defaults to external. */ 1047 fdt_nop_property(initial_boot_params, usbn, "refclk-type"); 1048 break; 1049 default: 1050 break; 1051 } 1052 } 1053 } 1054 1055 return 0; 1056 } 1057 1058 static int __init octeon_publish_devices(void) 1059 { 1060 return of_platform_bus_probe(NULL, octeon_ids, NULL); 1061 } 1062 arch_initcall(octeon_publish_devices); 1063 1064 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>"); 1065 MODULE_LICENSE("GPL"); 1066 MODULE_DESCRIPTION("Platform driver for Octeon SOC"); 1067