1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25 
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31 
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35 	struct platform_device *pd;
36 	int ret = 0;
37 
38 	struct resource rng_resources[] = {
39 		{
40 			.flags	= IORESOURCE_MEM,
41 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43 		}, {
44 			.flags	= IORESOURCE_MEM,
45 			.start	= cvmx_build_io_address(8, 0),
46 			.end	= cvmx_build_io_address(8, 0) + 0x7
47 		}
48 	};
49 
50 	pd = platform_device_alloc("octeon_rng", -1);
51 	if (!pd) {
52 		ret = -ENOMEM;
53 		goto out;
54 	}
55 
56 	ret = platform_device_add_resources(pd, rng_resources,
57 					    ARRAY_SIZE(rng_resources));
58 	if (ret)
59 		goto fail;
60 
61 	ret = platform_device_add(pd);
62 	if (ret)
63 		goto fail;
64 
65 	return ret;
66 fail:
67 	platform_device_put(pd);
68 
69 out:
70 	return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73 
74 #ifdef CONFIG_USB
75 
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77 
78 static int octeon2_usb_clock_start_cnt;
79 
80 static void octeon2_usb_clocks_start(void)
81 {
82 	u64 div;
83 	union cvmx_uctlx_if_ena if_ena;
84 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85 	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87 	int i;
88 	unsigned long io_clk_64_to_ns;
89 
90 
91 	mutex_lock(&octeon2_usb_clocks_mutex);
92 
93 	octeon2_usb_clock_start_cnt++;
94 	if (octeon2_usb_clock_start_cnt != 1)
95 		goto exit;
96 
97 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
98 
99 	/*
100 	 * Step 1: Wait for voltages stable.  That surely happened
101 	 * before starting the kernel.
102 	 *
103 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
104 	 */
105 	if_ena.u64 = 0;
106 	if_ena.s.en = 1;
107 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
108 
109 	/* Step 3: Configure the reference clock, PHY, and HCLK */
110 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
111 
112 	/*
113 	 * If the UCTL looks like it has already been started, skip
114 	 * the initialization, otherwise bus errors are obtained.
115 	 */
116 	if (clk_rst_ctl.s.hrst)
117 		goto end_clock;
118 	/* 3a */
119 	clk_rst_ctl.s.p_por = 1;
120 	clk_rst_ctl.s.hrst = 0;
121 	clk_rst_ctl.s.p_prst = 0;
122 	clk_rst_ctl.s.h_clkdiv_rst = 0;
123 	clk_rst_ctl.s.o_clkdiv_rst = 0;
124 	clk_rst_ctl.s.h_clkdiv_en = 0;
125 	clk_rst_ctl.s.o_clkdiv_en = 0;
126 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
127 
128 	/* 3b */
129 	/* 12MHz crystal. */
130 	clk_rst_ctl.s.p_refclk_sel = 0;
131 	clk_rst_ctl.s.p_refclk_div = 0;
132 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
133 
134 	/* 3c */
135 	div = octeon_get_io_clock_rate() / 130000000ull;
136 
137 	switch (div) {
138 	case 0:
139 		div = 1;
140 		break;
141 	case 1:
142 	case 2:
143 	case 3:
144 	case 4:
145 		break;
146 	case 5:
147 		div = 4;
148 		break;
149 	case 6:
150 	case 7:
151 		div = 6;
152 		break;
153 	case 8:
154 	case 9:
155 	case 10:
156 	case 11:
157 		div = 8;
158 		break;
159 	default:
160 		div = 12;
161 		break;
162 	}
163 	clk_rst_ctl.s.h_div = div;
164 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
165 	/* Read it back, */
166 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
167 	clk_rst_ctl.s.h_clkdiv_en = 1;
168 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
169 	/* 3d */
170 	clk_rst_ctl.s.h_clkdiv_rst = 1;
171 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
172 
173 	/* 3e: delay 64 io clocks */
174 	ndelay(io_clk_64_to_ns);
175 
176 	/*
177 	 * Step 4: Program the power-on reset field in the UCTL
178 	 * clock-reset-control register.
179 	 */
180 	clk_rst_ctl.s.p_por = 0;
181 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
182 
183 	/* Step 5:    Wait 1 ms for the PHY clock to start. */
184 	mdelay(1);
185 
186 	/*
187 	 * Step 6: Program the reset input from automatic test
188 	 * equipment field in the UPHY CSR
189 	 */
190 	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
191 	uphy_ctl_status.s.ate_reset = 1;
192 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
193 
194 	/* Step 7: Wait for at least 10ns. */
195 	ndelay(10);
196 
197 	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
198 	uphy_ctl_status.s.ate_reset = 0;
199 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
200 
201 	/*
202 	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
203 	 * signals and OHCI_CLK48
204 	 */
205 	ndelay(20);
206 
207 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
208 	/* 10a */
209 	clk_rst_ctl.s.o_clkdiv_rst = 1;
210 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
211 
212 	/* 10b */
213 	clk_rst_ctl.s.o_clkdiv_en = 1;
214 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
215 
216 	/* 10c */
217 	ndelay(io_clk_64_to_ns);
218 
219 	/*
220 	 * Step 11: Program the PHY reset field:
221 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
222 	 */
223 	clk_rst_ctl.s.p_prst = 1;
224 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
225 
226 	/* Step 12: Wait 1 uS. */
227 	udelay(1);
228 
229 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
230 	clk_rst_ctl.s.hrst = 1;
231 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
232 
233 end_clock:
234 	/* Now we can set some other registers.  */
235 
236 	for (i = 0; i <= 1; i++) {
237 		port_ctl_status.u64 =
238 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
239 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
240 		port_ctl_status.s.txvreftune = 15;
241 		port_ctl_status.s.txrisetune = 1;
242 		port_ctl_status.s.txpreemphasistune = 1;
243 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
244 			       port_ctl_status.u64);
245 	}
246 
247 	/* Set uSOF cycle period to 60,000 bits. */
248 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
249 exit:
250 	mutex_unlock(&octeon2_usb_clocks_mutex);
251 }
252 
253 static void octeon2_usb_clocks_stop(void)
254 {
255 	mutex_lock(&octeon2_usb_clocks_mutex);
256 	octeon2_usb_clock_start_cnt--;
257 	mutex_unlock(&octeon2_usb_clocks_mutex);
258 }
259 
260 static int octeon_ehci_power_on(struct platform_device *pdev)
261 {
262 	octeon2_usb_clocks_start();
263 	return 0;
264 }
265 
266 static void octeon_ehci_power_off(struct platform_device *pdev)
267 {
268 	octeon2_usb_clocks_stop();
269 }
270 
271 static struct usb_ehci_pdata octeon_ehci_pdata = {
272 	/* Octeon EHCI matches CPU endianness. */
273 #ifdef __BIG_ENDIAN
274 	.big_endian_mmio	= 1,
275 #endif
276 	.power_on	= octeon_ehci_power_on,
277 	.power_off	= octeon_ehci_power_off,
278 };
279 
280 static void __init octeon_ehci_hw_start(void)
281 {
282 	union cvmx_uctlx_ehci_ctl ehci_ctl;
283 
284 	octeon2_usb_clocks_start();
285 
286 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
287 	/* Use 64-bit addressing. */
288 	ehci_ctl.s.ehci_64b_addr_en = 1;
289 	ehci_ctl.s.l2c_addr_msb = 0;
290 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
291 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
292 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
293 
294 	octeon2_usb_clocks_stop();
295 }
296 
297 static u64 octeon_ehci_dma_mask = DMA_BIT_MASK(64);
298 
299 static int __init octeon_ehci_device_init(void)
300 {
301 	struct platform_device *pd;
302 	int ret = 0;
303 
304 	struct resource usb_resources[] = {
305 		{
306 			.flags	= IORESOURCE_MEM,
307 		}, {
308 			.flags	= IORESOURCE_IRQ,
309 		}
310 	};
311 
312 	/* Only Octeon2 has ehci/ohci */
313 	if (!OCTEON_IS_MODEL(OCTEON_CN63XX))
314 		return 0;
315 
316 	if (octeon_is_simulation() || usb_disabled())
317 		return 0; /* No USB in the simulator. */
318 
319 	pd = platform_device_alloc("ehci-platform", 0);
320 	if (!pd) {
321 		ret = -ENOMEM;
322 		goto out;
323 	}
324 
325 	usb_resources[0].start = 0x00016F0000000000ULL;
326 	usb_resources[0].end = usb_resources[0].start + 0x100;
327 
328 	usb_resources[1].start = OCTEON_IRQ_USB0;
329 	usb_resources[1].end = OCTEON_IRQ_USB0;
330 
331 	ret = platform_device_add_resources(pd, usb_resources,
332 					    ARRAY_SIZE(usb_resources));
333 	if (ret)
334 		goto fail;
335 
336 	pd->dev.dma_mask = &octeon_ehci_dma_mask;
337 	pd->dev.platform_data = &octeon_ehci_pdata;
338 	octeon_ehci_hw_start();
339 
340 	ret = platform_device_add(pd);
341 	if (ret)
342 		goto fail;
343 
344 	return ret;
345 fail:
346 	platform_device_put(pd);
347 out:
348 	return ret;
349 }
350 device_initcall(octeon_ehci_device_init);
351 
352 static int octeon_ohci_power_on(struct platform_device *pdev)
353 {
354 	octeon2_usb_clocks_start();
355 	return 0;
356 }
357 
358 static void octeon_ohci_power_off(struct platform_device *pdev)
359 {
360 	octeon2_usb_clocks_stop();
361 }
362 
363 static struct usb_ohci_pdata octeon_ohci_pdata = {
364 	/* Octeon OHCI matches CPU endianness. */
365 #ifdef __BIG_ENDIAN
366 	.big_endian_mmio	= 1,
367 #endif
368 	.power_on	= octeon_ohci_power_on,
369 	.power_off	= octeon_ohci_power_off,
370 };
371 
372 static void __init octeon_ohci_hw_start(void)
373 {
374 	union cvmx_uctlx_ohci_ctl ohci_ctl;
375 
376 	octeon2_usb_clocks_start();
377 
378 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
379 	ohci_ctl.s.l2c_addr_msb = 0;
380 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
381 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
382 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
383 
384 	octeon2_usb_clocks_stop();
385 }
386 
387 static int __init octeon_ohci_device_init(void)
388 {
389 	struct platform_device *pd;
390 	int ret = 0;
391 
392 	struct resource usb_resources[] = {
393 		{
394 			.flags	= IORESOURCE_MEM,
395 		}, {
396 			.flags	= IORESOURCE_IRQ,
397 		}
398 	};
399 
400 	/* Only Octeon2 has ehci/ohci */
401 	if (!OCTEON_IS_MODEL(OCTEON_CN63XX))
402 		return 0;
403 
404 	if (octeon_is_simulation() || usb_disabled())
405 		return 0; /* No USB in the simulator. */
406 
407 	pd = platform_device_alloc("ohci-platform", 0);
408 	if (!pd) {
409 		ret = -ENOMEM;
410 		goto out;
411 	}
412 
413 	usb_resources[0].start = 0x00016F0000000400ULL;
414 	usb_resources[0].end = usb_resources[0].start + 0x100;
415 
416 	usb_resources[1].start = OCTEON_IRQ_USB0;
417 	usb_resources[1].end = OCTEON_IRQ_USB0;
418 
419 	ret = platform_device_add_resources(pd, usb_resources,
420 					    ARRAY_SIZE(usb_resources));
421 	if (ret)
422 		goto fail;
423 
424 	pd->dev.platform_data = &octeon_ohci_pdata;
425 	octeon_ohci_hw_start();
426 
427 	ret = platform_device_add(pd);
428 	if (ret)
429 		goto fail;
430 
431 	return ret;
432 fail:
433 	platform_device_put(pd);
434 out:
435 	return ret;
436 }
437 device_initcall(octeon_ohci_device_init);
438 
439 #endif /* CONFIG_USB */
440 
441 static struct of_device_id __initdata octeon_ids[] = {
442 	{ .compatible = "simple-bus", },
443 	{ .compatible = "cavium,octeon-6335-uctl", },
444 	{ .compatible = "cavium,octeon-5750-usbn", },
445 	{ .compatible = "cavium,octeon-3860-bootbus", },
446 	{ .compatible = "cavium,mdio-mux", },
447 	{ .compatible = "gpio-leds", },
448 	{},
449 };
450 
451 static bool __init octeon_has_88e1145(void)
452 {
453 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
454 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
455 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
456 }
457 
458 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
459 {
460 	const __be32 *phy_handle;
461 	const __be32 *alt_phy_handle;
462 	const __be32 *reg;
463 	u32 phandle;
464 	int phy;
465 	int alt_phy;
466 	const char *p;
467 	int current_len;
468 	char new_name[20];
469 
470 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
471 	if (!phy_handle)
472 		return;
473 
474 	phandle = be32_to_cpup(phy_handle);
475 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
476 
477 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
478 	if (alt_phy_handle) {
479 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
480 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
481 	} else {
482 		alt_phy = -1;
483 	}
484 
485 	if (phy_addr < 0 || phy < 0) {
486 		/* Delete the PHY things */
487 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
488 		/* This one may fail */
489 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
490 		if (phy >= 0)
491 			fdt_nop_node(initial_boot_params, phy);
492 		if (alt_phy >= 0)
493 			fdt_nop_node(initial_boot_params, alt_phy);
494 		return;
495 	}
496 
497 	if (phy_addr >= 256 && alt_phy > 0) {
498 		const struct fdt_property *phy_prop;
499 		struct fdt_property *alt_prop;
500 		u32 phy_handle_name;
501 
502 		/* Use the alt phy node instead.*/
503 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
504 		phy_handle_name = phy_prop->nameoff;
505 		fdt_nop_node(initial_boot_params, phy);
506 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
507 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
508 		alt_prop->nameoff = phy_handle_name;
509 		phy = alt_phy;
510 	}
511 
512 	phy_addr &= 0xff;
513 
514 	if (octeon_has_88e1145()) {
515 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
516 		memset(new_name, 0, sizeof(new_name));
517 		strcpy(new_name, "marvell,88e1145");
518 		p = fdt_getprop(initial_boot_params, phy, "compatible",
519 				&current_len);
520 		if (p && current_len >= strlen(new_name))
521 			fdt_setprop_inplace(initial_boot_params, phy,
522 					"compatible", new_name, current_len);
523 	}
524 
525 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
526 	if (phy_addr == be32_to_cpup(reg))
527 		return;
528 
529 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
530 
531 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
532 
533 	p = fdt_get_name(initial_boot_params, phy, &current_len);
534 	if (p && current_len == strlen(new_name))
535 		fdt_set_name(initial_boot_params, phy, new_name);
536 	else
537 		pr_err("Error: could not rename ethernet phy: <%s>", p);
538 }
539 
540 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
541 {
542 	u8 new_mac[6];
543 	u64 mac = *pmac;
544 	int r;
545 
546 	new_mac[0] = (mac >> 40) & 0xff;
547 	new_mac[1] = (mac >> 32) & 0xff;
548 	new_mac[2] = (mac >> 24) & 0xff;
549 	new_mac[3] = (mac >> 16) & 0xff;
550 	new_mac[4] = (mac >> 8) & 0xff;
551 	new_mac[5] = mac & 0xff;
552 
553 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
554 				new_mac, sizeof(new_mac));
555 
556 	if (r) {
557 		pr_err("Setting \"local-mac-address\" failed %d", r);
558 		return;
559 	}
560 	*pmac = mac + 1;
561 }
562 
563 static void __init octeon_fdt_rm_ethernet(int node)
564 {
565 	const __be32 *phy_handle;
566 
567 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
568 	if (phy_handle) {
569 		u32 ph = be32_to_cpup(phy_handle);
570 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
571 		if (p >= 0)
572 			fdt_nop_node(initial_boot_params, p);
573 	}
574 	fdt_nop_node(initial_boot_params, node);
575 }
576 
577 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
578 {
579 	char name_buffer[20];
580 	int eth;
581 	int phy_addr;
582 	int ipd_port;
583 
584 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
585 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
586 	if (eth < 0)
587 		return;
588 	if (p > max) {
589 		pr_debug("Deleting port %x:%x\n", i, p);
590 		octeon_fdt_rm_ethernet(eth);
591 		return;
592 	}
593 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
594 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
595 	else
596 		ipd_port = 16 * i + p;
597 
598 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
599 	octeon_fdt_set_phy(eth, phy_addr);
600 	octeon_fdt_set_mac_addr(eth, pmac);
601 }
602 
603 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
604 {
605 	char name_buffer[20];
606 	int iface;
607 	int p;
608 	int count = 0;
609 
610 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
611 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
612 	if (iface < 0)
613 		return;
614 
615 	if (cvmx_helper_interface_enumerate(idx) == 0)
616 		count = cvmx_helper_ports_on_interface(idx);
617 
618 	for (p = 0; p < 16; p++)
619 		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
620 }
621 
622 int __init octeon_prune_device_tree(void)
623 {
624 	int i, max_port, uart_mask;
625 	const char *pip_path;
626 	const char *alias_prop;
627 	char name_buffer[20];
628 	int aliases;
629 	u64 mac_addr_base;
630 
631 	if (fdt_check_header(initial_boot_params))
632 		panic("Corrupt Device Tree.");
633 
634 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
635 	if (aliases < 0) {
636 		pr_err("Error: No /aliases node in device tree.");
637 		return -EINVAL;
638 	}
639 
640 
641 	mac_addr_base =
642 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
643 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
644 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
645 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
646 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
647 		(octeon_bootinfo->mac_addr_base[5] & 0xffull);
648 
649 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
650 		max_port = 2;
651 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
652 		max_port = 1;
653 	else
654 		max_port = 0;
655 
656 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
657 		max_port = 0;
658 
659 	for (i = 0; i < 2; i++) {
660 		int mgmt;
661 		snprintf(name_buffer, sizeof(name_buffer),
662 			 "mix%d", i);
663 		alias_prop = fdt_getprop(initial_boot_params, aliases,
664 					name_buffer, NULL);
665 		if (alias_prop) {
666 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
667 			if (mgmt < 0)
668 				continue;
669 			if (i >= max_port) {
670 				pr_debug("Deleting mix%d\n", i);
671 				octeon_fdt_rm_ethernet(mgmt);
672 				fdt_nop_property(initial_boot_params, aliases,
673 						 name_buffer);
674 			} else {
675 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
676 				octeon_fdt_set_phy(mgmt, phy_addr);
677 				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
678 			}
679 		}
680 	}
681 
682 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
683 	if (pip_path) {
684 		int pip = fdt_path_offset(initial_boot_params, pip_path);
685 		if (pip	 >= 0)
686 			for (i = 0; i <= 4; i++)
687 				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
688 	}
689 
690 	/* I2C */
691 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
692 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
693 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
694 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
695 		max_port = 2;
696 	else
697 		max_port = 1;
698 
699 	for (i = 0; i < 2; i++) {
700 		int i2c;
701 		snprintf(name_buffer, sizeof(name_buffer),
702 			 "twsi%d", i);
703 		alias_prop = fdt_getprop(initial_boot_params, aliases,
704 					name_buffer, NULL);
705 
706 		if (alias_prop) {
707 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
708 			if (i2c < 0)
709 				continue;
710 			if (i >= max_port) {
711 				pr_debug("Deleting twsi%d\n", i);
712 				fdt_nop_node(initial_boot_params, i2c);
713 				fdt_nop_property(initial_boot_params, aliases,
714 						 name_buffer);
715 			}
716 		}
717 	}
718 
719 	/* SMI/MDIO */
720 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
721 		max_port = 4;
722 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
723 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
724 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
725 		max_port = 2;
726 	else
727 		max_port = 1;
728 
729 	for (i = 0; i < 2; i++) {
730 		int i2c;
731 		snprintf(name_buffer, sizeof(name_buffer),
732 			 "smi%d", i);
733 		alias_prop = fdt_getprop(initial_boot_params, aliases,
734 					name_buffer, NULL);
735 
736 		if (alias_prop) {
737 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
738 			if (i2c < 0)
739 				continue;
740 			if (i >= max_port) {
741 				pr_debug("Deleting smi%d\n", i);
742 				fdt_nop_node(initial_boot_params, i2c);
743 				fdt_nop_property(initial_boot_params, aliases,
744 						 name_buffer);
745 			}
746 		}
747 	}
748 
749 	/* Serial */
750 	uart_mask = 3;
751 
752 	/* Right now CN52XX is the only chip with a third uart */
753 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
754 		uart_mask |= 4; /* uart2 */
755 
756 	for (i = 0; i < 3; i++) {
757 		int uart;
758 		snprintf(name_buffer, sizeof(name_buffer),
759 			 "uart%d", i);
760 		alias_prop = fdt_getprop(initial_boot_params, aliases,
761 					name_buffer, NULL);
762 
763 		if (alias_prop) {
764 			uart = fdt_path_offset(initial_boot_params, alias_prop);
765 			if (uart_mask & (1 << i)) {
766 				__be32 f;
767 
768 				f = cpu_to_be32(octeon_get_io_clock_rate());
769 				fdt_setprop_inplace(initial_boot_params,
770 						    uart, "clock-frequency",
771 						    &f, sizeof(f));
772 				continue;
773 			}
774 			pr_debug("Deleting uart%d\n", i);
775 			fdt_nop_node(initial_boot_params, uart);
776 			fdt_nop_property(initial_boot_params, aliases,
777 					 name_buffer);
778 		}
779 	}
780 
781 	/* Compact Flash */
782 	alias_prop = fdt_getprop(initial_boot_params, aliases,
783 				 "cf0", NULL);
784 	if (alias_prop) {
785 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
786 		unsigned long base_ptr, region_base, region_size;
787 		unsigned long region1_base = 0;
788 		unsigned long region1_size = 0;
789 		int cs, bootbus;
790 		bool is_16bit = false;
791 		bool is_true_ide = false;
792 		__be32 new_reg[6];
793 		__be32 *ranges;
794 		int len;
795 
796 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
797 		base_ptr = 0;
798 		if (octeon_bootinfo->major_version == 1
799 			&& octeon_bootinfo->minor_version >= 1) {
800 			if (octeon_bootinfo->compact_flash_common_base_addr)
801 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
802 		} else {
803 			base_ptr = 0x1d000800;
804 		}
805 
806 		if (!base_ptr)
807 			goto no_cf;
808 
809 		/* Find CS0 region. */
810 		for (cs = 0; cs < 8; cs++) {
811 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
812 			region_base = mio_boot_reg_cfg.s.base << 16;
813 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
814 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
815 				&& base_ptr < region_base + region_size) {
816 				is_16bit = mio_boot_reg_cfg.s.width;
817 				break;
818 			}
819 		}
820 		if (cs >= 7) {
821 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
822 			goto no_cf;
823 		}
824 
825 		if (!(base_ptr & 0xfffful)) {
826 			/*
827 			 * Boot loader signals availability of DMA (true_ide
828 			 * mode) by setting low order bits of base_ptr to
829 			 * zero.
830 			 */
831 
832 			/* Asume that CS1 immediately follows. */
833 			mio_boot_reg_cfg.u64 =
834 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
835 			region1_base = mio_boot_reg_cfg.s.base << 16;
836 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
837 			if (!mio_boot_reg_cfg.s.en)
838 				goto no_cf;
839 			is_true_ide = true;
840 
841 		} else {
842 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
843 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
844 			if (!is_16bit) {
845 				__be32 width = cpu_to_be32(8);
846 				fdt_setprop_inplace(initial_boot_params, cf,
847 						"cavium,bus-width", &width, sizeof(width));
848 			}
849 		}
850 		new_reg[0] = cpu_to_be32(cs);
851 		new_reg[1] = cpu_to_be32(0);
852 		new_reg[2] = cpu_to_be32(0x10000);
853 		new_reg[3] = cpu_to_be32(cs + 1);
854 		new_reg[4] = cpu_to_be32(0);
855 		new_reg[5] = cpu_to_be32(0x10000);
856 		fdt_setprop_inplace(initial_boot_params, cf,
857 				    "reg",  new_reg, sizeof(new_reg));
858 
859 		bootbus = fdt_parent_offset(initial_boot_params, cf);
860 		if (bootbus < 0)
861 			goto no_cf;
862 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
863 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
864 			goto no_cf;
865 
866 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
867 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
868 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
869 		if (is_true_ide) {
870 			cs++;
871 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
872 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
873 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
874 		}
875 		goto end_cf;
876 no_cf:
877 		fdt_nop_node(initial_boot_params, cf);
878 
879 end_cf:
880 		;
881 	}
882 
883 	/* 8 char LED */
884 	alias_prop = fdt_getprop(initial_boot_params, aliases,
885 				 "led0", NULL);
886 	if (alias_prop) {
887 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
888 		unsigned long base_ptr, region_base, region_size;
889 		int cs, bootbus;
890 		__be32 new_reg[6];
891 		__be32 *ranges;
892 		int len;
893 		int led = fdt_path_offset(initial_boot_params, alias_prop);
894 
895 		base_ptr = octeon_bootinfo->led_display_base_addr;
896 		if (base_ptr == 0)
897 			goto no_led;
898 		/* Find CS0 region. */
899 		for (cs = 0; cs < 8; cs++) {
900 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
901 			region_base = mio_boot_reg_cfg.s.base << 16;
902 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
903 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
904 				&& base_ptr < region_base + region_size)
905 				break;
906 		}
907 
908 		if (cs > 7)
909 			goto no_led;
910 
911 		new_reg[0] = cpu_to_be32(cs);
912 		new_reg[1] = cpu_to_be32(0x20);
913 		new_reg[2] = cpu_to_be32(0x20);
914 		new_reg[3] = cpu_to_be32(cs);
915 		new_reg[4] = cpu_to_be32(0);
916 		new_reg[5] = cpu_to_be32(0x20);
917 		fdt_setprop_inplace(initial_boot_params, led,
918 				    "reg",  new_reg, sizeof(new_reg));
919 
920 		bootbus = fdt_parent_offset(initial_boot_params, led);
921 		if (bootbus < 0)
922 			goto no_led;
923 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
924 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
925 			goto no_led;
926 
927 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
928 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
929 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
930 		goto end_led;
931 
932 no_led:
933 		fdt_nop_node(initial_boot_params, led);
934 end_led:
935 		;
936 	}
937 
938 	/* OHCI/UHCI USB */
939 	alias_prop = fdt_getprop(initial_boot_params, aliases,
940 				 "uctl", NULL);
941 	if (alias_prop) {
942 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
943 
944 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
945 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
946 			pr_debug("Deleting uctl\n");
947 			fdt_nop_node(initial_boot_params, uctl);
948 			fdt_nop_property(initial_boot_params, aliases, "uctl");
949 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
950 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
951 			/* Missing "refclk-type" defaults to crystal. */
952 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
953 		}
954 	}
955 
956 	/* DWC2 USB */
957 	alias_prop = fdt_getprop(initial_boot_params, aliases,
958 				 "usbn", NULL);
959 	if (alias_prop) {
960 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
961 
962 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
963 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
964 			pr_debug("Deleting usbn\n");
965 			fdt_nop_node(initial_boot_params, usbn);
966 			fdt_nop_property(initial_boot_params, aliases, "usbn");
967 		} else  {
968 			__be32 new_f[1];
969 			enum cvmx_helper_board_usb_clock_types c;
970 			c = __cvmx_helper_board_usb_get_clock_type();
971 			switch (c) {
972 			case USB_CLOCK_TYPE_REF_48:
973 				new_f[0] = cpu_to_be32(48000000);
974 				fdt_setprop_inplace(initial_boot_params, usbn,
975 						    "refclk-frequency",  new_f, sizeof(new_f));
976 				/* Fall through ...*/
977 			case USB_CLOCK_TYPE_REF_12:
978 				/* Missing "refclk-type" defaults to external. */
979 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
980 				break;
981 			default:
982 				break;
983 			}
984 		}
985 	}
986 
987 	return 0;
988 }
989 
990 static int __init octeon_publish_devices(void)
991 {
992 	return of_platform_bus_probe(NULL, octeon_ids, NULL);
993 }
994 device_initcall(octeon_publish_devices);
995 
996 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
997 MODULE_LICENSE("GPL");
998 MODULE_DESCRIPTION("Platform driver for Octeon SOC");
999