xref: /openbmc/linux/arch/mips/cavium-octeon/octeon-platform.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2017 Cavium, Inc.
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/etherdevice.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_fdt.h>
13 #include <linux/libfdt.h>
14 
15 #include <asm/octeon/octeon.h>
16 #include <asm/octeon/cvmx-helper-board.h>
17 
18 #ifdef CONFIG_USB
19 #include <linux/usb/ehci_def.h>
20 #include <linux/usb/ehci_pdriver.h>
21 #include <linux/usb/ohci_pdriver.h>
22 #include <asm/octeon/cvmx-uctlx-defs.h>
23 
24 #define CVMX_UAHCX_EHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000010ull))
25 #define CVMX_UAHCX_OHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000408ull))
26 
27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
28 
29 static int octeon2_usb_clock_start_cnt;
30 
31 static int __init octeon2_usb_reset(void)
32 {
33 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
34 	u32 ucmd;
35 
36 	if (!OCTEON_IS_OCTEON2())
37 		return 0;
38 
39 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
40 	if (clk_rst_ctl.s.hrst) {
41 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
42 		ucmd &= ~CMD_RUN;
43 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
44 		mdelay(2);
45 		ucmd |= CMD_RESET;
46 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
47 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
48 		ucmd |= CMD_RUN;
49 		cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
50 	}
51 
52 	return 0;
53 }
54 arch_initcall(octeon2_usb_reset);
55 
56 static void octeon2_usb_clocks_start(struct device *dev)
57 {
58 	u64 div;
59 	union cvmx_uctlx_if_ena if_ena;
60 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
61 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
62 	int i;
63 	unsigned long io_clk_64_to_ns;
64 	u32 clock_rate = 12000000;
65 	bool is_crystal_clock = false;
66 
67 
68 	mutex_lock(&octeon2_usb_clocks_mutex);
69 
70 	octeon2_usb_clock_start_cnt++;
71 	if (octeon2_usb_clock_start_cnt != 1)
72 		goto exit;
73 
74 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
75 
76 	if (dev->of_node) {
77 		struct device_node *uctl_node;
78 		const char *clock_type;
79 
80 		uctl_node = of_get_parent(dev->of_node);
81 		if (!uctl_node) {
82 			dev_err(dev, "No UCTL device node\n");
83 			goto exit;
84 		}
85 		i = of_property_read_u32(uctl_node,
86 					 "refclk-frequency", &clock_rate);
87 		if (i) {
88 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
89 			goto exit;
90 		}
91 		i = of_property_read_string(uctl_node,
92 					    "refclk-type", &clock_type);
93 
94 		if (!i && strcmp("crystal", clock_type) == 0)
95 			is_crystal_clock = true;
96 	}
97 
98 	/*
99 	 * Step 1: Wait for voltages stable.  That surely happened
100 	 * before starting the kernel.
101 	 *
102 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
103 	 */
104 	if_ena.u64 = 0;
105 	if_ena.s.en = 1;
106 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
107 
108 	for (i = 0; i <= 1; i++) {
109 		port_ctl_status.u64 =
110 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
111 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
112 		port_ctl_status.s.txvreftune = 15;
113 		port_ctl_status.s.txrisetune = 1;
114 		port_ctl_status.s.txpreemphasistune = 1;
115 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
116 			       port_ctl_status.u64);
117 	}
118 
119 	/* Step 3: Configure the reference clock, PHY, and HCLK */
120 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
121 
122 	/*
123 	 * If the UCTL looks like it has already been started, skip
124 	 * the initialization, otherwise bus errors are obtained.
125 	 */
126 	if (clk_rst_ctl.s.hrst)
127 		goto end_clock;
128 	/* 3a */
129 	clk_rst_ctl.s.p_por = 1;
130 	clk_rst_ctl.s.hrst = 0;
131 	clk_rst_ctl.s.p_prst = 0;
132 	clk_rst_ctl.s.h_clkdiv_rst = 0;
133 	clk_rst_ctl.s.o_clkdiv_rst = 0;
134 	clk_rst_ctl.s.h_clkdiv_en = 0;
135 	clk_rst_ctl.s.o_clkdiv_en = 0;
136 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
137 
138 	/* 3b */
139 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
140 	switch (clock_rate) {
141 	default:
142 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
143 			clock_rate);
144 		fallthrough;
145 	case 12000000:
146 		clk_rst_ctl.s.p_refclk_div = 0;
147 		break;
148 	case 24000000:
149 		clk_rst_ctl.s.p_refclk_div = 1;
150 		break;
151 	case 48000000:
152 		clk_rst_ctl.s.p_refclk_div = 2;
153 		break;
154 	}
155 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
156 
157 	/* 3c */
158 	div = octeon_get_io_clock_rate() / 130000000ull;
159 
160 	switch (div) {
161 	case 0:
162 		div = 1;
163 		break;
164 	case 1:
165 	case 2:
166 	case 3:
167 	case 4:
168 		break;
169 	case 5:
170 		div = 4;
171 		break;
172 	case 6:
173 	case 7:
174 		div = 6;
175 		break;
176 	case 8:
177 	case 9:
178 	case 10:
179 	case 11:
180 		div = 8;
181 		break;
182 	default:
183 		div = 12;
184 		break;
185 	}
186 	clk_rst_ctl.s.h_div = div;
187 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
188 	/* Read it back, */
189 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
190 	clk_rst_ctl.s.h_clkdiv_en = 1;
191 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
192 	/* 3d */
193 	clk_rst_ctl.s.h_clkdiv_rst = 1;
194 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
195 
196 	/* 3e: delay 64 io clocks */
197 	ndelay(io_clk_64_to_ns);
198 
199 	/*
200 	 * Step 4: Program the power-on reset field in the UCTL
201 	 * clock-reset-control register.
202 	 */
203 	clk_rst_ctl.s.p_por = 0;
204 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
205 
206 	/* Step 5:    Wait 3 ms for the PHY clock to start. */
207 	mdelay(3);
208 
209 	/* Steps 6..9 for ATE only, are skipped. */
210 
211 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
212 	/* 10a */
213 	clk_rst_ctl.s.o_clkdiv_rst = 1;
214 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
215 
216 	/* 10b */
217 	clk_rst_ctl.s.o_clkdiv_en = 1;
218 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219 
220 	/* 10c */
221 	ndelay(io_clk_64_to_ns);
222 
223 	/*
224 	 * Step 11: Program the PHY reset field:
225 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
226 	 */
227 	clk_rst_ctl.s.p_prst = 1;
228 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
229 
230 	/* Step 11b */
231 	udelay(1);
232 
233 	/* Step 11c */
234 	clk_rst_ctl.s.p_prst = 0;
235 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
236 
237 	/* Step 11d */
238 	mdelay(1);
239 
240 	/* Step 11e */
241 	clk_rst_ctl.s.p_prst = 1;
242 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
243 
244 	/* Step 12: Wait 1 uS. */
245 	udelay(1);
246 
247 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
248 	clk_rst_ctl.s.hrst = 1;
249 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
250 
251 end_clock:
252 	/* Set uSOF cycle period to 60,000 bits. */
253 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
254 
255 exit:
256 	mutex_unlock(&octeon2_usb_clocks_mutex);
257 }
258 
259 static void octeon2_usb_clocks_stop(void)
260 {
261 	mutex_lock(&octeon2_usb_clocks_mutex);
262 	octeon2_usb_clock_start_cnt--;
263 	mutex_unlock(&octeon2_usb_clocks_mutex);
264 }
265 
266 static int octeon_ehci_power_on(struct platform_device *pdev)
267 {
268 	octeon2_usb_clocks_start(&pdev->dev);
269 	return 0;
270 }
271 
272 static void octeon_ehci_power_off(struct platform_device *pdev)
273 {
274 	octeon2_usb_clocks_stop();
275 }
276 
277 static struct usb_ehci_pdata octeon_ehci_pdata = {
278 	/* Octeon EHCI matches CPU endianness. */
279 #ifdef __BIG_ENDIAN
280 	.big_endian_mmio	= 1,
281 #endif
282 	/*
283 	 * We can DMA from anywhere. But the descriptors must be in
284 	 * the lower 4GB.
285 	 */
286 	.dma_mask_64	= 0,
287 	.power_on	= octeon_ehci_power_on,
288 	.power_off	= octeon_ehci_power_off,
289 };
290 
291 static void __init octeon_ehci_hw_start(struct device *dev)
292 {
293 	union cvmx_uctlx_ehci_ctl ehci_ctl;
294 
295 	octeon2_usb_clocks_start(dev);
296 
297 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
298 	/* Use 64-bit addressing. */
299 	ehci_ctl.s.ehci_64b_addr_en = 1;
300 	ehci_ctl.s.l2c_addr_msb = 0;
301 #ifdef __BIG_ENDIAN
302 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
303 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
304 #else
305 	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
306 	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
307 	ehci_ctl.s.inv_reg_a2 = 1;
308 #endif
309 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
310 
311 	octeon2_usb_clocks_stop();
312 }
313 
314 static int __init octeon_ehci_device_init(void)
315 {
316 	struct platform_device *pd;
317 	struct device_node *ehci_node;
318 	int ret = 0;
319 
320 	ehci_node = of_find_node_by_name(NULL, "ehci");
321 	if (!ehci_node)
322 		return 0;
323 
324 	pd = of_find_device_by_node(ehci_node);
325 	of_node_put(ehci_node);
326 	if (!pd)
327 		return 0;
328 
329 	pd->dev.platform_data = &octeon_ehci_pdata;
330 	octeon_ehci_hw_start(&pd->dev);
331 	put_device(&pd->dev);
332 
333 	return ret;
334 }
335 device_initcall(octeon_ehci_device_init);
336 
337 static int octeon_ohci_power_on(struct platform_device *pdev)
338 {
339 	octeon2_usb_clocks_start(&pdev->dev);
340 	return 0;
341 }
342 
343 static void octeon_ohci_power_off(struct platform_device *pdev)
344 {
345 	octeon2_usb_clocks_stop();
346 }
347 
348 static struct usb_ohci_pdata octeon_ohci_pdata = {
349 	/* Octeon OHCI matches CPU endianness. */
350 #ifdef __BIG_ENDIAN
351 	.big_endian_mmio	= 1,
352 #endif
353 	.power_on	= octeon_ohci_power_on,
354 	.power_off	= octeon_ohci_power_off,
355 };
356 
357 static void __init octeon_ohci_hw_start(struct device *dev)
358 {
359 	union cvmx_uctlx_ohci_ctl ohci_ctl;
360 
361 	octeon2_usb_clocks_start(dev);
362 
363 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
364 	ohci_ctl.s.l2c_addr_msb = 0;
365 #ifdef __BIG_ENDIAN
366 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
367 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
368 #else
369 	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
370 	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
371 	ohci_ctl.s.inv_reg_a2 = 1;
372 #endif
373 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
374 
375 	octeon2_usb_clocks_stop();
376 }
377 
378 static int __init octeon_ohci_device_init(void)
379 {
380 	struct platform_device *pd;
381 	struct device_node *ohci_node;
382 	int ret = 0;
383 
384 	ohci_node = of_find_node_by_name(NULL, "ohci");
385 	if (!ohci_node)
386 		return 0;
387 
388 	pd = of_find_device_by_node(ohci_node);
389 	of_node_put(ohci_node);
390 	if (!pd)
391 		return 0;
392 
393 	pd->dev.platform_data = &octeon_ohci_pdata;
394 	octeon_ohci_hw_start(&pd->dev);
395 	put_device(&pd->dev);
396 
397 	return ret;
398 }
399 device_initcall(octeon_ohci_device_init);
400 
401 #endif /* CONFIG_USB */
402 
403 /* Octeon Random Number Generator.  */
404 static int __init octeon_rng_device_init(void)
405 {
406 	struct platform_device *pd;
407 	int ret = 0;
408 
409 	struct resource rng_resources[] = {
410 		{
411 			.flags	= IORESOURCE_MEM,
412 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
413 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
414 		}, {
415 			.flags	= IORESOURCE_MEM,
416 			.start	= cvmx_build_io_address(8, 0),
417 			.end	= cvmx_build_io_address(8, 0) + 0x7
418 		}
419 	};
420 
421 	pd = platform_device_alloc("octeon_rng", -1);
422 	if (!pd) {
423 		ret = -ENOMEM;
424 		goto out;
425 	}
426 
427 	ret = platform_device_add_resources(pd, rng_resources,
428 					    ARRAY_SIZE(rng_resources));
429 	if (ret)
430 		goto fail;
431 
432 	ret = platform_device_add(pd);
433 	if (ret)
434 		goto fail;
435 
436 	return ret;
437 fail:
438 	platform_device_put(pd);
439 
440 out:
441 	return ret;
442 }
443 device_initcall(octeon_rng_device_init);
444 
445 static const struct of_device_id octeon_ids[] __initconst = {
446 	{ .compatible = "simple-bus", },
447 	{ .compatible = "cavium,octeon-6335-uctl", },
448 	{ .compatible = "cavium,octeon-5750-usbn", },
449 	{ .compatible = "cavium,octeon-3860-bootbus", },
450 	{ .compatible = "cavium,mdio-mux", },
451 	{ .compatible = "gpio-leds", },
452 	{ .compatible = "cavium,octeon-7130-usb-uctl", },
453 	{},
454 };
455 
456 static bool __init octeon_has_88e1145(void)
457 {
458 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
459 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
460 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
461 }
462 
463 static bool __init octeon_has_fixed_link(int ipd_port)
464 {
465 	switch (cvmx_sysinfo_get()->board_type) {
466 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
467 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
468 	case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
469 	case CVMX_BOARD_TYPE_CUST_NB5:
470 	case CVMX_BOARD_TYPE_EBH3100:
471 		/* Port 1 on these boards is always gigabit. */
472 		return ipd_port == 1;
473 	case CVMX_BOARD_TYPE_BBGW_REF:
474 		/* Ports 0 and 1 connect to the switch. */
475 		return ipd_port == 0 || ipd_port == 1;
476 	}
477 	return false;
478 }
479 
480 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
481 {
482 	const __be32 *phy_handle;
483 	const __be32 *alt_phy_handle;
484 	const __be32 *reg;
485 	u32 phandle;
486 	int phy;
487 	int alt_phy;
488 	const char *p;
489 	int current_len;
490 	char new_name[20];
491 
492 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
493 	if (!phy_handle)
494 		return;
495 
496 	phandle = be32_to_cpup(phy_handle);
497 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
498 
499 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
500 	if (alt_phy_handle) {
501 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
502 
503 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
504 	} else {
505 		alt_phy = -1;
506 	}
507 
508 	if (phy_addr < 0 || phy < 0) {
509 		/* Delete the PHY things */
510 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
511 		/* This one may fail */
512 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
513 		if (phy >= 0)
514 			fdt_nop_node(initial_boot_params, phy);
515 		if (alt_phy >= 0)
516 			fdt_nop_node(initial_boot_params, alt_phy);
517 		return;
518 	}
519 
520 	if (phy_addr >= 256 && alt_phy > 0) {
521 		const struct fdt_property *phy_prop;
522 		struct fdt_property *alt_prop;
523 		fdt32_t phy_handle_name;
524 
525 		/* Use the alt phy node instead.*/
526 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
527 		phy_handle_name = phy_prop->nameoff;
528 		fdt_nop_node(initial_boot_params, phy);
529 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
530 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
531 		alt_prop->nameoff = phy_handle_name;
532 		phy = alt_phy;
533 	}
534 
535 	phy_addr &= 0xff;
536 
537 	if (octeon_has_88e1145()) {
538 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
539 		memset(new_name, 0, sizeof(new_name));
540 		strcpy(new_name, "marvell,88e1145");
541 		p = fdt_getprop(initial_boot_params, phy, "compatible",
542 				&current_len);
543 		if (p && current_len >= strlen(new_name))
544 			fdt_setprop_inplace(initial_boot_params, phy,
545 					"compatible", new_name, current_len);
546 	}
547 
548 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
549 	if (phy_addr == be32_to_cpup(reg))
550 		return;
551 
552 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
553 
554 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
555 
556 	p = fdt_get_name(initial_boot_params, phy, &current_len);
557 	if (p && current_len == strlen(new_name))
558 		fdt_set_name(initial_boot_params, phy, new_name);
559 	else
560 		pr_err("Error: could not rename ethernet phy: <%s>", p);
561 }
562 
563 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
564 {
565 	const u8 *old_mac;
566 	int old_len;
567 	u8 new_mac[6];
568 	u64 mac = *pmac;
569 	int r;
570 
571 	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
572 			      &old_len);
573 	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
574 		return;
575 
576 	new_mac[0] = (mac >> 40) & 0xff;
577 	new_mac[1] = (mac >> 32) & 0xff;
578 	new_mac[2] = (mac >> 24) & 0xff;
579 	new_mac[3] = (mac >> 16) & 0xff;
580 	new_mac[4] = (mac >> 8) & 0xff;
581 	new_mac[5] = mac & 0xff;
582 
583 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
584 				new_mac, sizeof(new_mac));
585 
586 	if (r) {
587 		pr_err("Setting \"local-mac-address\" failed %d", r);
588 		return;
589 	}
590 	*pmac = mac + 1;
591 }
592 
593 static void __init octeon_fdt_rm_ethernet(int node)
594 {
595 	const __be32 *phy_handle;
596 
597 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
598 	if (phy_handle) {
599 		u32 ph = be32_to_cpup(phy_handle);
600 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
601 
602 		if (p >= 0)
603 			fdt_nop_node(initial_boot_params, p);
604 	}
605 	fdt_nop_node(initial_boot_params, node);
606 }
607 
608 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
609 {
610 	fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
611 				 rx_delay);
612 	fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
613 				 tx_delay);
614 }
615 
616 static void __init octeon_rx_tx_delay(int eth, int iface, int port)
617 {
618 	switch (cvmx_sysinfo_get()->board_type) {
619 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
620 		if (iface == 0) {
621 			if (port == 0) {
622 				/*
623 				 * Boards with gigabit WAN ports need a
624 				 * different setting that is compatible with
625 				 * 100 Mbit settings
626 				 */
627 				_octeon_rx_tx_delay(eth, 0xc, 0x0c);
628 				return;
629 			} else if (port == 1) {
630 				/* Different config for switch port. */
631 				_octeon_rx_tx_delay(eth, 0x0, 0x0);
632 				return;
633 			}
634 		}
635 		break;
636 	case CVMX_BOARD_TYPE_UBNT_E100:
637 		if (iface == 0 && port <= 2) {
638 			_octeon_rx_tx_delay(eth, 0x0, 0x10);
639 			return;
640 		}
641 		break;
642 	}
643 	fdt_nop_property(initial_boot_params, eth, "rx-delay");
644 	fdt_nop_property(initial_boot_params, eth, "tx-delay");
645 }
646 
647 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
648 {
649 	char name_buffer[20];
650 	int eth;
651 	int phy_addr;
652 	int ipd_port;
653 	int fixed_link;
654 
655 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
656 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
657 	if (eth < 0)
658 		return;
659 	if (p > max) {
660 		pr_debug("Deleting port %x:%x\n", i, p);
661 		octeon_fdt_rm_ethernet(eth);
662 		return;
663 	}
664 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
665 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
666 	else
667 		ipd_port = 16 * i + p;
668 
669 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
670 	octeon_fdt_set_phy(eth, phy_addr);
671 
672 	fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
673 	if (fixed_link < 0)
674 		WARN_ON(octeon_has_fixed_link(ipd_port));
675 	else if (!octeon_has_fixed_link(ipd_port))
676 		fdt_nop_node(initial_boot_params, fixed_link);
677 	octeon_rx_tx_delay(eth, i, p);
678 }
679 
680 static void __init octeon_fdt_pip_iface(int pip, int idx)
681 {
682 	char name_buffer[20];
683 	int iface;
684 	int p;
685 	int count = 0;
686 
687 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
688 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
689 	if (iface < 0)
690 		return;
691 
692 	if (cvmx_helper_interface_enumerate(idx) == 0)
693 		count = cvmx_helper_ports_on_interface(idx);
694 
695 	for (p = 0; p < 16; p++)
696 		octeon_fdt_pip_port(iface, idx, p, count - 1);
697 }
698 
699 void __init octeon_fill_mac_addresses(void)
700 {
701 	const char *alias_prop;
702 	char name_buffer[20];
703 	u64 mac_addr_base;
704 	int aliases;
705 	int pip;
706 	int i;
707 
708 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
709 	if (aliases < 0)
710 		return;
711 
712 	mac_addr_base =
713 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
714 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
715 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
716 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
717 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
718 		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
719 
720 	for (i = 0; i < 2; i++) {
721 		int mgmt;
722 
723 		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
724 		alias_prop = fdt_getprop(initial_boot_params, aliases,
725 					 name_buffer, NULL);
726 		if (!alias_prop)
727 			continue;
728 		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
729 		if (mgmt < 0)
730 			continue;
731 		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
732 	}
733 
734 	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
735 	if (!alias_prop)
736 		return;
737 
738 	pip = fdt_path_offset(initial_boot_params, alias_prop);
739 	if (pip < 0)
740 		return;
741 
742 	for (i = 0; i <= 4; i++) {
743 		int iface;
744 		int p;
745 
746 		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
747 		iface = fdt_subnode_offset(initial_boot_params, pip,
748 					   name_buffer);
749 		if (iface < 0)
750 			continue;
751 		for (p = 0; p < 16; p++) {
752 			int eth;
753 
754 			snprintf(name_buffer, sizeof(name_buffer),
755 				 "ethernet@%x", p);
756 			eth = fdt_subnode_offset(initial_boot_params, iface,
757 						 name_buffer);
758 			if (eth < 0)
759 				continue;
760 			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
761 		}
762 	}
763 }
764 
765 int __init octeon_prune_device_tree(void)
766 {
767 	int i, max_port, uart_mask;
768 	const char *pip_path;
769 	const char *alias_prop;
770 	char name_buffer[20];
771 	int aliases;
772 
773 	if (fdt_check_header(initial_boot_params))
774 		panic("Corrupt Device Tree.");
775 
776 	WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
777 	     "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
778 	     cvmx_board_type_to_string(octeon_bootinfo->board_type));
779 
780 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
781 	if (aliases < 0) {
782 		pr_err("Error: No /aliases node in device tree.");
783 		return -EINVAL;
784 	}
785 
786 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
787 		max_port = 2;
788 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
789 		max_port = 1;
790 	else
791 		max_port = 0;
792 
793 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
794 		max_port = 0;
795 
796 	for (i = 0; i < 2; i++) {
797 		int mgmt;
798 
799 		snprintf(name_buffer, sizeof(name_buffer),
800 			 "mix%d", i);
801 		alias_prop = fdt_getprop(initial_boot_params, aliases,
802 					name_buffer, NULL);
803 		if (alias_prop) {
804 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
805 			if (mgmt < 0)
806 				continue;
807 			if (i >= max_port) {
808 				pr_debug("Deleting mix%d\n", i);
809 				octeon_fdt_rm_ethernet(mgmt);
810 				fdt_nop_property(initial_boot_params, aliases,
811 						 name_buffer);
812 			} else {
813 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
814 
815 				octeon_fdt_set_phy(mgmt, phy_addr);
816 			}
817 		}
818 	}
819 
820 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
821 	if (pip_path) {
822 		int pip = fdt_path_offset(initial_boot_params, pip_path);
823 
824 		if (pip	 >= 0)
825 			for (i = 0; i <= 4; i++)
826 				octeon_fdt_pip_iface(pip, i);
827 	}
828 
829 	/* I2C */
830 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
831 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
832 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
833 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
834 		max_port = 2;
835 	else
836 		max_port = 1;
837 
838 	for (i = 0; i < 2; i++) {
839 		int i2c;
840 
841 		snprintf(name_buffer, sizeof(name_buffer),
842 			 "twsi%d", i);
843 		alias_prop = fdt_getprop(initial_boot_params, aliases,
844 					name_buffer, NULL);
845 
846 		if (alias_prop) {
847 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
848 			if (i2c < 0)
849 				continue;
850 			if (i >= max_port) {
851 				pr_debug("Deleting twsi%d\n", i);
852 				fdt_nop_node(initial_boot_params, i2c);
853 				fdt_nop_property(initial_boot_params, aliases,
854 						 name_buffer);
855 			}
856 		}
857 	}
858 
859 	/* SMI/MDIO */
860 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
861 		max_port = 4;
862 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
863 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
864 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
865 		max_port = 2;
866 	else
867 		max_port = 1;
868 
869 	for (i = 0; i < 2; i++) {
870 		int i2c;
871 
872 		snprintf(name_buffer, sizeof(name_buffer),
873 			 "smi%d", i);
874 		alias_prop = fdt_getprop(initial_boot_params, aliases,
875 					name_buffer, NULL);
876 		if (alias_prop) {
877 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
878 			if (i2c < 0)
879 				continue;
880 			if (i >= max_port) {
881 				pr_debug("Deleting smi%d\n", i);
882 				fdt_nop_node(initial_boot_params, i2c);
883 				fdt_nop_property(initial_boot_params, aliases,
884 						 name_buffer);
885 			}
886 		}
887 	}
888 
889 	/* Serial */
890 	uart_mask = 3;
891 
892 	/* Right now CN52XX is the only chip with a third uart */
893 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
894 		uart_mask |= 4; /* uart2 */
895 
896 	for (i = 0; i < 3; i++) {
897 		int uart;
898 
899 		snprintf(name_buffer, sizeof(name_buffer),
900 			 "uart%d", i);
901 		alias_prop = fdt_getprop(initial_boot_params, aliases,
902 					name_buffer, NULL);
903 
904 		if (alias_prop) {
905 			uart = fdt_path_offset(initial_boot_params, alias_prop);
906 			if (uart_mask & (1 << i)) {
907 				__be32 f;
908 
909 				f = cpu_to_be32(octeon_get_io_clock_rate());
910 				fdt_setprop_inplace(initial_boot_params,
911 						    uart, "clock-frequency",
912 						    &f, sizeof(f));
913 				continue;
914 			}
915 			pr_debug("Deleting uart%d\n", i);
916 			fdt_nop_node(initial_boot_params, uart);
917 			fdt_nop_property(initial_boot_params, aliases,
918 					 name_buffer);
919 		}
920 	}
921 
922 	/* Compact Flash */
923 	alias_prop = fdt_getprop(initial_boot_params, aliases,
924 				 "cf0", NULL);
925 	if (alias_prop) {
926 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
927 		unsigned long base_ptr, region_base, region_size;
928 		unsigned long region1_base = 0;
929 		unsigned long region1_size = 0;
930 		int cs, bootbus;
931 		bool is_16bit = false;
932 		bool is_true_ide = false;
933 		__be32 new_reg[6];
934 		__be32 *ranges;
935 		int len;
936 
937 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
938 
939 		base_ptr = 0;
940 		if (octeon_bootinfo->major_version == 1
941 			&& octeon_bootinfo->minor_version >= 1) {
942 			if (octeon_bootinfo->compact_flash_common_base_addr)
943 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
944 		} else {
945 			base_ptr = 0x1d000800;
946 		}
947 
948 		if (!base_ptr)
949 			goto no_cf;
950 
951 		/* Find CS0 region. */
952 		for (cs = 0; cs < 8; cs++) {
953 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
954 			region_base = mio_boot_reg_cfg.s.base << 16;
955 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
956 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
957 				&& base_ptr < region_base + region_size) {
958 				is_16bit = mio_boot_reg_cfg.s.width;
959 				break;
960 			}
961 		}
962 		if (cs >= 7) {
963 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
964 			goto no_cf;
965 		}
966 
967 		if (!(base_ptr & 0xfffful)) {
968 			/*
969 			 * Boot loader signals availability of DMA (true_ide
970 			 * mode) by setting low order bits of base_ptr to
971 			 * zero.
972 			 */
973 
974 			/* Asume that CS1 immediately follows. */
975 			mio_boot_reg_cfg.u64 =
976 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
977 			region1_base = mio_boot_reg_cfg.s.base << 16;
978 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
979 			if (!mio_boot_reg_cfg.s.en)
980 				goto no_cf;
981 			is_true_ide = true;
982 
983 		} else {
984 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
985 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
986 			if (!is_16bit) {
987 				__be32 width = cpu_to_be32(8);
988 
989 				fdt_setprop_inplace(initial_boot_params, cf,
990 						"cavium,bus-width", &width, sizeof(width));
991 			}
992 		}
993 		new_reg[0] = cpu_to_be32(cs);
994 		new_reg[1] = cpu_to_be32(0);
995 		new_reg[2] = cpu_to_be32(0x10000);
996 		new_reg[3] = cpu_to_be32(cs + 1);
997 		new_reg[4] = cpu_to_be32(0);
998 		new_reg[5] = cpu_to_be32(0x10000);
999 		fdt_setprop_inplace(initial_boot_params, cf,
1000 				    "reg",  new_reg, sizeof(new_reg));
1001 
1002 		bootbus = fdt_parent_offset(initial_boot_params, cf);
1003 		if (bootbus < 0)
1004 			goto no_cf;
1005 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1006 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1007 			goto no_cf;
1008 
1009 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1010 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1011 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1012 		if (is_true_ide) {
1013 			cs++;
1014 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1015 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1016 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1017 		}
1018 		goto end_cf;
1019 no_cf:
1020 		fdt_nop_node(initial_boot_params, cf);
1021 
1022 end_cf:
1023 		;
1024 	}
1025 
1026 	/* 8 char LED */
1027 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1028 				 "led0", NULL);
1029 	if (alias_prop) {
1030 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1031 		unsigned long base_ptr, region_base, region_size;
1032 		int cs, bootbus;
1033 		__be32 new_reg[6];
1034 		__be32 *ranges;
1035 		int len;
1036 		int led = fdt_path_offset(initial_boot_params, alias_prop);
1037 
1038 		base_ptr = octeon_bootinfo->led_display_base_addr;
1039 		if (base_ptr == 0)
1040 			goto no_led;
1041 		/* Find CS0 region. */
1042 		for (cs = 0; cs < 8; cs++) {
1043 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1044 			region_base = mio_boot_reg_cfg.s.base << 16;
1045 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1046 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1047 				&& base_ptr < region_base + region_size)
1048 				break;
1049 		}
1050 
1051 		if (cs > 7)
1052 			goto no_led;
1053 
1054 		new_reg[0] = cpu_to_be32(cs);
1055 		new_reg[1] = cpu_to_be32(0x20);
1056 		new_reg[2] = cpu_to_be32(0x20);
1057 		new_reg[3] = cpu_to_be32(cs);
1058 		new_reg[4] = cpu_to_be32(0);
1059 		new_reg[5] = cpu_to_be32(0x20);
1060 		fdt_setprop_inplace(initial_boot_params, led,
1061 				    "reg",  new_reg, sizeof(new_reg));
1062 
1063 		bootbus = fdt_parent_offset(initial_boot_params, led);
1064 		if (bootbus < 0)
1065 			goto no_led;
1066 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1067 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1068 			goto no_led;
1069 
1070 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1071 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1072 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1073 		goto end_led;
1074 
1075 no_led:
1076 		fdt_nop_node(initial_boot_params, led);
1077 end_led:
1078 		;
1079 	}
1080 
1081 #ifdef CONFIG_USB
1082 	/* OHCI/UHCI USB */
1083 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1084 				 "uctl", NULL);
1085 	if (alias_prop) {
1086 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1087 
1088 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1089 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1090 			pr_debug("Deleting uctl\n");
1091 			fdt_nop_node(initial_boot_params, uctl);
1092 			fdt_nop_property(initial_boot_params, aliases, "uctl");
1093 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1094 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1095 			/* Missing "refclk-type" defaults to crystal. */
1096 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1097 		}
1098 	}
1099 
1100 	/* DWC2 USB */
1101 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1102 				 "usbn", NULL);
1103 	if (alias_prop) {
1104 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1105 
1106 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1107 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
1108 			pr_debug("Deleting usbn\n");
1109 			fdt_nop_node(initial_boot_params, usbn);
1110 			fdt_nop_property(initial_boot_params, aliases, "usbn");
1111 		} else  {
1112 			__be32 new_f[1];
1113 			enum cvmx_helper_board_usb_clock_types c;
1114 
1115 			c = __cvmx_helper_board_usb_get_clock_type();
1116 			switch (c) {
1117 			case USB_CLOCK_TYPE_REF_48:
1118 				new_f[0] = cpu_to_be32(48000000);
1119 				fdt_setprop_inplace(initial_boot_params, usbn,
1120 						    "refclk-frequency",  new_f, sizeof(new_f));
1121 				fallthrough;
1122 			case USB_CLOCK_TYPE_REF_12:
1123 				/* Missing "refclk-type" defaults to external. */
1124 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1125 				break;
1126 			default:
1127 				break;
1128 			}
1129 		}
1130 	}
1131 #endif
1132 
1133 	return 0;
1134 }
1135 
1136 static int __init octeon_publish_devices(void)
1137 {
1138 	return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1139 }
1140 arch_initcall(octeon_publish_devices);
1141