1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25 
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31 
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35 	struct platform_device *pd;
36 	int ret = 0;
37 
38 	struct resource rng_resources[] = {
39 		{
40 			.flags	= IORESOURCE_MEM,
41 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43 		}, {
44 			.flags	= IORESOURCE_MEM,
45 			.start	= cvmx_build_io_address(8, 0),
46 			.end	= cvmx_build_io_address(8, 0) + 0x7
47 		}
48 	};
49 
50 	pd = platform_device_alloc("octeon_rng", -1);
51 	if (!pd) {
52 		ret = -ENOMEM;
53 		goto out;
54 	}
55 
56 	ret = platform_device_add_resources(pd, rng_resources,
57 					    ARRAY_SIZE(rng_resources));
58 	if (ret)
59 		goto fail;
60 
61 	ret = platform_device_add(pd);
62 	if (ret)
63 		goto fail;
64 
65 	return ret;
66 fail:
67 	platform_device_put(pd);
68 
69 out:
70 	return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73 
74 #ifdef CONFIG_USB
75 
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77 
78 static int octeon2_usb_clock_start_cnt;
79 
80 static void octeon2_usb_clocks_start(struct device *dev)
81 {
82 	u64 div;
83 	union cvmx_uctlx_if_ena if_ena;
84 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85 	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87 	int i;
88 	unsigned long io_clk_64_to_ns;
89 	u32 clock_rate = 12000000;
90 	bool is_crystal_clock = false;
91 
92 
93 	mutex_lock(&octeon2_usb_clocks_mutex);
94 
95 	octeon2_usb_clock_start_cnt++;
96 	if (octeon2_usb_clock_start_cnt != 1)
97 		goto exit;
98 
99 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100 
101 	if (dev->of_node) {
102 		struct device_node *uctl_node;
103 		const char *clock_type;
104 
105 		uctl_node = of_get_parent(dev->of_node);
106 		if (!uctl_node) {
107 			dev_err(dev, "No UCTL device node\n");
108 			goto exit;
109 		}
110 		i = of_property_read_u32(uctl_node,
111 					 "refclk-frequency", &clock_rate);
112 		if (i) {
113 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114 			goto exit;
115 		}
116 		i = of_property_read_string(uctl_node,
117 					    "refclk-type", &clock_type);
118 
119 		if (!i && strcmp("crystal", clock_type) == 0)
120 			is_crystal_clock = true;
121 	}
122 
123 	/*
124 	 * Step 1: Wait for voltages stable.  That surely happened
125 	 * before starting the kernel.
126 	 *
127 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128 	 */
129 	if_ena.u64 = 0;
130 	if_ena.s.en = 1;
131 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132 
133 	/* Step 3: Configure the reference clock, PHY, and HCLK */
134 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135 
136 	/*
137 	 * If the UCTL looks like it has already been started, skip
138 	 * the initialization, otherwise bus errors are obtained.
139 	 */
140 	if (clk_rst_ctl.s.hrst)
141 		goto end_clock;
142 	/* 3a */
143 	clk_rst_ctl.s.p_por = 1;
144 	clk_rst_ctl.s.hrst = 0;
145 	clk_rst_ctl.s.p_prst = 0;
146 	clk_rst_ctl.s.h_clkdiv_rst = 0;
147 	clk_rst_ctl.s.o_clkdiv_rst = 0;
148 	clk_rst_ctl.s.h_clkdiv_en = 0;
149 	clk_rst_ctl.s.o_clkdiv_en = 0;
150 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151 
152 	/* 3b */
153 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154 	switch (clock_rate) {
155 	default:
156 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157 			clock_rate);
158 		/* Fall through */
159 	case 12000000:
160 		clk_rst_ctl.s.p_refclk_div = 0;
161 		break;
162 	case 24000000:
163 		clk_rst_ctl.s.p_refclk_div = 1;
164 		break;
165 	case 48000000:
166 		clk_rst_ctl.s.p_refclk_div = 2;
167 		break;
168 	}
169 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170 
171 	/* 3c */
172 	div = octeon_get_io_clock_rate() / 130000000ull;
173 
174 	switch (div) {
175 	case 0:
176 		div = 1;
177 		break;
178 	case 1:
179 	case 2:
180 	case 3:
181 	case 4:
182 		break;
183 	case 5:
184 		div = 4;
185 		break;
186 	case 6:
187 	case 7:
188 		div = 6;
189 		break;
190 	case 8:
191 	case 9:
192 	case 10:
193 	case 11:
194 		div = 8;
195 		break;
196 	default:
197 		div = 12;
198 		break;
199 	}
200 	clk_rst_ctl.s.h_div = div;
201 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202 	/* Read it back, */
203 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204 	clk_rst_ctl.s.h_clkdiv_en = 1;
205 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206 	/* 3d */
207 	clk_rst_ctl.s.h_clkdiv_rst = 1;
208 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209 
210 	/* 3e: delay 64 io clocks */
211 	ndelay(io_clk_64_to_ns);
212 
213 	/*
214 	 * Step 4: Program the power-on reset field in the UCTL
215 	 * clock-reset-control register.
216 	 */
217 	clk_rst_ctl.s.p_por = 0;
218 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219 
220 	/* Step 5:    Wait 1 ms for the PHY clock to start. */
221 	mdelay(1);
222 
223 	/*
224 	 * Step 6: Program the reset input from automatic test
225 	 * equipment field in the UPHY CSR
226 	 */
227 	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228 	uphy_ctl_status.s.ate_reset = 1;
229 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230 
231 	/* Step 7: Wait for at least 10ns. */
232 	ndelay(10);
233 
234 	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235 	uphy_ctl_status.s.ate_reset = 0;
236 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237 
238 	/*
239 	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240 	 * signals and OHCI_CLK48
241 	 */
242 	ndelay(20);
243 
244 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245 	/* 10a */
246 	clk_rst_ctl.s.o_clkdiv_rst = 1;
247 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248 
249 	/* 10b */
250 	clk_rst_ctl.s.o_clkdiv_en = 1;
251 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252 
253 	/* 10c */
254 	ndelay(io_clk_64_to_ns);
255 
256 	/*
257 	 * Step 11: Program the PHY reset field:
258 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
259 	 */
260 	clk_rst_ctl.s.p_prst = 1;
261 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262 
263 	/* Step 12: Wait 1 uS. */
264 	udelay(1);
265 
266 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267 	clk_rst_ctl.s.hrst = 1;
268 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269 
270 end_clock:
271 	/* Now we can set some other registers.  */
272 
273 	for (i = 0; i <= 1; i++) {
274 		port_ctl_status.u64 =
275 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277 		port_ctl_status.s.txvreftune = 15;
278 		port_ctl_status.s.txrisetune = 1;
279 		port_ctl_status.s.txpreemphasistune = 1;
280 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281 			       port_ctl_status.u64);
282 	}
283 
284 	/* Set uSOF cycle period to 60,000 bits. */
285 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287 	mutex_unlock(&octeon2_usb_clocks_mutex);
288 }
289 
290 static void octeon2_usb_clocks_stop(void)
291 {
292 	mutex_lock(&octeon2_usb_clocks_mutex);
293 	octeon2_usb_clock_start_cnt--;
294 	mutex_unlock(&octeon2_usb_clocks_mutex);
295 }
296 
297 static int octeon_ehci_power_on(struct platform_device *pdev)
298 {
299 	octeon2_usb_clocks_start(&pdev->dev);
300 	return 0;
301 }
302 
303 static void octeon_ehci_power_off(struct platform_device *pdev)
304 {
305 	octeon2_usb_clocks_stop();
306 }
307 
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309 	/* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311 	.big_endian_mmio	= 1,
312 #endif
313 	.dma_mask_64	= 1,
314 	.power_on	= octeon_ehci_power_on,
315 	.power_off	= octeon_ehci_power_off,
316 };
317 
318 static void __init octeon_ehci_hw_start(struct device *dev)
319 {
320 	union cvmx_uctlx_ehci_ctl ehci_ctl;
321 
322 	octeon2_usb_clocks_start(dev);
323 
324 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325 	/* Use 64-bit addressing. */
326 	ehci_ctl.s.ehci_64b_addr_en = 1;
327 	ehci_ctl.s.l2c_addr_msb = 0;
328 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
329 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
330 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
331 
332 	octeon2_usb_clocks_stop();
333 }
334 
335 static int __init octeon_ehci_device_init(void)
336 {
337 	struct platform_device *pd;
338 	struct device_node *ehci_node;
339 	int ret = 0;
340 
341 	ehci_node = of_find_node_by_name(NULL, "ehci");
342 	if (!ehci_node)
343 		return 0;
344 
345 	pd = of_find_device_by_node(ehci_node);
346 	if (!pd)
347 		return 0;
348 
349 	pd->dev.platform_data = &octeon_ehci_pdata;
350 	octeon_ehci_hw_start(&pd->dev);
351 
352 	return ret;
353 }
354 device_initcall(octeon_ehci_device_init);
355 
356 static int octeon_ohci_power_on(struct platform_device *pdev)
357 {
358 	octeon2_usb_clocks_start(&pdev->dev);
359 	return 0;
360 }
361 
362 static void octeon_ohci_power_off(struct platform_device *pdev)
363 {
364 	octeon2_usb_clocks_stop();
365 }
366 
367 static struct usb_ohci_pdata octeon_ohci_pdata = {
368 	/* Octeon OHCI matches CPU endianness. */
369 #ifdef __BIG_ENDIAN
370 	.big_endian_mmio	= 1,
371 #endif
372 	.power_on	= octeon_ohci_power_on,
373 	.power_off	= octeon_ohci_power_off,
374 };
375 
376 static void __init octeon_ohci_hw_start(struct device *dev)
377 {
378 	union cvmx_uctlx_ohci_ctl ohci_ctl;
379 
380 	octeon2_usb_clocks_start(dev);
381 
382 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
383 	ohci_ctl.s.l2c_addr_msb = 0;
384 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
385 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
386 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
387 
388 	octeon2_usb_clocks_stop();
389 }
390 
391 static int __init octeon_ohci_device_init(void)
392 {
393 	struct platform_device *pd;
394 	struct device_node *ohci_node;
395 	int ret = 0;
396 
397 	ohci_node = of_find_node_by_name(NULL, "ohci");
398 	if (!ohci_node)
399 		return 0;
400 
401 	pd = of_find_device_by_node(ohci_node);
402 	if (!pd)
403 		return 0;
404 
405 	pd->dev.platform_data = &octeon_ohci_pdata;
406 	octeon_ohci_hw_start(&pd->dev);
407 
408 	return ret;
409 }
410 device_initcall(octeon_ohci_device_init);
411 
412 #endif /* CONFIG_USB */
413 
414 
415 static struct of_device_id __initdata octeon_ids[] = {
416 	{ .compatible = "simple-bus", },
417 	{ .compatible = "cavium,octeon-6335-uctl", },
418 	{ .compatible = "cavium,octeon-5750-usbn", },
419 	{ .compatible = "cavium,octeon-3860-bootbus", },
420 	{ .compatible = "cavium,mdio-mux", },
421 	{ .compatible = "gpio-leds", },
422 	{},
423 };
424 
425 static bool __init octeon_has_88e1145(void)
426 {
427 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
428 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
429 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
430 }
431 
432 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
433 {
434 	const __be32 *phy_handle;
435 	const __be32 *alt_phy_handle;
436 	const __be32 *reg;
437 	u32 phandle;
438 	int phy;
439 	int alt_phy;
440 	const char *p;
441 	int current_len;
442 	char new_name[20];
443 
444 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
445 	if (!phy_handle)
446 		return;
447 
448 	phandle = be32_to_cpup(phy_handle);
449 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
450 
451 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
452 	if (alt_phy_handle) {
453 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
454 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
455 	} else {
456 		alt_phy = -1;
457 	}
458 
459 	if (phy_addr < 0 || phy < 0) {
460 		/* Delete the PHY things */
461 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
462 		/* This one may fail */
463 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
464 		if (phy >= 0)
465 			fdt_nop_node(initial_boot_params, phy);
466 		if (alt_phy >= 0)
467 			fdt_nop_node(initial_boot_params, alt_phy);
468 		return;
469 	}
470 
471 	if (phy_addr >= 256 && alt_phy > 0) {
472 		const struct fdt_property *phy_prop;
473 		struct fdt_property *alt_prop;
474 		u32 phy_handle_name;
475 
476 		/* Use the alt phy node instead.*/
477 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
478 		phy_handle_name = phy_prop->nameoff;
479 		fdt_nop_node(initial_boot_params, phy);
480 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
481 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
482 		alt_prop->nameoff = phy_handle_name;
483 		phy = alt_phy;
484 	}
485 
486 	phy_addr &= 0xff;
487 
488 	if (octeon_has_88e1145()) {
489 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
490 		memset(new_name, 0, sizeof(new_name));
491 		strcpy(new_name, "marvell,88e1145");
492 		p = fdt_getprop(initial_boot_params, phy, "compatible",
493 				&current_len);
494 		if (p && current_len >= strlen(new_name))
495 			fdt_setprop_inplace(initial_boot_params, phy,
496 					"compatible", new_name, current_len);
497 	}
498 
499 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
500 	if (phy_addr == be32_to_cpup(reg))
501 		return;
502 
503 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
504 
505 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
506 
507 	p = fdt_get_name(initial_boot_params, phy, &current_len);
508 	if (p && current_len == strlen(new_name))
509 		fdt_set_name(initial_boot_params, phy, new_name);
510 	else
511 		pr_err("Error: could not rename ethernet phy: <%s>", p);
512 }
513 
514 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
515 {
516 	u8 new_mac[6];
517 	u64 mac = *pmac;
518 	int r;
519 
520 	new_mac[0] = (mac >> 40) & 0xff;
521 	new_mac[1] = (mac >> 32) & 0xff;
522 	new_mac[2] = (mac >> 24) & 0xff;
523 	new_mac[3] = (mac >> 16) & 0xff;
524 	new_mac[4] = (mac >> 8) & 0xff;
525 	new_mac[5] = mac & 0xff;
526 
527 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
528 				new_mac, sizeof(new_mac));
529 
530 	if (r) {
531 		pr_err("Setting \"local-mac-address\" failed %d", r);
532 		return;
533 	}
534 	*pmac = mac + 1;
535 }
536 
537 static void __init octeon_fdt_rm_ethernet(int node)
538 {
539 	const __be32 *phy_handle;
540 
541 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
542 	if (phy_handle) {
543 		u32 ph = be32_to_cpup(phy_handle);
544 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
545 		if (p >= 0)
546 			fdt_nop_node(initial_boot_params, p);
547 	}
548 	fdt_nop_node(initial_boot_params, node);
549 }
550 
551 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
552 {
553 	char name_buffer[20];
554 	int eth;
555 	int phy_addr;
556 	int ipd_port;
557 
558 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
559 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
560 	if (eth < 0)
561 		return;
562 	if (p > max) {
563 		pr_debug("Deleting port %x:%x\n", i, p);
564 		octeon_fdt_rm_ethernet(eth);
565 		return;
566 	}
567 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
568 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
569 	else
570 		ipd_port = 16 * i + p;
571 
572 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
573 	octeon_fdt_set_phy(eth, phy_addr);
574 	octeon_fdt_set_mac_addr(eth, pmac);
575 }
576 
577 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
578 {
579 	char name_buffer[20];
580 	int iface;
581 	int p;
582 	int count = 0;
583 
584 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
585 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
586 	if (iface < 0)
587 		return;
588 
589 	if (cvmx_helper_interface_enumerate(idx) == 0)
590 		count = cvmx_helper_ports_on_interface(idx);
591 
592 	for (p = 0; p < 16; p++)
593 		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
594 }
595 
596 int __init octeon_prune_device_tree(void)
597 {
598 	int i, max_port, uart_mask;
599 	const char *pip_path;
600 	const char *alias_prop;
601 	char name_buffer[20];
602 	int aliases;
603 	u64 mac_addr_base;
604 
605 	if (fdt_check_header(initial_boot_params))
606 		panic("Corrupt Device Tree.");
607 
608 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
609 	if (aliases < 0) {
610 		pr_err("Error: No /aliases node in device tree.");
611 		return -EINVAL;
612 	}
613 
614 
615 	mac_addr_base =
616 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
617 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
618 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
619 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
620 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
621 		(octeon_bootinfo->mac_addr_base[5] & 0xffull);
622 
623 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
624 		max_port = 2;
625 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
626 		max_port = 1;
627 	else
628 		max_port = 0;
629 
630 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
631 		max_port = 0;
632 
633 	for (i = 0; i < 2; i++) {
634 		int mgmt;
635 		snprintf(name_buffer, sizeof(name_buffer),
636 			 "mix%d", i);
637 		alias_prop = fdt_getprop(initial_boot_params, aliases,
638 					name_buffer, NULL);
639 		if (alias_prop) {
640 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
641 			if (mgmt < 0)
642 				continue;
643 			if (i >= max_port) {
644 				pr_debug("Deleting mix%d\n", i);
645 				octeon_fdt_rm_ethernet(mgmt);
646 				fdt_nop_property(initial_boot_params, aliases,
647 						 name_buffer);
648 			} else {
649 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
650 				octeon_fdt_set_phy(mgmt, phy_addr);
651 				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
652 			}
653 		}
654 	}
655 
656 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
657 	if (pip_path) {
658 		int pip = fdt_path_offset(initial_boot_params, pip_path);
659 		if (pip	 >= 0)
660 			for (i = 0; i <= 4; i++)
661 				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
662 	}
663 
664 	/* I2C */
665 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
666 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
667 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
668 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
669 		max_port = 2;
670 	else
671 		max_port = 1;
672 
673 	for (i = 0; i < 2; i++) {
674 		int i2c;
675 		snprintf(name_buffer, sizeof(name_buffer),
676 			 "twsi%d", i);
677 		alias_prop = fdt_getprop(initial_boot_params, aliases,
678 					name_buffer, NULL);
679 
680 		if (alias_prop) {
681 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
682 			if (i2c < 0)
683 				continue;
684 			if (i >= max_port) {
685 				pr_debug("Deleting twsi%d\n", i);
686 				fdt_nop_node(initial_boot_params, i2c);
687 				fdt_nop_property(initial_boot_params, aliases,
688 						 name_buffer);
689 			}
690 		}
691 	}
692 
693 	/* SMI/MDIO */
694 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
695 		max_port = 4;
696 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
697 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
698 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
699 		max_port = 2;
700 	else
701 		max_port = 1;
702 
703 	for (i = 0; i < 2; i++) {
704 		int i2c;
705 		snprintf(name_buffer, sizeof(name_buffer),
706 			 "smi%d", i);
707 		alias_prop = fdt_getprop(initial_boot_params, aliases,
708 					name_buffer, NULL);
709 
710 		if (alias_prop) {
711 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
712 			if (i2c < 0)
713 				continue;
714 			if (i >= max_port) {
715 				pr_debug("Deleting smi%d\n", i);
716 				fdt_nop_node(initial_boot_params, i2c);
717 				fdt_nop_property(initial_boot_params, aliases,
718 						 name_buffer);
719 			}
720 		}
721 	}
722 
723 	/* Serial */
724 	uart_mask = 3;
725 
726 	/* Right now CN52XX is the only chip with a third uart */
727 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
728 		uart_mask |= 4; /* uart2 */
729 
730 	for (i = 0; i < 3; i++) {
731 		int uart;
732 		snprintf(name_buffer, sizeof(name_buffer),
733 			 "uart%d", i);
734 		alias_prop = fdt_getprop(initial_boot_params, aliases,
735 					name_buffer, NULL);
736 
737 		if (alias_prop) {
738 			uart = fdt_path_offset(initial_boot_params, alias_prop);
739 			if (uart_mask & (1 << i)) {
740 				__be32 f;
741 
742 				f = cpu_to_be32(octeon_get_io_clock_rate());
743 				fdt_setprop_inplace(initial_boot_params,
744 						    uart, "clock-frequency",
745 						    &f, sizeof(f));
746 				continue;
747 			}
748 			pr_debug("Deleting uart%d\n", i);
749 			fdt_nop_node(initial_boot_params, uart);
750 			fdt_nop_property(initial_boot_params, aliases,
751 					 name_buffer);
752 		}
753 	}
754 
755 	/* Compact Flash */
756 	alias_prop = fdt_getprop(initial_boot_params, aliases,
757 				 "cf0", NULL);
758 	if (alias_prop) {
759 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
760 		unsigned long base_ptr, region_base, region_size;
761 		unsigned long region1_base = 0;
762 		unsigned long region1_size = 0;
763 		int cs, bootbus;
764 		bool is_16bit = false;
765 		bool is_true_ide = false;
766 		__be32 new_reg[6];
767 		__be32 *ranges;
768 		int len;
769 
770 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
771 		base_ptr = 0;
772 		if (octeon_bootinfo->major_version == 1
773 			&& octeon_bootinfo->minor_version >= 1) {
774 			if (octeon_bootinfo->compact_flash_common_base_addr)
775 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
776 		} else {
777 			base_ptr = 0x1d000800;
778 		}
779 
780 		if (!base_ptr)
781 			goto no_cf;
782 
783 		/* Find CS0 region. */
784 		for (cs = 0; cs < 8; cs++) {
785 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
786 			region_base = mio_boot_reg_cfg.s.base << 16;
787 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
788 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
789 				&& base_ptr < region_base + region_size) {
790 				is_16bit = mio_boot_reg_cfg.s.width;
791 				break;
792 			}
793 		}
794 		if (cs >= 7) {
795 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
796 			goto no_cf;
797 		}
798 
799 		if (!(base_ptr & 0xfffful)) {
800 			/*
801 			 * Boot loader signals availability of DMA (true_ide
802 			 * mode) by setting low order bits of base_ptr to
803 			 * zero.
804 			 */
805 
806 			/* Asume that CS1 immediately follows. */
807 			mio_boot_reg_cfg.u64 =
808 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
809 			region1_base = mio_boot_reg_cfg.s.base << 16;
810 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
811 			if (!mio_boot_reg_cfg.s.en)
812 				goto no_cf;
813 			is_true_ide = true;
814 
815 		} else {
816 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
817 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
818 			if (!is_16bit) {
819 				__be32 width = cpu_to_be32(8);
820 				fdt_setprop_inplace(initial_boot_params, cf,
821 						"cavium,bus-width", &width, sizeof(width));
822 			}
823 		}
824 		new_reg[0] = cpu_to_be32(cs);
825 		new_reg[1] = cpu_to_be32(0);
826 		new_reg[2] = cpu_to_be32(0x10000);
827 		new_reg[3] = cpu_to_be32(cs + 1);
828 		new_reg[4] = cpu_to_be32(0);
829 		new_reg[5] = cpu_to_be32(0x10000);
830 		fdt_setprop_inplace(initial_boot_params, cf,
831 				    "reg",  new_reg, sizeof(new_reg));
832 
833 		bootbus = fdt_parent_offset(initial_boot_params, cf);
834 		if (bootbus < 0)
835 			goto no_cf;
836 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
837 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
838 			goto no_cf;
839 
840 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
841 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
842 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
843 		if (is_true_ide) {
844 			cs++;
845 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
846 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
847 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
848 		}
849 		goto end_cf;
850 no_cf:
851 		fdt_nop_node(initial_boot_params, cf);
852 
853 end_cf:
854 		;
855 	}
856 
857 	/* 8 char LED */
858 	alias_prop = fdt_getprop(initial_boot_params, aliases,
859 				 "led0", NULL);
860 	if (alias_prop) {
861 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
862 		unsigned long base_ptr, region_base, region_size;
863 		int cs, bootbus;
864 		__be32 new_reg[6];
865 		__be32 *ranges;
866 		int len;
867 		int led = fdt_path_offset(initial_boot_params, alias_prop);
868 
869 		base_ptr = octeon_bootinfo->led_display_base_addr;
870 		if (base_ptr == 0)
871 			goto no_led;
872 		/* Find CS0 region. */
873 		for (cs = 0; cs < 8; cs++) {
874 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
875 			region_base = mio_boot_reg_cfg.s.base << 16;
876 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
877 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
878 				&& base_ptr < region_base + region_size)
879 				break;
880 		}
881 
882 		if (cs > 7)
883 			goto no_led;
884 
885 		new_reg[0] = cpu_to_be32(cs);
886 		new_reg[1] = cpu_to_be32(0x20);
887 		new_reg[2] = cpu_to_be32(0x20);
888 		new_reg[3] = cpu_to_be32(cs);
889 		new_reg[4] = cpu_to_be32(0);
890 		new_reg[5] = cpu_to_be32(0x20);
891 		fdt_setprop_inplace(initial_boot_params, led,
892 				    "reg",  new_reg, sizeof(new_reg));
893 
894 		bootbus = fdt_parent_offset(initial_boot_params, led);
895 		if (bootbus < 0)
896 			goto no_led;
897 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
898 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
899 			goto no_led;
900 
901 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
902 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
903 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
904 		goto end_led;
905 
906 no_led:
907 		fdt_nop_node(initial_boot_params, led);
908 end_led:
909 		;
910 	}
911 
912 	/* OHCI/UHCI USB */
913 	alias_prop = fdt_getprop(initial_boot_params, aliases,
914 				 "uctl", NULL);
915 	if (alias_prop) {
916 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
917 
918 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
919 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
920 			pr_debug("Deleting uctl\n");
921 			fdt_nop_node(initial_boot_params, uctl);
922 			fdt_nop_property(initial_boot_params, aliases, "uctl");
923 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
924 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
925 			/* Missing "refclk-type" defaults to crystal. */
926 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
927 		}
928 	}
929 
930 	/* DWC2 USB */
931 	alias_prop = fdt_getprop(initial_boot_params, aliases,
932 				 "usbn", NULL);
933 	if (alias_prop) {
934 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
935 
936 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
937 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
938 			pr_debug("Deleting usbn\n");
939 			fdt_nop_node(initial_boot_params, usbn);
940 			fdt_nop_property(initial_boot_params, aliases, "usbn");
941 		} else  {
942 			__be32 new_f[1];
943 			enum cvmx_helper_board_usb_clock_types c;
944 			c = __cvmx_helper_board_usb_get_clock_type();
945 			switch (c) {
946 			case USB_CLOCK_TYPE_REF_48:
947 				new_f[0] = cpu_to_be32(48000000);
948 				fdt_setprop_inplace(initial_boot_params, usbn,
949 						    "refclk-frequency",  new_f, sizeof(new_f));
950 				/* Fall through ...*/
951 			case USB_CLOCK_TYPE_REF_12:
952 				/* Missing "refclk-type" defaults to external. */
953 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
954 				break;
955 			default:
956 				break;
957 			}
958 		}
959 	}
960 
961 	return 0;
962 }
963 
964 static int __init octeon_publish_devices(void)
965 {
966 	return of_platform_bus_probe(NULL, octeon_ids, NULL);
967 }
968 device_initcall(octeon_publish_devices);
969 
970 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
971 MODULE_LICENSE("GPL");
972 MODULE_DESCRIPTION("Platform driver for Octeon SOC");
973