xref: /openbmc/linux/arch/mips/cavium-octeon/octeon-platform.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2017 Cavium, Inc.
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/etherdevice.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_fdt.h>
13 #include <linux/libfdt.h>
14 
15 #include <asm/octeon/octeon.h>
16 #include <asm/octeon/cvmx-helper-board.h>
17 
18 #ifdef CONFIG_USB
19 #include <linux/usb/ehci_def.h>
20 #include <linux/usb/ehci_pdriver.h>
21 #include <linux/usb/ohci_pdriver.h>
22 #include <asm/octeon/cvmx-uctlx-defs.h>
23 
24 #define CVMX_UAHCX_EHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000010ull))
25 #define CVMX_UAHCX_OHCI_USBCMD	(CVMX_ADD_IO_SEG(0x00016F0000000408ull))
26 
27 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
28 
29 static int octeon2_usb_clock_start_cnt;
30 
31 static int __init octeon2_usb_reset(void)
32 {
33 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
34 	u32 ucmd;
35 
36 	if (!OCTEON_IS_OCTEON2())
37 		return 0;
38 
39 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
40 	if (clk_rst_ctl.s.hrst) {
41 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_EHCI_USBCMD);
42 		ucmd &= ~CMD_RUN;
43 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
44 		mdelay(2);
45 		ucmd |= CMD_RESET;
46 		cvmx_write64_uint32(CVMX_UAHCX_EHCI_USBCMD, ucmd);
47 		ucmd = cvmx_read64_uint32(CVMX_UAHCX_OHCI_USBCMD);
48 		ucmd |= CMD_RUN;
49 		cvmx_write64_uint32(CVMX_UAHCX_OHCI_USBCMD, ucmd);
50 	}
51 
52 	return 0;
53 }
54 arch_initcall(octeon2_usb_reset);
55 
56 static void octeon2_usb_clocks_start(struct device *dev)
57 {
58 	u64 div;
59 	union cvmx_uctlx_if_ena if_ena;
60 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
61 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
62 	int i;
63 	unsigned long io_clk_64_to_ns;
64 	u32 clock_rate = 12000000;
65 	bool is_crystal_clock = false;
66 
67 
68 	mutex_lock(&octeon2_usb_clocks_mutex);
69 
70 	octeon2_usb_clock_start_cnt++;
71 	if (octeon2_usb_clock_start_cnt != 1)
72 		goto exit;
73 
74 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
75 
76 	if (dev->of_node) {
77 		struct device_node *uctl_node;
78 		const char *clock_type;
79 
80 		uctl_node = of_get_parent(dev->of_node);
81 		if (!uctl_node) {
82 			dev_err(dev, "No UCTL device node\n");
83 			goto exit;
84 		}
85 		i = of_property_read_u32(uctl_node,
86 					 "refclk-frequency", &clock_rate);
87 		if (i) {
88 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
89 			of_node_put(uctl_node);
90 			goto exit;
91 		}
92 		i = of_property_read_string(uctl_node,
93 					    "refclk-type", &clock_type);
94 		of_node_put(uctl_node);
95 		if (!i && strcmp("crystal", clock_type) == 0)
96 			is_crystal_clock = true;
97 	}
98 
99 	/*
100 	 * Step 1: Wait for voltages stable.  That surely happened
101 	 * before starting the kernel.
102 	 *
103 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
104 	 */
105 	if_ena.u64 = 0;
106 	if_ena.s.en = 1;
107 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
108 
109 	for (i = 0; i <= 1; i++) {
110 		port_ctl_status.u64 =
111 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
112 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
113 		port_ctl_status.s.txvreftune = 15;
114 		port_ctl_status.s.txrisetune = 1;
115 		port_ctl_status.s.txpreemphasistune = 1;
116 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
117 			       port_ctl_status.u64);
118 	}
119 
120 	/* Step 3: Configure the reference clock, PHY, and HCLK */
121 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
122 
123 	/*
124 	 * If the UCTL looks like it has already been started, skip
125 	 * the initialization, otherwise bus errors are obtained.
126 	 */
127 	if (clk_rst_ctl.s.hrst)
128 		goto end_clock;
129 	/* 3a */
130 	clk_rst_ctl.s.p_por = 1;
131 	clk_rst_ctl.s.hrst = 0;
132 	clk_rst_ctl.s.p_prst = 0;
133 	clk_rst_ctl.s.h_clkdiv_rst = 0;
134 	clk_rst_ctl.s.o_clkdiv_rst = 0;
135 	clk_rst_ctl.s.h_clkdiv_en = 0;
136 	clk_rst_ctl.s.o_clkdiv_en = 0;
137 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
138 
139 	/* 3b */
140 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
141 	switch (clock_rate) {
142 	default:
143 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
144 			clock_rate);
145 		fallthrough;
146 	case 12000000:
147 		clk_rst_ctl.s.p_refclk_div = 0;
148 		break;
149 	case 24000000:
150 		clk_rst_ctl.s.p_refclk_div = 1;
151 		break;
152 	case 48000000:
153 		clk_rst_ctl.s.p_refclk_div = 2;
154 		break;
155 	}
156 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
157 
158 	/* 3c */
159 	div = octeon_get_io_clock_rate() / 130000000ull;
160 
161 	switch (div) {
162 	case 0:
163 		div = 1;
164 		break;
165 	case 1:
166 	case 2:
167 	case 3:
168 	case 4:
169 		break;
170 	case 5:
171 		div = 4;
172 		break;
173 	case 6:
174 	case 7:
175 		div = 6;
176 		break;
177 	case 8:
178 	case 9:
179 	case 10:
180 	case 11:
181 		div = 8;
182 		break;
183 	default:
184 		div = 12;
185 		break;
186 	}
187 	clk_rst_ctl.s.h_div = div;
188 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
189 	/* Read it back, */
190 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
191 	clk_rst_ctl.s.h_clkdiv_en = 1;
192 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
193 	/* 3d */
194 	clk_rst_ctl.s.h_clkdiv_rst = 1;
195 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
196 
197 	/* 3e: delay 64 io clocks */
198 	ndelay(io_clk_64_to_ns);
199 
200 	/*
201 	 * Step 4: Program the power-on reset field in the UCTL
202 	 * clock-reset-control register.
203 	 */
204 	clk_rst_ctl.s.p_por = 0;
205 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206 
207 	/* Step 5:    Wait 3 ms for the PHY clock to start. */
208 	mdelay(3);
209 
210 	/* Steps 6..9 for ATE only, are skipped. */
211 
212 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
213 	/* 10a */
214 	clk_rst_ctl.s.o_clkdiv_rst = 1;
215 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
216 
217 	/* 10b */
218 	clk_rst_ctl.s.o_clkdiv_en = 1;
219 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
220 
221 	/* 10c */
222 	ndelay(io_clk_64_to_ns);
223 
224 	/*
225 	 * Step 11: Program the PHY reset field:
226 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
227 	 */
228 	clk_rst_ctl.s.p_prst = 1;
229 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
230 
231 	/* Step 11b */
232 	udelay(1);
233 
234 	/* Step 11c */
235 	clk_rst_ctl.s.p_prst = 0;
236 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
237 
238 	/* Step 11d */
239 	mdelay(1);
240 
241 	/* Step 11e */
242 	clk_rst_ctl.s.p_prst = 1;
243 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
244 
245 	/* Step 12: Wait 1 uS. */
246 	udelay(1);
247 
248 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
249 	clk_rst_ctl.s.hrst = 1;
250 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
251 
252 end_clock:
253 	/* Set uSOF cycle period to 60,000 bits. */
254 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
255 
256 exit:
257 	mutex_unlock(&octeon2_usb_clocks_mutex);
258 }
259 
260 static void octeon2_usb_clocks_stop(void)
261 {
262 	mutex_lock(&octeon2_usb_clocks_mutex);
263 	octeon2_usb_clock_start_cnt--;
264 	mutex_unlock(&octeon2_usb_clocks_mutex);
265 }
266 
267 static int octeon_ehci_power_on(struct platform_device *pdev)
268 {
269 	octeon2_usb_clocks_start(&pdev->dev);
270 	return 0;
271 }
272 
273 static void octeon_ehci_power_off(struct platform_device *pdev)
274 {
275 	octeon2_usb_clocks_stop();
276 }
277 
278 static struct usb_ehci_pdata octeon_ehci_pdata = {
279 	/* Octeon EHCI matches CPU endianness. */
280 #ifdef __BIG_ENDIAN
281 	.big_endian_mmio	= 1,
282 #endif
283 	/*
284 	 * We can DMA from anywhere. But the descriptors must be in
285 	 * the lower 4GB.
286 	 */
287 	.dma_mask_64	= 0,
288 	.power_on	= octeon_ehci_power_on,
289 	.power_off	= octeon_ehci_power_off,
290 };
291 
292 static void __init octeon_ehci_hw_start(struct device *dev)
293 {
294 	union cvmx_uctlx_ehci_ctl ehci_ctl;
295 
296 	octeon2_usb_clocks_start(dev);
297 
298 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
299 	/* Use 64-bit addressing. */
300 	ehci_ctl.s.ehci_64b_addr_en = 1;
301 	ehci_ctl.s.l2c_addr_msb = 0;
302 #ifdef __BIG_ENDIAN
303 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
304 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
305 #else
306 	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
307 	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
308 	ehci_ctl.s.inv_reg_a2 = 1;
309 #endif
310 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
311 
312 	octeon2_usb_clocks_stop();
313 }
314 
315 static int __init octeon_ehci_device_init(void)
316 {
317 	struct platform_device *pd;
318 	struct device_node *ehci_node;
319 	int ret = 0;
320 
321 	ehci_node = of_find_node_by_name(NULL, "ehci");
322 	if (!ehci_node)
323 		return 0;
324 
325 	pd = of_find_device_by_node(ehci_node);
326 	of_node_put(ehci_node);
327 	if (!pd)
328 		return 0;
329 
330 	pd->dev.platform_data = &octeon_ehci_pdata;
331 	octeon_ehci_hw_start(&pd->dev);
332 	put_device(&pd->dev);
333 
334 	return ret;
335 }
336 device_initcall(octeon_ehci_device_init);
337 
338 static int octeon_ohci_power_on(struct platform_device *pdev)
339 {
340 	octeon2_usb_clocks_start(&pdev->dev);
341 	return 0;
342 }
343 
344 static void octeon_ohci_power_off(struct platform_device *pdev)
345 {
346 	octeon2_usb_clocks_stop();
347 }
348 
349 static struct usb_ohci_pdata octeon_ohci_pdata = {
350 	/* Octeon OHCI matches CPU endianness. */
351 #ifdef __BIG_ENDIAN
352 	.big_endian_mmio	= 1,
353 #endif
354 	.power_on	= octeon_ohci_power_on,
355 	.power_off	= octeon_ohci_power_off,
356 };
357 
358 static void __init octeon_ohci_hw_start(struct device *dev)
359 {
360 	union cvmx_uctlx_ohci_ctl ohci_ctl;
361 
362 	octeon2_usb_clocks_start(dev);
363 
364 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
365 	ohci_ctl.s.l2c_addr_msb = 0;
366 #ifdef __BIG_ENDIAN
367 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
368 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
369 #else
370 	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
371 	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
372 	ohci_ctl.s.inv_reg_a2 = 1;
373 #endif
374 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
375 
376 	octeon2_usb_clocks_stop();
377 }
378 
379 static int __init octeon_ohci_device_init(void)
380 {
381 	struct platform_device *pd;
382 	struct device_node *ohci_node;
383 	int ret = 0;
384 
385 	ohci_node = of_find_node_by_name(NULL, "ohci");
386 	if (!ohci_node)
387 		return 0;
388 
389 	pd = of_find_device_by_node(ohci_node);
390 	of_node_put(ohci_node);
391 	if (!pd)
392 		return 0;
393 
394 	pd->dev.platform_data = &octeon_ohci_pdata;
395 	octeon_ohci_hw_start(&pd->dev);
396 	put_device(&pd->dev);
397 
398 	return ret;
399 }
400 device_initcall(octeon_ohci_device_init);
401 
402 #endif /* CONFIG_USB */
403 
404 /* Octeon Random Number Generator.  */
405 static int __init octeon_rng_device_init(void)
406 {
407 	struct platform_device *pd;
408 	int ret = 0;
409 
410 	struct resource rng_resources[] = {
411 		{
412 			.flags	= IORESOURCE_MEM,
413 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
414 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
415 		}, {
416 			.flags	= IORESOURCE_MEM,
417 			.start	= cvmx_build_io_address(8, 0),
418 			.end	= cvmx_build_io_address(8, 0) + 0x7
419 		}
420 	};
421 
422 	pd = platform_device_alloc("octeon_rng", -1);
423 	if (!pd) {
424 		ret = -ENOMEM;
425 		goto out;
426 	}
427 
428 	ret = platform_device_add_resources(pd, rng_resources,
429 					    ARRAY_SIZE(rng_resources));
430 	if (ret)
431 		goto fail;
432 
433 	ret = platform_device_add(pd);
434 	if (ret)
435 		goto fail;
436 
437 	return ret;
438 fail:
439 	platform_device_put(pd);
440 
441 out:
442 	return ret;
443 }
444 device_initcall(octeon_rng_device_init);
445 
446 static const struct of_device_id octeon_ids[] __initconst = {
447 	{ .compatible = "simple-bus", },
448 	{ .compatible = "cavium,octeon-6335-uctl", },
449 	{ .compatible = "cavium,octeon-5750-usbn", },
450 	{ .compatible = "cavium,octeon-3860-bootbus", },
451 	{ .compatible = "cavium,mdio-mux", },
452 	{ .compatible = "gpio-leds", },
453 	{ .compatible = "cavium,octeon-7130-usb-uctl", },
454 	{},
455 };
456 
457 static bool __init octeon_has_88e1145(void)
458 {
459 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
460 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
461 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
462 }
463 
464 static bool __init octeon_has_fixed_link(int ipd_port)
465 {
466 	switch (cvmx_sysinfo_get()->board_type) {
467 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
468 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
469 	case CVMX_BOARD_TYPE_CN3020_EVB_HS5:
470 	case CVMX_BOARD_TYPE_CUST_NB5:
471 	case CVMX_BOARD_TYPE_EBH3100:
472 		/* Port 1 on these boards is always gigabit. */
473 		return ipd_port == 1;
474 	case CVMX_BOARD_TYPE_BBGW_REF:
475 		/* Ports 0 and 1 connect to the switch. */
476 		return ipd_port == 0 || ipd_port == 1;
477 	}
478 	return false;
479 }
480 
481 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
482 {
483 	const __be32 *phy_handle;
484 	const __be32 *alt_phy_handle;
485 	const __be32 *reg;
486 	u32 phandle;
487 	int phy;
488 	int alt_phy;
489 	const char *p;
490 	int current_len;
491 	char new_name[20];
492 
493 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
494 	if (!phy_handle)
495 		return;
496 
497 	phandle = be32_to_cpup(phy_handle);
498 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
499 
500 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
501 	if (alt_phy_handle) {
502 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
503 
504 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
505 	} else {
506 		alt_phy = -1;
507 	}
508 
509 	if (phy_addr < 0 || phy < 0) {
510 		/* Delete the PHY things */
511 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
512 		/* This one may fail */
513 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
514 		if (phy >= 0)
515 			fdt_nop_node(initial_boot_params, phy);
516 		if (alt_phy >= 0)
517 			fdt_nop_node(initial_boot_params, alt_phy);
518 		return;
519 	}
520 
521 	if (phy_addr >= 256 && alt_phy > 0) {
522 		const struct fdt_property *phy_prop;
523 		struct fdt_property *alt_prop;
524 		fdt32_t phy_handle_name;
525 
526 		/* Use the alt phy node instead.*/
527 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
528 		phy_handle_name = phy_prop->nameoff;
529 		fdt_nop_node(initial_boot_params, phy);
530 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
531 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
532 		alt_prop->nameoff = phy_handle_name;
533 		phy = alt_phy;
534 	}
535 
536 	phy_addr &= 0xff;
537 
538 	if (octeon_has_88e1145()) {
539 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
540 		memset(new_name, 0, sizeof(new_name));
541 		strcpy(new_name, "marvell,88e1145");
542 		p = fdt_getprop(initial_boot_params, phy, "compatible",
543 				&current_len);
544 		if (p && current_len >= strlen(new_name))
545 			fdt_setprop_inplace(initial_boot_params, phy,
546 					"compatible", new_name, current_len);
547 	}
548 
549 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
550 	if (phy_addr == be32_to_cpup(reg))
551 		return;
552 
553 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
554 
555 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
556 
557 	p = fdt_get_name(initial_boot_params, phy, &current_len);
558 	if (p && current_len == strlen(new_name))
559 		fdt_set_name(initial_boot_params, phy, new_name);
560 	else
561 		pr_err("Error: could not rename ethernet phy: <%s>", p);
562 }
563 
564 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
565 {
566 	const u8 *old_mac;
567 	int old_len;
568 	u8 new_mac[6];
569 	u64 mac = *pmac;
570 	int r;
571 
572 	old_mac = fdt_getprop(initial_boot_params, n, "local-mac-address",
573 			      &old_len);
574 	if (!old_mac || old_len != 6 || is_valid_ether_addr(old_mac))
575 		return;
576 
577 	new_mac[0] = (mac >> 40) & 0xff;
578 	new_mac[1] = (mac >> 32) & 0xff;
579 	new_mac[2] = (mac >> 24) & 0xff;
580 	new_mac[3] = (mac >> 16) & 0xff;
581 	new_mac[4] = (mac >> 8) & 0xff;
582 	new_mac[5] = mac & 0xff;
583 
584 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
585 				new_mac, sizeof(new_mac));
586 
587 	if (r) {
588 		pr_err("Setting \"local-mac-address\" failed %d", r);
589 		return;
590 	}
591 	*pmac = mac + 1;
592 }
593 
594 static void __init octeon_fdt_rm_ethernet(int node)
595 {
596 	const __be32 *phy_handle;
597 
598 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
599 	if (phy_handle) {
600 		u32 ph = be32_to_cpup(phy_handle);
601 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
602 
603 		if (p >= 0)
604 			fdt_nop_node(initial_boot_params, p);
605 	}
606 	fdt_nop_node(initial_boot_params, node);
607 }
608 
609 static void __init _octeon_rx_tx_delay(int eth, int rx_delay, int tx_delay)
610 {
611 	fdt_setprop_inplace_cell(initial_boot_params, eth, "rx-delay",
612 				 rx_delay);
613 	fdt_setprop_inplace_cell(initial_boot_params, eth, "tx-delay",
614 				 tx_delay);
615 }
616 
617 static void __init octeon_rx_tx_delay(int eth, int iface, int port)
618 {
619 	switch (cvmx_sysinfo_get()->board_type) {
620 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
621 		if (iface == 0) {
622 			if (port == 0) {
623 				/*
624 				 * Boards with gigabit WAN ports need a
625 				 * different setting that is compatible with
626 				 * 100 Mbit settings
627 				 */
628 				_octeon_rx_tx_delay(eth, 0xc, 0x0c);
629 				return;
630 			} else if (port == 1) {
631 				/* Different config for switch port. */
632 				_octeon_rx_tx_delay(eth, 0x0, 0x0);
633 				return;
634 			}
635 		}
636 		break;
637 	case CVMX_BOARD_TYPE_UBNT_E100:
638 		if (iface == 0 && port <= 2) {
639 			_octeon_rx_tx_delay(eth, 0x0, 0x10);
640 			return;
641 		}
642 		break;
643 	}
644 	fdt_nop_property(initial_boot_params, eth, "rx-delay");
645 	fdt_nop_property(initial_boot_params, eth, "tx-delay");
646 }
647 
648 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max)
649 {
650 	char name_buffer[20];
651 	int eth;
652 	int phy_addr;
653 	int ipd_port;
654 	int fixed_link;
655 
656 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
657 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
658 	if (eth < 0)
659 		return;
660 	if (p > max) {
661 		pr_debug("Deleting port %x:%x\n", i, p);
662 		octeon_fdt_rm_ethernet(eth);
663 		return;
664 	}
665 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
666 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
667 	else
668 		ipd_port = 16 * i + p;
669 
670 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
671 	octeon_fdt_set_phy(eth, phy_addr);
672 
673 	fixed_link = fdt_subnode_offset(initial_boot_params, eth, "fixed-link");
674 	if (fixed_link < 0)
675 		WARN_ON(octeon_has_fixed_link(ipd_port));
676 	else if (!octeon_has_fixed_link(ipd_port))
677 		fdt_nop_node(initial_boot_params, fixed_link);
678 	octeon_rx_tx_delay(eth, i, p);
679 }
680 
681 static void __init octeon_fdt_pip_iface(int pip, int idx)
682 {
683 	char name_buffer[20];
684 	int iface;
685 	int p;
686 	int count = 0;
687 
688 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
689 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
690 	if (iface < 0)
691 		return;
692 
693 	if (cvmx_helper_interface_enumerate(idx) == 0)
694 		count = cvmx_helper_ports_on_interface(idx);
695 
696 	for (p = 0; p < 16; p++)
697 		octeon_fdt_pip_port(iface, idx, p, count - 1);
698 }
699 
700 void __init octeon_fill_mac_addresses(void)
701 {
702 	const char *alias_prop;
703 	char name_buffer[20];
704 	u64 mac_addr_base;
705 	int aliases;
706 	int pip;
707 	int i;
708 
709 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
710 	if (aliases < 0)
711 		return;
712 
713 	mac_addr_base =
714 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
715 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
716 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
717 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
718 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
719 		 (octeon_bootinfo->mac_addr_base[5] & 0xffull);
720 
721 	for (i = 0; i < 2; i++) {
722 		int mgmt;
723 
724 		snprintf(name_buffer, sizeof(name_buffer), "mix%d", i);
725 		alias_prop = fdt_getprop(initial_boot_params, aliases,
726 					 name_buffer, NULL);
727 		if (!alias_prop)
728 			continue;
729 		mgmt = fdt_path_offset(initial_boot_params, alias_prop);
730 		if (mgmt < 0)
731 			continue;
732 		octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
733 	}
734 
735 	alias_prop = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
736 	if (!alias_prop)
737 		return;
738 
739 	pip = fdt_path_offset(initial_boot_params, alias_prop);
740 	if (pip < 0)
741 		return;
742 
743 	for (i = 0; i <= 4; i++) {
744 		int iface;
745 		int p;
746 
747 		snprintf(name_buffer, sizeof(name_buffer), "interface@%d", i);
748 		iface = fdt_subnode_offset(initial_boot_params, pip,
749 					   name_buffer);
750 		if (iface < 0)
751 			continue;
752 		for (p = 0; p < 16; p++) {
753 			int eth;
754 
755 			snprintf(name_buffer, sizeof(name_buffer),
756 				 "ethernet@%x", p);
757 			eth = fdt_subnode_offset(initial_boot_params, iface,
758 						 name_buffer);
759 			if (eth < 0)
760 				continue;
761 			octeon_fdt_set_mac_addr(eth, &mac_addr_base);
762 		}
763 	}
764 }
765 
766 int __init octeon_prune_device_tree(void)
767 {
768 	int i, max_port, uart_mask;
769 	const char *pip_path;
770 	const char *alias_prop;
771 	char name_buffer[20];
772 	int aliases;
773 
774 	if (fdt_check_header(initial_boot_params))
775 		panic("Corrupt Device Tree.");
776 
777 	WARN(octeon_bootinfo->board_type == CVMX_BOARD_TYPE_CUST_DSR1000N,
778 	     "Built-in DTB booting is deprecated on %s. Please switch to use appended DTB.",
779 	     cvmx_board_type_to_string(octeon_bootinfo->board_type));
780 
781 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
782 	if (aliases < 0) {
783 		pr_err("Error: No /aliases node in device tree.");
784 		return -EINVAL;
785 	}
786 
787 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
788 		max_port = 2;
789 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
790 		max_port = 1;
791 	else
792 		max_port = 0;
793 
794 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
795 		max_port = 0;
796 
797 	for (i = 0; i < 2; i++) {
798 		int mgmt;
799 
800 		snprintf(name_buffer, sizeof(name_buffer),
801 			 "mix%d", i);
802 		alias_prop = fdt_getprop(initial_boot_params, aliases,
803 					name_buffer, NULL);
804 		if (alias_prop) {
805 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
806 			if (mgmt < 0)
807 				continue;
808 			if (i >= max_port) {
809 				pr_debug("Deleting mix%d\n", i);
810 				octeon_fdt_rm_ethernet(mgmt);
811 				fdt_nop_property(initial_boot_params, aliases,
812 						 name_buffer);
813 			} else {
814 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
815 
816 				octeon_fdt_set_phy(mgmt, phy_addr);
817 			}
818 		}
819 	}
820 
821 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
822 	if (pip_path) {
823 		int pip = fdt_path_offset(initial_boot_params, pip_path);
824 
825 		if (pip	 >= 0)
826 			for (i = 0; i <= 4; i++)
827 				octeon_fdt_pip_iface(pip, i);
828 	}
829 
830 	/* I2C */
831 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
832 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
833 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
834 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
835 		max_port = 2;
836 	else
837 		max_port = 1;
838 
839 	for (i = 0; i < 2; i++) {
840 		int i2c;
841 
842 		snprintf(name_buffer, sizeof(name_buffer),
843 			 "twsi%d", i);
844 		alias_prop = fdt_getprop(initial_boot_params, aliases,
845 					name_buffer, NULL);
846 
847 		if (alias_prop) {
848 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
849 			if (i2c < 0)
850 				continue;
851 			if (i >= max_port) {
852 				pr_debug("Deleting twsi%d\n", i);
853 				fdt_nop_node(initial_boot_params, i2c);
854 				fdt_nop_property(initial_boot_params, aliases,
855 						 name_buffer);
856 			}
857 		}
858 	}
859 
860 	/* SMI/MDIO */
861 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
862 		max_port = 4;
863 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
864 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
865 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
866 		max_port = 2;
867 	else
868 		max_port = 1;
869 
870 	for (i = 0; i < 2; i++) {
871 		int i2c;
872 
873 		snprintf(name_buffer, sizeof(name_buffer),
874 			 "smi%d", i);
875 		alias_prop = fdt_getprop(initial_boot_params, aliases,
876 					name_buffer, NULL);
877 		if (alias_prop) {
878 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
879 			if (i2c < 0)
880 				continue;
881 			if (i >= max_port) {
882 				pr_debug("Deleting smi%d\n", i);
883 				fdt_nop_node(initial_boot_params, i2c);
884 				fdt_nop_property(initial_boot_params, aliases,
885 						 name_buffer);
886 			}
887 		}
888 	}
889 
890 	/* Serial */
891 	uart_mask = 3;
892 
893 	/* Right now CN52XX is the only chip with a third uart */
894 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
895 		uart_mask |= 4; /* uart2 */
896 
897 	for (i = 0; i < 3; i++) {
898 		int uart;
899 
900 		snprintf(name_buffer, sizeof(name_buffer),
901 			 "uart%d", i);
902 		alias_prop = fdt_getprop(initial_boot_params, aliases,
903 					name_buffer, NULL);
904 
905 		if (alias_prop) {
906 			uart = fdt_path_offset(initial_boot_params, alias_prop);
907 			if (uart_mask & (1 << i)) {
908 				__be32 f;
909 
910 				f = cpu_to_be32(octeon_get_io_clock_rate());
911 				fdt_setprop_inplace(initial_boot_params,
912 						    uart, "clock-frequency",
913 						    &f, sizeof(f));
914 				continue;
915 			}
916 			pr_debug("Deleting uart%d\n", i);
917 			fdt_nop_node(initial_boot_params, uart);
918 			fdt_nop_property(initial_boot_params, aliases,
919 					 name_buffer);
920 		}
921 	}
922 
923 	/* Compact Flash */
924 	alias_prop = fdt_getprop(initial_boot_params, aliases,
925 				 "cf0", NULL);
926 	if (alias_prop) {
927 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
928 		unsigned long base_ptr, region_base, region_size;
929 		unsigned long region1_base = 0;
930 		unsigned long region1_size = 0;
931 		int cs, bootbus;
932 		bool is_16bit = false;
933 		bool is_true_ide = false;
934 		__be32 new_reg[6];
935 		__be32 *ranges;
936 		int len;
937 
938 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
939 
940 		base_ptr = 0;
941 		if (octeon_bootinfo->major_version == 1
942 			&& octeon_bootinfo->minor_version >= 1) {
943 			if (octeon_bootinfo->compact_flash_common_base_addr)
944 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
945 		} else {
946 			base_ptr = 0x1d000800;
947 		}
948 
949 		if (!base_ptr)
950 			goto no_cf;
951 
952 		/* Find CS0 region. */
953 		for (cs = 0; cs < 8; cs++) {
954 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
955 			region_base = mio_boot_reg_cfg.s.base << 16;
956 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
957 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
958 				&& base_ptr < region_base + region_size) {
959 				is_16bit = mio_boot_reg_cfg.s.width;
960 				break;
961 			}
962 		}
963 		if (cs >= 7) {
964 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
965 			goto no_cf;
966 		}
967 
968 		if (!(base_ptr & 0xfffful)) {
969 			/*
970 			 * Boot loader signals availability of DMA (true_ide
971 			 * mode) by setting low order bits of base_ptr to
972 			 * zero.
973 			 */
974 
975 			/* Asume that CS1 immediately follows. */
976 			mio_boot_reg_cfg.u64 =
977 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
978 			region1_base = mio_boot_reg_cfg.s.base << 16;
979 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
980 			if (!mio_boot_reg_cfg.s.en)
981 				goto no_cf;
982 			is_true_ide = true;
983 
984 		} else {
985 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
986 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
987 			if (!is_16bit) {
988 				__be32 width = cpu_to_be32(8);
989 
990 				fdt_setprop_inplace(initial_boot_params, cf,
991 						"cavium,bus-width", &width, sizeof(width));
992 			}
993 		}
994 		new_reg[0] = cpu_to_be32(cs);
995 		new_reg[1] = cpu_to_be32(0);
996 		new_reg[2] = cpu_to_be32(0x10000);
997 		new_reg[3] = cpu_to_be32(cs + 1);
998 		new_reg[4] = cpu_to_be32(0);
999 		new_reg[5] = cpu_to_be32(0x10000);
1000 		fdt_setprop_inplace(initial_boot_params, cf,
1001 				    "reg",  new_reg, sizeof(new_reg));
1002 
1003 		bootbus = fdt_parent_offset(initial_boot_params, cf);
1004 		if (bootbus < 0)
1005 			goto no_cf;
1006 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1007 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1008 			goto no_cf;
1009 
1010 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1011 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1012 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1013 		if (is_true_ide) {
1014 			cs++;
1015 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
1016 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
1017 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
1018 		}
1019 		goto end_cf;
1020 no_cf:
1021 		fdt_nop_node(initial_boot_params, cf);
1022 
1023 end_cf:
1024 		;
1025 	}
1026 
1027 	/* 8 char LED */
1028 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1029 				 "led0", NULL);
1030 	if (alias_prop) {
1031 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
1032 		unsigned long base_ptr, region_base, region_size;
1033 		int cs, bootbus;
1034 		__be32 new_reg[6];
1035 		__be32 *ranges;
1036 		int len;
1037 		int led = fdt_path_offset(initial_boot_params, alias_prop);
1038 
1039 		base_ptr = octeon_bootinfo->led_display_base_addr;
1040 		if (base_ptr == 0)
1041 			goto no_led;
1042 		/* Find CS0 region. */
1043 		for (cs = 0; cs < 8; cs++) {
1044 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
1045 			region_base = mio_boot_reg_cfg.s.base << 16;
1046 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
1047 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
1048 				&& base_ptr < region_base + region_size)
1049 				break;
1050 		}
1051 
1052 		if (cs > 7)
1053 			goto no_led;
1054 
1055 		new_reg[0] = cpu_to_be32(cs);
1056 		new_reg[1] = cpu_to_be32(0x20);
1057 		new_reg[2] = cpu_to_be32(0x20);
1058 		new_reg[3] = cpu_to_be32(cs);
1059 		new_reg[4] = cpu_to_be32(0);
1060 		new_reg[5] = cpu_to_be32(0x20);
1061 		fdt_setprop_inplace(initial_boot_params, led,
1062 				    "reg",  new_reg, sizeof(new_reg));
1063 
1064 		bootbus = fdt_parent_offset(initial_boot_params, led);
1065 		if (bootbus < 0)
1066 			goto no_led;
1067 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
1068 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
1069 			goto no_led;
1070 
1071 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
1072 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
1073 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
1074 		goto end_led;
1075 
1076 no_led:
1077 		fdt_nop_node(initial_boot_params, led);
1078 end_led:
1079 		;
1080 	}
1081 
1082 #ifdef CONFIG_USB
1083 	/* OHCI/UHCI USB */
1084 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1085 				 "uctl", NULL);
1086 	if (alias_prop) {
1087 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
1088 
1089 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
1090 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
1091 			pr_debug("Deleting uctl\n");
1092 			fdt_nop_node(initial_boot_params, uctl);
1093 			fdt_nop_property(initial_boot_params, aliases, "uctl");
1094 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
1095 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
1096 			/* Missing "refclk-type" defaults to crystal. */
1097 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
1098 		}
1099 	}
1100 
1101 	/* DWC2 USB */
1102 	alias_prop = fdt_getprop(initial_boot_params, aliases,
1103 				 "usbn", NULL);
1104 	if (alias_prop) {
1105 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
1106 
1107 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
1108 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
1109 			pr_debug("Deleting usbn\n");
1110 			fdt_nop_node(initial_boot_params, usbn);
1111 			fdt_nop_property(initial_boot_params, aliases, "usbn");
1112 		} else  {
1113 			__be32 new_f[1];
1114 			enum cvmx_helper_board_usb_clock_types c;
1115 
1116 			c = __cvmx_helper_board_usb_get_clock_type();
1117 			switch (c) {
1118 			case USB_CLOCK_TYPE_REF_48:
1119 				new_f[0] = cpu_to_be32(48000000);
1120 				fdt_setprop_inplace(initial_boot_params, usbn,
1121 						    "refclk-frequency",  new_f, sizeof(new_f));
1122 				fallthrough;
1123 			case USB_CLOCK_TYPE_REF_12:
1124 				/* Missing "refclk-type" defaults to external. */
1125 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
1126 				break;
1127 			default:
1128 				break;
1129 			}
1130 		}
1131 	}
1132 #endif
1133 
1134 	return 0;
1135 }
1136 
1137 static int __init octeon_publish_devices(void)
1138 {
1139 	return of_platform_populate(NULL, octeon_ids, NULL, NULL);
1140 }
1141 arch_initcall(octeon_publish_devices);
1142