1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2011 Cavium Networks
7  * Copyright (C) 2008 Wind River Systems
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/i2c.h>
14 #include <linux/usb.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/platform_device.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_fdt.h>
22 #include <linux/libfdt.h>
23 #include <linux/usb/ehci_pdriver.h>
24 #include <linux/usb/ohci_pdriver.h>
25 
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-rnm-defs.h>
28 #include <asm/octeon/cvmx-helper.h>
29 #include <asm/octeon/cvmx-helper-board.h>
30 #include <asm/octeon/cvmx-uctlx-defs.h>
31 
32 /* Octeon Random Number Generator.  */
33 static int __init octeon_rng_device_init(void)
34 {
35 	struct platform_device *pd;
36 	int ret = 0;
37 
38 	struct resource rng_resources[] = {
39 		{
40 			.flags	= IORESOURCE_MEM,
41 			.start	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS),
42 			.end	= XKPHYS_TO_PHYS(CVMX_RNM_CTL_STATUS) + 0xf
43 		}, {
44 			.flags	= IORESOURCE_MEM,
45 			.start	= cvmx_build_io_address(8, 0),
46 			.end	= cvmx_build_io_address(8, 0) + 0x7
47 		}
48 	};
49 
50 	pd = platform_device_alloc("octeon_rng", -1);
51 	if (!pd) {
52 		ret = -ENOMEM;
53 		goto out;
54 	}
55 
56 	ret = platform_device_add_resources(pd, rng_resources,
57 					    ARRAY_SIZE(rng_resources));
58 	if (ret)
59 		goto fail;
60 
61 	ret = platform_device_add(pd);
62 	if (ret)
63 		goto fail;
64 
65 	return ret;
66 fail:
67 	platform_device_put(pd);
68 
69 out:
70 	return ret;
71 }
72 device_initcall(octeon_rng_device_init);
73 
74 #ifdef CONFIG_USB
75 
76 static DEFINE_MUTEX(octeon2_usb_clocks_mutex);
77 
78 static int octeon2_usb_clock_start_cnt;
79 
80 static void octeon2_usb_clocks_start(struct device *dev)
81 {
82 	u64 div;
83 	union cvmx_uctlx_if_ena if_ena;
84 	union cvmx_uctlx_clk_rst_ctl clk_rst_ctl;
85 	union cvmx_uctlx_uphy_ctl_status uphy_ctl_status;
86 	union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status;
87 	int i;
88 	unsigned long io_clk_64_to_ns;
89 	u32 clock_rate = 12000000;
90 	bool is_crystal_clock = false;
91 
92 
93 	mutex_lock(&octeon2_usb_clocks_mutex);
94 
95 	octeon2_usb_clock_start_cnt++;
96 	if (octeon2_usb_clock_start_cnt != 1)
97 		goto exit;
98 
99 	io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate();
100 
101 	if (dev->of_node) {
102 		struct device_node *uctl_node;
103 		const char *clock_type;
104 
105 		uctl_node = of_get_parent(dev->of_node);
106 		if (!uctl_node) {
107 			dev_err(dev, "No UCTL device node\n");
108 			goto exit;
109 		}
110 		i = of_property_read_u32(uctl_node,
111 					 "refclk-frequency", &clock_rate);
112 		if (i) {
113 			dev_err(dev, "No UCTL \"refclk-frequency\"\n");
114 			goto exit;
115 		}
116 		i = of_property_read_string(uctl_node,
117 					    "refclk-type", &clock_type);
118 
119 		if (!i && strcmp("crystal", clock_type) == 0)
120 			is_crystal_clock = true;
121 	}
122 
123 	/*
124 	 * Step 1: Wait for voltages stable.  That surely happened
125 	 * before starting the kernel.
126 	 *
127 	 * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1
128 	 */
129 	if_ena.u64 = 0;
130 	if_ena.s.en = 1;
131 	cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64);
132 
133 	/* Step 3: Configure the reference clock, PHY, and HCLK */
134 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
135 
136 	/*
137 	 * If the UCTL looks like it has already been started, skip
138 	 * the initialization, otherwise bus errors are obtained.
139 	 */
140 	if (clk_rst_ctl.s.hrst)
141 		goto end_clock;
142 	/* 3a */
143 	clk_rst_ctl.s.p_por = 1;
144 	clk_rst_ctl.s.hrst = 0;
145 	clk_rst_ctl.s.p_prst = 0;
146 	clk_rst_ctl.s.h_clkdiv_rst = 0;
147 	clk_rst_ctl.s.o_clkdiv_rst = 0;
148 	clk_rst_ctl.s.h_clkdiv_en = 0;
149 	clk_rst_ctl.s.o_clkdiv_en = 0;
150 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
151 
152 	/* 3b */
153 	clk_rst_ctl.s.p_refclk_sel = is_crystal_clock ? 0 : 1;
154 	switch (clock_rate) {
155 	default:
156 		pr_err("Invalid UCTL clock rate of %u, using 12000000 instead\n",
157 			clock_rate);
158 		/* Fall through */
159 	case 12000000:
160 		clk_rst_ctl.s.p_refclk_div = 0;
161 		break;
162 	case 24000000:
163 		clk_rst_ctl.s.p_refclk_div = 1;
164 		break;
165 	case 48000000:
166 		clk_rst_ctl.s.p_refclk_div = 2;
167 		break;
168 	}
169 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
170 
171 	/* 3c */
172 	div = octeon_get_io_clock_rate() / 130000000ull;
173 
174 	switch (div) {
175 	case 0:
176 		div = 1;
177 		break;
178 	case 1:
179 	case 2:
180 	case 3:
181 	case 4:
182 		break;
183 	case 5:
184 		div = 4;
185 		break;
186 	case 6:
187 	case 7:
188 		div = 6;
189 		break;
190 	case 8:
191 	case 9:
192 	case 10:
193 	case 11:
194 		div = 8;
195 		break;
196 	default:
197 		div = 12;
198 		break;
199 	}
200 	clk_rst_ctl.s.h_div = div;
201 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
202 	/* Read it back, */
203 	clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0));
204 	clk_rst_ctl.s.h_clkdiv_en = 1;
205 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
206 	/* 3d */
207 	clk_rst_ctl.s.h_clkdiv_rst = 1;
208 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
209 
210 	/* 3e: delay 64 io clocks */
211 	ndelay(io_clk_64_to_ns);
212 
213 	/*
214 	 * Step 4: Program the power-on reset field in the UCTL
215 	 * clock-reset-control register.
216 	 */
217 	clk_rst_ctl.s.p_por = 0;
218 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
219 
220 	/* Step 5:    Wait 1 ms for the PHY clock to start. */
221 	mdelay(1);
222 
223 	/*
224 	 * Step 6: Program the reset input from automatic test
225 	 * equipment field in the UPHY CSR
226 	 */
227 	uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0));
228 	uphy_ctl_status.s.ate_reset = 1;
229 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
230 
231 	/* Step 7: Wait for at least 10ns. */
232 	ndelay(10);
233 
234 	/* Step 8: Clear the ATE_RESET field in the UPHY CSR. */
235 	uphy_ctl_status.s.ate_reset = 0;
236 	cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64);
237 
238 	/*
239 	 * Step 9: Wait for at least 20ns for UPHY to output PHY clock
240 	 * signals and OHCI_CLK48
241 	 */
242 	ndelay(20);
243 
244 	/* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */
245 	/* 10a */
246 	clk_rst_ctl.s.o_clkdiv_rst = 1;
247 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
248 
249 	/* 10b */
250 	clk_rst_ctl.s.o_clkdiv_en = 1;
251 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
252 
253 	/* 10c */
254 	ndelay(io_clk_64_to_ns);
255 
256 	/*
257 	 * Step 11: Program the PHY reset field:
258 	 * UCTL0_CLK_RST_CTL[P_PRST] = 1
259 	 */
260 	clk_rst_ctl.s.p_prst = 1;
261 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
262 
263 	/* Step 12: Wait 1 uS. */
264 	udelay(1);
265 
266 	/* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */
267 	clk_rst_ctl.s.hrst = 1;
268 	cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64);
269 
270 end_clock:
271 	/* Now we can set some other registers.  */
272 
273 	for (i = 0; i <= 1; i++) {
274 		port_ctl_status.u64 =
275 			cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0));
276 		/* Set txvreftune to 15 to obtain compliant 'eye' diagram. */
277 		port_ctl_status.s.txvreftune = 15;
278 		port_ctl_status.s.txrisetune = 1;
279 		port_ctl_status.s.txpreemphasistune = 1;
280 		cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0),
281 			       port_ctl_status.u64);
282 	}
283 
284 	/* Set uSOF cycle period to 60,000 bits. */
285 	cvmx_write_csr(CVMX_UCTLX_EHCI_FLA(0), 0x20ull);
286 exit:
287 	mutex_unlock(&octeon2_usb_clocks_mutex);
288 }
289 
290 static void octeon2_usb_clocks_stop(void)
291 {
292 	mutex_lock(&octeon2_usb_clocks_mutex);
293 	octeon2_usb_clock_start_cnt--;
294 	mutex_unlock(&octeon2_usb_clocks_mutex);
295 }
296 
297 static int octeon_ehci_power_on(struct platform_device *pdev)
298 {
299 	octeon2_usb_clocks_start(&pdev->dev);
300 	return 0;
301 }
302 
303 static void octeon_ehci_power_off(struct platform_device *pdev)
304 {
305 	octeon2_usb_clocks_stop();
306 }
307 
308 static struct usb_ehci_pdata octeon_ehci_pdata = {
309 	/* Octeon EHCI matches CPU endianness. */
310 #ifdef __BIG_ENDIAN
311 	.big_endian_mmio	= 1,
312 #endif
313 	.dma_mask_64	= 1,
314 	.power_on	= octeon_ehci_power_on,
315 	.power_off	= octeon_ehci_power_off,
316 };
317 
318 static void __init octeon_ehci_hw_start(struct device *dev)
319 {
320 	union cvmx_uctlx_ehci_ctl ehci_ctl;
321 
322 	octeon2_usb_clocks_start(dev);
323 
324 	ehci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_EHCI_CTL(0));
325 	/* Use 64-bit addressing. */
326 	ehci_ctl.s.ehci_64b_addr_en = 1;
327 	ehci_ctl.s.l2c_addr_msb = 0;
328 #ifdef __BIG_ENDIAN
329 	ehci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
330 	ehci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
331 #else
332 	ehci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
333 	ehci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
334 	ehci_ctl.s.inv_reg_a2 = 1;
335 #endif
336 	cvmx_write_csr(CVMX_UCTLX_EHCI_CTL(0), ehci_ctl.u64);
337 
338 	octeon2_usb_clocks_stop();
339 }
340 
341 static int __init octeon_ehci_device_init(void)
342 {
343 	struct platform_device *pd;
344 	struct device_node *ehci_node;
345 	int ret = 0;
346 
347 	ehci_node = of_find_node_by_name(NULL, "ehci");
348 	if (!ehci_node)
349 		return 0;
350 
351 	pd = of_find_device_by_node(ehci_node);
352 	if (!pd)
353 		return 0;
354 
355 	pd->dev.platform_data = &octeon_ehci_pdata;
356 	octeon_ehci_hw_start(&pd->dev);
357 
358 	return ret;
359 }
360 device_initcall(octeon_ehci_device_init);
361 
362 static int octeon_ohci_power_on(struct platform_device *pdev)
363 {
364 	octeon2_usb_clocks_start(&pdev->dev);
365 	return 0;
366 }
367 
368 static void octeon_ohci_power_off(struct platform_device *pdev)
369 {
370 	octeon2_usb_clocks_stop();
371 }
372 
373 static struct usb_ohci_pdata octeon_ohci_pdata = {
374 	/* Octeon OHCI matches CPU endianness. */
375 #ifdef __BIG_ENDIAN
376 	.big_endian_mmio	= 1,
377 #endif
378 	.power_on	= octeon_ohci_power_on,
379 	.power_off	= octeon_ohci_power_off,
380 };
381 
382 static void __init octeon_ohci_hw_start(struct device *dev)
383 {
384 	union cvmx_uctlx_ohci_ctl ohci_ctl;
385 
386 	octeon2_usb_clocks_start(dev);
387 
388 	ohci_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_OHCI_CTL(0));
389 	ohci_ctl.s.l2c_addr_msb = 0;
390 #ifdef __BIG_ENDIAN
391 	ohci_ctl.s.l2c_buff_emod = 1; /* Byte swapped. */
392 	ohci_ctl.s.l2c_desc_emod = 1; /* Byte swapped. */
393 #else
394 	ohci_ctl.s.l2c_buff_emod = 0; /* not swapped. */
395 	ohci_ctl.s.l2c_desc_emod = 0; /* not swapped. */
396 	ohci_ctl.s.inv_reg_a2 = 1;
397 #endif
398 	cvmx_write_csr(CVMX_UCTLX_OHCI_CTL(0), ohci_ctl.u64);
399 
400 	octeon2_usb_clocks_stop();
401 }
402 
403 static int __init octeon_ohci_device_init(void)
404 {
405 	struct platform_device *pd;
406 	struct device_node *ohci_node;
407 	int ret = 0;
408 
409 	ohci_node = of_find_node_by_name(NULL, "ohci");
410 	if (!ohci_node)
411 		return 0;
412 
413 	pd = of_find_device_by_node(ohci_node);
414 	if (!pd)
415 		return 0;
416 
417 	pd->dev.platform_data = &octeon_ohci_pdata;
418 	octeon_ohci_hw_start(&pd->dev);
419 
420 	return ret;
421 }
422 device_initcall(octeon_ohci_device_init);
423 
424 #endif /* CONFIG_USB */
425 
426 
427 static struct of_device_id __initdata octeon_ids[] = {
428 	{ .compatible = "simple-bus", },
429 	{ .compatible = "cavium,octeon-6335-uctl", },
430 	{ .compatible = "cavium,octeon-5750-usbn", },
431 	{ .compatible = "cavium,octeon-3860-bootbus", },
432 	{ .compatible = "cavium,mdio-mux", },
433 	{ .compatible = "gpio-leds", },
434 	{},
435 };
436 
437 static bool __init octeon_has_88e1145(void)
438 {
439 	return !OCTEON_IS_MODEL(OCTEON_CN52XX) &&
440 	       !OCTEON_IS_MODEL(OCTEON_CN6XXX) &&
441 	       !OCTEON_IS_MODEL(OCTEON_CN56XX);
442 }
443 
444 static void __init octeon_fdt_set_phy(int eth, int phy_addr)
445 {
446 	const __be32 *phy_handle;
447 	const __be32 *alt_phy_handle;
448 	const __be32 *reg;
449 	u32 phandle;
450 	int phy;
451 	int alt_phy;
452 	const char *p;
453 	int current_len;
454 	char new_name[20];
455 
456 	phy_handle = fdt_getprop(initial_boot_params, eth, "phy-handle", NULL);
457 	if (!phy_handle)
458 		return;
459 
460 	phandle = be32_to_cpup(phy_handle);
461 	phy = fdt_node_offset_by_phandle(initial_boot_params, phandle);
462 
463 	alt_phy_handle = fdt_getprop(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
464 	if (alt_phy_handle) {
465 		u32 alt_phandle = be32_to_cpup(alt_phy_handle);
466 		alt_phy = fdt_node_offset_by_phandle(initial_boot_params, alt_phandle);
467 	} else {
468 		alt_phy = -1;
469 	}
470 
471 	if (phy_addr < 0 || phy < 0) {
472 		/* Delete the PHY things */
473 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
474 		/* This one may fail */
475 		fdt_nop_property(initial_boot_params, eth, "cavium,alt-phy-handle");
476 		if (phy >= 0)
477 			fdt_nop_node(initial_boot_params, phy);
478 		if (alt_phy >= 0)
479 			fdt_nop_node(initial_boot_params, alt_phy);
480 		return;
481 	}
482 
483 	if (phy_addr >= 256 && alt_phy > 0) {
484 		const struct fdt_property *phy_prop;
485 		struct fdt_property *alt_prop;
486 		u32 phy_handle_name;
487 
488 		/* Use the alt phy node instead.*/
489 		phy_prop = fdt_get_property(initial_boot_params, eth, "phy-handle", NULL);
490 		phy_handle_name = phy_prop->nameoff;
491 		fdt_nop_node(initial_boot_params, phy);
492 		fdt_nop_property(initial_boot_params, eth, "phy-handle");
493 		alt_prop = fdt_get_property_w(initial_boot_params, eth, "cavium,alt-phy-handle", NULL);
494 		alt_prop->nameoff = phy_handle_name;
495 		phy = alt_phy;
496 	}
497 
498 	phy_addr &= 0xff;
499 
500 	if (octeon_has_88e1145()) {
501 		fdt_nop_property(initial_boot_params, phy, "marvell,reg-init");
502 		memset(new_name, 0, sizeof(new_name));
503 		strcpy(new_name, "marvell,88e1145");
504 		p = fdt_getprop(initial_boot_params, phy, "compatible",
505 				&current_len);
506 		if (p && current_len >= strlen(new_name))
507 			fdt_setprop_inplace(initial_boot_params, phy,
508 					"compatible", new_name, current_len);
509 	}
510 
511 	reg = fdt_getprop(initial_boot_params, phy, "reg", NULL);
512 	if (phy_addr == be32_to_cpup(reg))
513 		return;
514 
515 	fdt_setprop_inplace_cell(initial_boot_params, phy, "reg", phy_addr);
516 
517 	snprintf(new_name, sizeof(new_name), "ethernet-phy@%x", phy_addr);
518 
519 	p = fdt_get_name(initial_boot_params, phy, &current_len);
520 	if (p && current_len == strlen(new_name))
521 		fdt_set_name(initial_boot_params, phy, new_name);
522 	else
523 		pr_err("Error: could not rename ethernet phy: <%s>", p);
524 }
525 
526 static void __init octeon_fdt_set_mac_addr(int n, u64 *pmac)
527 {
528 	u8 new_mac[6];
529 	u64 mac = *pmac;
530 	int r;
531 
532 	new_mac[0] = (mac >> 40) & 0xff;
533 	new_mac[1] = (mac >> 32) & 0xff;
534 	new_mac[2] = (mac >> 24) & 0xff;
535 	new_mac[3] = (mac >> 16) & 0xff;
536 	new_mac[4] = (mac >> 8) & 0xff;
537 	new_mac[5] = mac & 0xff;
538 
539 	r = fdt_setprop_inplace(initial_boot_params, n, "local-mac-address",
540 				new_mac, sizeof(new_mac));
541 
542 	if (r) {
543 		pr_err("Setting \"local-mac-address\" failed %d", r);
544 		return;
545 	}
546 	*pmac = mac + 1;
547 }
548 
549 static void __init octeon_fdt_rm_ethernet(int node)
550 {
551 	const __be32 *phy_handle;
552 
553 	phy_handle = fdt_getprop(initial_boot_params, node, "phy-handle", NULL);
554 	if (phy_handle) {
555 		u32 ph = be32_to_cpup(phy_handle);
556 		int p = fdt_node_offset_by_phandle(initial_boot_params, ph);
557 		if (p >= 0)
558 			fdt_nop_node(initial_boot_params, p);
559 	}
560 	fdt_nop_node(initial_boot_params, node);
561 }
562 
563 static void __init octeon_fdt_pip_port(int iface, int i, int p, int max, u64 *pmac)
564 {
565 	char name_buffer[20];
566 	int eth;
567 	int phy_addr;
568 	int ipd_port;
569 
570 	snprintf(name_buffer, sizeof(name_buffer), "ethernet@%x", p);
571 	eth = fdt_subnode_offset(initial_boot_params, iface, name_buffer);
572 	if (eth < 0)
573 		return;
574 	if (p > max) {
575 		pr_debug("Deleting port %x:%x\n", i, p);
576 		octeon_fdt_rm_ethernet(eth);
577 		return;
578 	}
579 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
580 		ipd_port = (0x100 * i) + (0x10 * p) + 0x800;
581 	else
582 		ipd_port = 16 * i + p;
583 
584 	phy_addr = cvmx_helper_board_get_mii_address(ipd_port);
585 	octeon_fdt_set_phy(eth, phy_addr);
586 	octeon_fdt_set_mac_addr(eth, pmac);
587 }
588 
589 static void __init octeon_fdt_pip_iface(int pip, int idx, u64 *pmac)
590 {
591 	char name_buffer[20];
592 	int iface;
593 	int p;
594 	int count = 0;
595 
596 	snprintf(name_buffer, sizeof(name_buffer), "interface@%d", idx);
597 	iface = fdt_subnode_offset(initial_boot_params, pip, name_buffer);
598 	if (iface < 0)
599 		return;
600 
601 	if (cvmx_helper_interface_enumerate(idx) == 0)
602 		count = cvmx_helper_ports_on_interface(idx);
603 
604 	for (p = 0; p < 16; p++)
605 		octeon_fdt_pip_port(iface, idx, p, count - 1, pmac);
606 }
607 
608 int __init octeon_prune_device_tree(void)
609 {
610 	int i, max_port, uart_mask;
611 	const char *pip_path;
612 	const char *alias_prop;
613 	char name_buffer[20];
614 	int aliases;
615 	u64 mac_addr_base;
616 
617 	if (fdt_check_header(initial_boot_params))
618 		panic("Corrupt Device Tree.");
619 
620 	aliases = fdt_path_offset(initial_boot_params, "/aliases");
621 	if (aliases < 0) {
622 		pr_err("Error: No /aliases node in device tree.");
623 		return -EINVAL;
624 	}
625 
626 
627 	mac_addr_base =
628 		((octeon_bootinfo->mac_addr_base[0] & 0xffull)) << 40 |
629 		((octeon_bootinfo->mac_addr_base[1] & 0xffull)) << 32 |
630 		((octeon_bootinfo->mac_addr_base[2] & 0xffull)) << 24 |
631 		((octeon_bootinfo->mac_addr_base[3] & 0xffull)) << 16 |
632 		((octeon_bootinfo->mac_addr_base[4] & 0xffull)) << 8 |
633 		(octeon_bootinfo->mac_addr_base[5] & 0xffull);
634 
635 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX))
636 		max_port = 2;
637 	else if (OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN68XX))
638 		max_port = 1;
639 	else
640 		max_port = 0;
641 
642 	if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E)
643 		max_port = 0;
644 
645 	for (i = 0; i < 2; i++) {
646 		int mgmt;
647 		snprintf(name_buffer, sizeof(name_buffer),
648 			 "mix%d", i);
649 		alias_prop = fdt_getprop(initial_boot_params, aliases,
650 					name_buffer, NULL);
651 		if (alias_prop) {
652 			mgmt = fdt_path_offset(initial_boot_params, alias_prop);
653 			if (mgmt < 0)
654 				continue;
655 			if (i >= max_port) {
656 				pr_debug("Deleting mix%d\n", i);
657 				octeon_fdt_rm_ethernet(mgmt);
658 				fdt_nop_property(initial_boot_params, aliases,
659 						 name_buffer);
660 			} else {
661 				int phy_addr = cvmx_helper_board_get_mii_address(CVMX_HELPER_BOARD_MGMT_IPD_PORT + i);
662 				octeon_fdt_set_phy(mgmt, phy_addr);
663 				octeon_fdt_set_mac_addr(mgmt, &mac_addr_base);
664 			}
665 		}
666 	}
667 
668 	pip_path = fdt_getprop(initial_boot_params, aliases, "pip", NULL);
669 	if (pip_path) {
670 		int pip = fdt_path_offset(initial_boot_params, pip_path);
671 		if (pip	 >= 0)
672 			for (i = 0; i <= 4; i++)
673 				octeon_fdt_pip_iface(pip, i, &mac_addr_base);
674 	}
675 
676 	/* I2C */
677 	if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
678 	    OCTEON_IS_MODEL(OCTEON_CN63XX) ||
679 	    OCTEON_IS_MODEL(OCTEON_CN68XX) ||
680 	    OCTEON_IS_MODEL(OCTEON_CN56XX))
681 		max_port = 2;
682 	else
683 		max_port = 1;
684 
685 	for (i = 0; i < 2; i++) {
686 		int i2c;
687 		snprintf(name_buffer, sizeof(name_buffer),
688 			 "twsi%d", i);
689 		alias_prop = fdt_getprop(initial_boot_params, aliases,
690 					name_buffer, NULL);
691 
692 		if (alias_prop) {
693 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
694 			if (i2c < 0)
695 				continue;
696 			if (i >= max_port) {
697 				pr_debug("Deleting twsi%d\n", i);
698 				fdt_nop_node(initial_boot_params, i2c);
699 				fdt_nop_property(initial_boot_params, aliases,
700 						 name_buffer);
701 			}
702 		}
703 	}
704 
705 	/* SMI/MDIO */
706 	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
707 		max_port = 4;
708 	else if (OCTEON_IS_MODEL(OCTEON_CN52XX) ||
709 		 OCTEON_IS_MODEL(OCTEON_CN63XX) ||
710 		 OCTEON_IS_MODEL(OCTEON_CN56XX))
711 		max_port = 2;
712 	else
713 		max_port = 1;
714 
715 	for (i = 0; i < 2; i++) {
716 		int i2c;
717 		snprintf(name_buffer, sizeof(name_buffer),
718 			 "smi%d", i);
719 		alias_prop = fdt_getprop(initial_boot_params, aliases,
720 					name_buffer, NULL);
721 
722 		if (alias_prop) {
723 			i2c = fdt_path_offset(initial_boot_params, alias_prop);
724 			if (i2c < 0)
725 				continue;
726 			if (i >= max_port) {
727 				pr_debug("Deleting smi%d\n", i);
728 				fdt_nop_node(initial_boot_params, i2c);
729 				fdt_nop_property(initial_boot_params, aliases,
730 						 name_buffer);
731 			}
732 		}
733 	}
734 
735 	/* Serial */
736 	uart_mask = 3;
737 
738 	/* Right now CN52XX is the only chip with a third uart */
739 	if (OCTEON_IS_MODEL(OCTEON_CN52XX))
740 		uart_mask |= 4; /* uart2 */
741 
742 	for (i = 0; i < 3; i++) {
743 		int uart;
744 		snprintf(name_buffer, sizeof(name_buffer),
745 			 "uart%d", i);
746 		alias_prop = fdt_getprop(initial_boot_params, aliases,
747 					name_buffer, NULL);
748 
749 		if (alias_prop) {
750 			uart = fdt_path_offset(initial_boot_params, alias_prop);
751 			if (uart_mask & (1 << i)) {
752 				__be32 f;
753 
754 				f = cpu_to_be32(octeon_get_io_clock_rate());
755 				fdt_setprop_inplace(initial_boot_params,
756 						    uart, "clock-frequency",
757 						    &f, sizeof(f));
758 				continue;
759 			}
760 			pr_debug("Deleting uart%d\n", i);
761 			fdt_nop_node(initial_boot_params, uart);
762 			fdt_nop_property(initial_boot_params, aliases,
763 					 name_buffer);
764 		}
765 	}
766 
767 	/* Compact Flash */
768 	alias_prop = fdt_getprop(initial_boot_params, aliases,
769 				 "cf0", NULL);
770 	if (alias_prop) {
771 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
772 		unsigned long base_ptr, region_base, region_size;
773 		unsigned long region1_base = 0;
774 		unsigned long region1_size = 0;
775 		int cs, bootbus;
776 		bool is_16bit = false;
777 		bool is_true_ide = false;
778 		__be32 new_reg[6];
779 		__be32 *ranges;
780 		int len;
781 
782 		int cf = fdt_path_offset(initial_boot_params, alias_prop);
783 		base_ptr = 0;
784 		if (octeon_bootinfo->major_version == 1
785 			&& octeon_bootinfo->minor_version >= 1) {
786 			if (octeon_bootinfo->compact_flash_common_base_addr)
787 				base_ptr = octeon_bootinfo->compact_flash_common_base_addr;
788 		} else {
789 			base_ptr = 0x1d000800;
790 		}
791 
792 		if (!base_ptr)
793 			goto no_cf;
794 
795 		/* Find CS0 region. */
796 		for (cs = 0; cs < 8; cs++) {
797 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
798 			region_base = mio_boot_reg_cfg.s.base << 16;
799 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
800 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
801 				&& base_ptr < region_base + region_size) {
802 				is_16bit = mio_boot_reg_cfg.s.width;
803 				break;
804 			}
805 		}
806 		if (cs >= 7) {
807 			/* cs and cs + 1 are CS0 and CS1, both must be less than 8. */
808 			goto no_cf;
809 		}
810 
811 		if (!(base_ptr & 0xfffful)) {
812 			/*
813 			 * Boot loader signals availability of DMA (true_ide
814 			 * mode) by setting low order bits of base_ptr to
815 			 * zero.
816 			 */
817 
818 			/* Asume that CS1 immediately follows. */
819 			mio_boot_reg_cfg.u64 =
820 				cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs + 1));
821 			region1_base = mio_boot_reg_cfg.s.base << 16;
822 			region1_size = (mio_boot_reg_cfg.s.size + 1) << 16;
823 			if (!mio_boot_reg_cfg.s.en)
824 				goto no_cf;
825 			is_true_ide = true;
826 
827 		} else {
828 			fdt_nop_property(initial_boot_params, cf, "cavium,true-ide");
829 			fdt_nop_property(initial_boot_params, cf, "cavium,dma-engine-handle");
830 			if (!is_16bit) {
831 				__be32 width = cpu_to_be32(8);
832 				fdt_setprop_inplace(initial_boot_params, cf,
833 						"cavium,bus-width", &width, sizeof(width));
834 			}
835 		}
836 		new_reg[0] = cpu_to_be32(cs);
837 		new_reg[1] = cpu_to_be32(0);
838 		new_reg[2] = cpu_to_be32(0x10000);
839 		new_reg[3] = cpu_to_be32(cs + 1);
840 		new_reg[4] = cpu_to_be32(0);
841 		new_reg[5] = cpu_to_be32(0x10000);
842 		fdt_setprop_inplace(initial_boot_params, cf,
843 				    "reg",  new_reg, sizeof(new_reg));
844 
845 		bootbus = fdt_parent_offset(initial_boot_params, cf);
846 		if (bootbus < 0)
847 			goto no_cf;
848 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
849 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
850 			goto no_cf;
851 
852 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
853 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
854 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
855 		if (is_true_ide) {
856 			cs++;
857 			ranges[(cs * 5) + 2] = cpu_to_be32(region1_base >> 32);
858 			ranges[(cs * 5) + 3] = cpu_to_be32(region1_base & 0xffffffff);
859 			ranges[(cs * 5) + 4] = cpu_to_be32(region1_size);
860 		}
861 		goto end_cf;
862 no_cf:
863 		fdt_nop_node(initial_boot_params, cf);
864 
865 end_cf:
866 		;
867 	}
868 
869 	/* 8 char LED */
870 	alias_prop = fdt_getprop(initial_boot_params, aliases,
871 				 "led0", NULL);
872 	if (alias_prop) {
873 		union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
874 		unsigned long base_ptr, region_base, region_size;
875 		int cs, bootbus;
876 		__be32 new_reg[6];
877 		__be32 *ranges;
878 		int len;
879 		int led = fdt_path_offset(initial_boot_params, alias_prop);
880 
881 		base_ptr = octeon_bootinfo->led_display_base_addr;
882 		if (base_ptr == 0)
883 			goto no_led;
884 		/* Find CS0 region. */
885 		for (cs = 0; cs < 8; cs++) {
886 			mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
887 			region_base = mio_boot_reg_cfg.s.base << 16;
888 			region_size = (mio_boot_reg_cfg.s.size + 1) << 16;
889 			if (mio_boot_reg_cfg.s.en && base_ptr >= region_base
890 				&& base_ptr < region_base + region_size)
891 				break;
892 		}
893 
894 		if (cs > 7)
895 			goto no_led;
896 
897 		new_reg[0] = cpu_to_be32(cs);
898 		new_reg[1] = cpu_to_be32(0x20);
899 		new_reg[2] = cpu_to_be32(0x20);
900 		new_reg[3] = cpu_to_be32(cs);
901 		new_reg[4] = cpu_to_be32(0);
902 		new_reg[5] = cpu_to_be32(0x20);
903 		fdt_setprop_inplace(initial_boot_params, led,
904 				    "reg",  new_reg, sizeof(new_reg));
905 
906 		bootbus = fdt_parent_offset(initial_boot_params, led);
907 		if (bootbus < 0)
908 			goto no_led;
909 		ranges = fdt_getprop_w(initial_boot_params, bootbus, "ranges", &len);
910 		if (!ranges || len < (5 * 8 * sizeof(__be32)))
911 			goto no_led;
912 
913 		ranges[(cs * 5) + 2] = cpu_to_be32(region_base >> 32);
914 		ranges[(cs * 5) + 3] = cpu_to_be32(region_base & 0xffffffff);
915 		ranges[(cs * 5) + 4] = cpu_to_be32(region_size);
916 		goto end_led;
917 
918 no_led:
919 		fdt_nop_node(initial_boot_params, led);
920 end_led:
921 		;
922 	}
923 
924 	/* OHCI/UHCI USB */
925 	alias_prop = fdt_getprop(initial_boot_params, aliases,
926 				 "uctl", NULL);
927 	if (alias_prop) {
928 		int uctl = fdt_path_offset(initial_boot_params, alias_prop);
929 
930 		if (uctl >= 0 && (!OCTEON_IS_MODEL(OCTEON_CN6XXX) ||
931 				  octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC2E)) {
932 			pr_debug("Deleting uctl\n");
933 			fdt_nop_node(initial_boot_params, uctl);
934 			fdt_nop_property(initial_boot_params, aliases, "uctl");
935 		} else if (octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC10E ||
936 			   octeon_bootinfo->board_type == CVMX_BOARD_TYPE_NIC4E) {
937 			/* Missing "refclk-type" defaults to crystal. */
938 			fdt_nop_property(initial_boot_params, uctl, "refclk-type");
939 		}
940 	}
941 
942 	/* DWC2 USB */
943 	alias_prop = fdt_getprop(initial_boot_params, aliases,
944 				 "usbn", NULL);
945 	if (alias_prop) {
946 		int usbn = fdt_path_offset(initial_boot_params, alias_prop);
947 
948 		if (usbn >= 0 && (current_cpu_type() == CPU_CAVIUM_OCTEON2 ||
949 				  !octeon_has_feature(OCTEON_FEATURE_USB))) {
950 			pr_debug("Deleting usbn\n");
951 			fdt_nop_node(initial_boot_params, usbn);
952 			fdt_nop_property(initial_boot_params, aliases, "usbn");
953 		} else  {
954 			__be32 new_f[1];
955 			enum cvmx_helper_board_usb_clock_types c;
956 			c = __cvmx_helper_board_usb_get_clock_type();
957 			switch (c) {
958 			case USB_CLOCK_TYPE_REF_48:
959 				new_f[0] = cpu_to_be32(48000000);
960 				fdt_setprop_inplace(initial_boot_params, usbn,
961 						    "refclk-frequency",  new_f, sizeof(new_f));
962 				/* Fall through ...*/
963 			case USB_CLOCK_TYPE_REF_12:
964 				/* Missing "refclk-type" defaults to external. */
965 				fdt_nop_property(initial_boot_params, usbn, "refclk-type");
966 				break;
967 			default:
968 				break;
969 			}
970 		}
971 	}
972 
973 	if (octeon_bootinfo->board_type != CVMX_BOARD_TYPE_CUST_DSR1000N) {
974 		int dsr1000n_leds = fdt_path_offset(initial_boot_params,
975 						    "/dsr1000n-leds");
976 		if (dsr1000n_leds >= 0)
977 			fdt_nop_node(initial_boot_params, dsr1000n_leds);
978 	}
979 
980 	return 0;
981 }
982 
983 static int __init octeon_publish_devices(void)
984 {
985 	return of_platform_bus_probe(NULL, octeon_ids, NULL);
986 }
987 device_initcall(octeon_publish_devices);
988 
989 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
990 MODULE_LICENSE("GPL");
991 MODULE_DESCRIPTION("Platform driver for Octeon SOC");
992