xref: /openbmc/linux/arch/mips/cavium-octeon/octeon-memcpy.S (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 *   memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16#include <asm/asm.h>
17#include <asm/asm-offsets.h>
18#include <asm/export.h>
19#include <asm/regdef.h>
20
21#define dst a0
22#define src a1
23#define len a2
24
25/*
26 * Spec
27 *
28 * memcpy copies len bytes from src to dst and sets v0 to dst.
29 * It assumes that
30 *   - src and dst don't overlap
31 *   - src is readable
32 *   - dst is writable
33 * memcpy uses the standard calling convention
34 *
35 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
36 * the number of uncopied bytes due to an exception caused by a read or write.
37 * __copy_user assumes that src and dst don't overlap, and that the call is
38 * implementing one of the following:
39 *   copy_to_user
40 *     - src is readable  (no exceptions when reading src)
41 *   copy_from_user
42 *     - dst is writable  (no exceptions when writing dst)
43 * __copy_user uses a non-standard calling convention; see
44 * arch/mips/include/asm/uaccess.h
45 *
46 * When an exception happens on a load, the handler must
47 # ensure that all of the destination buffer is overwritten to prevent
48 * leaking information to user mode programs.
49 */
50
51/*
52 * Implementation
53 */
54
55/*
56 * The exception handler for loads requires that:
57 *  1- AT contain the address of the byte just past the end of the source
58 *     of the copy,
59 *  2- src_entry <= src < AT, and
60 *  3- (dst - src) == (dst_entry - src_entry),
61 * The _entry suffix denotes values when __copy_user was called.
62 *
63 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
64 * (2) is met by incrementing src by the number of bytes copied
65 * (3) is met by not doing loads between a pair of increments of dst and src
66 *
67 * The exception handlers for stores adjust len (if necessary) and return.
68 * These handlers do not need to overwrite any data.
69 *
70 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
71 * they're not protected.
72 */
73
74#define EXC(inst_reg,addr,handler)		\
759:	inst_reg, addr;				\
76	.section __ex_table,"a";		\
77	PTR	9b, handler;			\
78	.previous
79
80/*
81 * Only on the 64-bit kernel we can made use of 64-bit registers.
82 */
83
84#define LOAD   ld
85#define LOADL  ldl
86#define LOADR  ldr
87#define STOREL sdl
88#define STORER sdr
89#define STORE  sd
90#define ADD    daddu
91#define SUB    dsubu
92#define SRL    dsrl
93#define SRA    dsra
94#define SLL    dsll
95#define SLLV   dsllv
96#define SRLV   dsrlv
97#define NBYTES 8
98#define LOG_NBYTES 3
99
100/*
101 * As we are sharing code base with the mips32 tree (which use the o32 ABI
102 * register definitions). We need to redefine the register definitions from
103 * the n64 ABI register naming to the o32 ABI register naming.
104 */
105#undef t0
106#undef t1
107#undef t2
108#undef t3
109#define t0	$8
110#define t1	$9
111#define t2	$10
112#define t3	$11
113#define t4	$12
114#define t5	$13
115#define t6	$14
116#define t7	$15
117
118#ifdef CONFIG_CPU_LITTLE_ENDIAN
119#define LDFIRST LOADR
120#define LDREST	LOADL
121#define STFIRST STORER
122#define STREST	STOREL
123#define SHIFT_DISCARD SLLV
124#else
125#define LDFIRST LOADL
126#define LDREST	LOADR
127#define STFIRST STOREL
128#define STREST	STORER
129#define SHIFT_DISCARD SRLV
130#endif
131
132#define FIRST(unit) ((unit)*NBYTES)
133#define REST(unit)  (FIRST(unit)+NBYTES-1)
134#define UNIT(unit)  FIRST(unit)
135
136#define ADDRMASK (NBYTES-1)
137
138	.text
139	.set	noreorder
140	.set	noat
141
142/*
143 * A combined memcpy/__copy_user
144 * __copy_user sets len to 0 for success; else to an upper bound of
145 * the number of uncopied bytes.
146 * memcpy sets v0 to dst.
147 */
148	.align	5
149LEAF(memcpy)					/* a0=dst a1=src a2=len */
150EXPORT_SYMBOL(memcpy)
151	move	v0, dst				/* return value */
152__memcpy:
153FEXPORT(__copy_user)
154EXPORT_SYMBOL(__copy_user)
155	/*
156	 * Note: dst & src may be unaligned, len may be 0
157	 * Temps
158	 */
159	#
160	# Octeon doesn't care if the destination is unaligned. The hardware
161	# can fix it faster than we can special case the assembly.
162	#
163	pref	0, 0(src)
164	sltu	t0, len, NBYTES		# Check if < 1 word
165	bnez	t0, copy_bytes_checklen
166	 and	t0, src, ADDRMASK	# Check if src unaligned
167	bnez	t0, src_unaligned
168	 sltu	t0, len, 4*NBYTES	# Check if < 4 words
169	bnez	t0, less_than_4units
170	 sltu	t0, len, 8*NBYTES	# Check if < 8 words
171	bnez	t0, less_than_8units
172	 sltu	t0, len, 16*NBYTES	# Check if < 16 words
173	bnez	t0, cleanup_both_aligned
174	 sltu	t0, len, 128+1		# Check if len < 129
175	bnez	t0, 1f			# Skip prefetch if len is too short
176	 sltu	t0, len, 256+1		# Check if len < 257
177	bnez	t0, 1f			# Skip prefetch if len is too short
178	 pref	0, 128(src)		# We must not prefetch invalid addresses
179	#
180	# This is where we loop if there is more than 128 bytes left
1812:	pref	0, 256(src)		# We must not prefetch invalid addresses
182	#
183	# This is where we loop if we can't prefetch anymore
1841:
185EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
186EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
187EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
188EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
189	SUB	len, len, 16*NBYTES
190EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p16u)
191EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p15u)
192EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p14u)
193EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p13u)
194EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy)
195EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy)
196EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy)
197EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy)
198EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p12u)
199EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p11u)
200EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p10u)
201	ADD	src, src, 16*NBYTES
202EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p9u)
203	ADD	dst, dst, 16*NBYTES
204EXC(	LOAD	t0, UNIT(-8)(src),	l_exc_copy_rewind16)
205EXC(	LOAD	t1, UNIT(-7)(src),	l_exc_copy_rewind16)
206EXC(	LOAD	t2, UNIT(-6)(src),	l_exc_copy_rewind16)
207EXC(	LOAD	t3, UNIT(-5)(src),	l_exc_copy_rewind16)
208EXC(	STORE	t0, UNIT(-8)(dst),	s_exc_p8u)
209EXC(	STORE	t1, UNIT(-7)(dst),	s_exc_p7u)
210EXC(	STORE	t2, UNIT(-6)(dst),	s_exc_p6u)
211EXC(	STORE	t3, UNIT(-5)(dst),	s_exc_p5u)
212EXC(	LOAD	t0, UNIT(-4)(src),	l_exc_copy_rewind16)
213EXC(	LOAD	t1, UNIT(-3)(src),	l_exc_copy_rewind16)
214EXC(	LOAD	t2, UNIT(-2)(src),	l_exc_copy_rewind16)
215EXC(	LOAD	t3, UNIT(-1)(src),	l_exc_copy_rewind16)
216EXC(	STORE	t0, UNIT(-4)(dst),	s_exc_p4u)
217EXC(	STORE	t1, UNIT(-3)(dst),	s_exc_p3u)
218EXC(	STORE	t2, UNIT(-2)(dst),	s_exc_p2u)
219EXC(	STORE	t3, UNIT(-1)(dst),	s_exc_p1u)
220	sltu	t0, len, 256+1		# See if we can prefetch more
221	beqz	t0, 2b
222	 sltu	t0, len, 128		# See if we can loop more time
223	beqz	t0, 1b
224	 nop
225	#
226	# Jump here if there are less than 16*NBYTES left.
227	#
228cleanup_both_aligned:
229	beqz	len, done
230	 sltu	t0, len, 8*NBYTES
231	bnez	t0, less_than_8units
232	 nop
233EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
234EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
235EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
236EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
237	SUB	len, len, 8*NBYTES
238EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p8u)
239EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p7u)
240EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p6u)
241EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p5u)
242EXC(	LOAD	t0, UNIT(4)(src),	l_exc_copy)
243EXC(	LOAD	t1, UNIT(5)(src),	l_exc_copy)
244EXC(	LOAD	t2, UNIT(6)(src),	l_exc_copy)
245EXC(	LOAD	t3, UNIT(7)(src),	l_exc_copy)
246EXC(	STORE	t0, UNIT(4)(dst),	s_exc_p4u)
247EXC(	STORE	t1, UNIT(5)(dst),	s_exc_p3u)
248EXC(	STORE	t2, UNIT(6)(dst),	s_exc_p2u)
249EXC(	STORE	t3, UNIT(7)(dst),	s_exc_p1u)
250	ADD	src, src, 8*NBYTES
251	beqz	len, done
252	 ADD	dst, dst, 8*NBYTES
253	#
254	# Jump here if there are less than 8*NBYTES left.
255	#
256less_than_8units:
257	sltu	t0, len, 4*NBYTES
258	bnez	t0, less_than_4units
259	 nop
260EXC(	LOAD	t0, UNIT(0)(src),	l_exc)
261EXC(	LOAD	t1, UNIT(1)(src),	l_exc_copy)
262EXC(	LOAD	t2, UNIT(2)(src),	l_exc_copy)
263EXC(	LOAD	t3, UNIT(3)(src),	l_exc_copy)
264	SUB	len, len, 4*NBYTES
265EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u)
266EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u)
267EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u)
268EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u)
269	ADD	src, src, 4*NBYTES
270	beqz	len, done
271	 ADD	dst, dst, 4*NBYTES
272	#
273	# Jump here if there are less than 4*NBYTES left. This means
274	# we may need to copy up to 3 NBYTES words.
275	#
276less_than_4units:
277	sltu	t0, len, 1*NBYTES
278	bnez	t0, copy_bytes_checklen
279	 nop
280	#
281	# 1) Copy NBYTES, then check length again
282	#
283EXC(	LOAD	t0, 0(src),		l_exc)
284	SUB	len, len, NBYTES
285	sltu	t1, len, 8
286EXC(	STORE	t0, 0(dst),		s_exc_p1u)
287	ADD	src, src, NBYTES
288	bnez	t1, copy_bytes_checklen
289	 ADD	dst, dst, NBYTES
290	#
291	# 2) Copy NBYTES, then check length again
292	#
293EXC(	LOAD	t0, 0(src),		l_exc)
294	SUB	len, len, NBYTES
295	sltu	t1, len, 8
296EXC(	STORE	t0, 0(dst),		s_exc_p1u)
297	ADD	src, src, NBYTES
298	bnez	t1, copy_bytes_checklen
299	 ADD	dst, dst, NBYTES
300	#
301	# 3) Copy NBYTES, then check length again
302	#
303EXC(	LOAD	t0, 0(src),		l_exc)
304	SUB	len, len, NBYTES
305	ADD	src, src, NBYTES
306	ADD	dst, dst, NBYTES
307	b copy_bytes_checklen
308EXC(	 STORE	t0, -8(dst),		s_exc_p1u)
309
310src_unaligned:
311#define rem t8
312	SRL	t0, len, LOG_NBYTES+2	 # +2 for 4 units/iter
313	beqz	t0, cleanup_src_unaligned
314	 and	rem, len, (4*NBYTES-1)	 # rem = len % 4*NBYTES
3151:
316/*
317 * Avoid consecutive LD*'s to the same register since some mips
318 * implementations can't issue them in the same cycle.
319 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
320 * are to the same unit (unless src is aligned, but it's not).
321 */
322EXC(	LDFIRST t0, FIRST(0)(src),	l_exc)
323EXC(	LDFIRST t1, FIRST(1)(src),	l_exc_copy)
324	SUB	len, len, 4*NBYTES
325EXC(	LDREST	t0, REST(0)(src),	l_exc_copy)
326EXC(	LDREST	t1, REST(1)(src),	l_exc_copy)
327EXC(	LDFIRST t2, FIRST(2)(src),	l_exc_copy)
328EXC(	LDFIRST t3, FIRST(3)(src),	l_exc_copy)
329EXC(	LDREST	t2, REST(2)(src),	l_exc_copy)
330EXC(	LDREST	t3, REST(3)(src),	l_exc_copy)
331	ADD	src, src, 4*NBYTES
332EXC(	STORE	t0, UNIT(0)(dst),	s_exc_p4u)
333EXC(	STORE	t1, UNIT(1)(dst),	s_exc_p3u)
334EXC(	STORE	t2, UNIT(2)(dst),	s_exc_p2u)
335EXC(	STORE	t3, UNIT(3)(dst),	s_exc_p1u)
336	bne	len, rem, 1b
337	 ADD	dst, dst, 4*NBYTES
338
339cleanup_src_unaligned:
340	beqz	len, done
341	 and	rem, len, NBYTES-1  # rem = len % NBYTES
342	beq	rem, len, copy_bytes
343	 nop
3441:
345EXC(	LDFIRST t0, FIRST(0)(src),	l_exc)
346EXC(	LDREST	t0, REST(0)(src),	l_exc_copy)
347	SUB	len, len, NBYTES
348EXC(	STORE	t0, 0(dst),		s_exc_p1u)
349	ADD	src, src, NBYTES
350	bne	len, rem, 1b
351	 ADD	dst, dst, NBYTES
352
353copy_bytes_checklen:
354	beqz	len, done
355	 nop
356copy_bytes:
357	/* 0 < len < NBYTES  */
358#define COPY_BYTE(N)			\
359EXC(	lb	t0, N(src), l_exc);	\
360	SUB	len, len, 1;		\
361	beqz	len, done;		\
362EXC(	 sb	t0, N(dst), s_exc_p1)
363
364	COPY_BYTE(0)
365	COPY_BYTE(1)
366	COPY_BYTE(2)
367	COPY_BYTE(3)
368	COPY_BYTE(4)
369	COPY_BYTE(5)
370EXC(	lb	t0, NBYTES-2(src), l_exc)
371	SUB	len, len, 1
372	jr	ra
373EXC(	 sb	t0, NBYTES-2(dst), s_exc_p1)
374done:
375	jr	ra
376	 nop
377	END(memcpy)
378
379l_exc_copy_rewind16:
380	/* Rewind src and dst by 16*NBYTES for l_exc_copy */
381	SUB	src, src, 16*NBYTES
382	SUB	dst, dst, 16*NBYTES
383l_exc_copy:
384	/*
385	 * Copy bytes from src until faulting load address (or until a
386	 * lb faults)
387	 *
388	 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
389	 * may be more than a byte beyond the last address.
390	 * Hence, the lb below may get an exception.
391	 *
392	 * Assumes src < THREAD_BUADDR($28)
393	 */
394	LOAD	t0, TI_TASK($28)
395	LOAD	t0, THREAD_BUADDR(t0)
3961:
397EXC(	lb	t1, 0(src),	l_exc)
398	ADD	src, src, 1
399	sb	t1, 0(dst)	# can't fault -- we're copy_from_user
400	bne	src, t0, 1b
401	 ADD	dst, dst, 1
402l_exc:
403	LOAD	t0, TI_TASK($28)
404	LOAD	t0, THREAD_BUADDR(t0)	# t0 is just past last good address
405	SUB	len, AT, t0		# len number of uncopied bytes
406	jr	ra
407	 nop
408
409
410#define SEXC(n)				\
411s_exc_p ## n ## u:			\
412	jr	ra;			\
413	 ADD	len, len, n*NBYTES
414
415SEXC(16)
416SEXC(15)
417SEXC(14)
418SEXC(13)
419SEXC(12)
420SEXC(11)
421SEXC(10)
422SEXC(9)
423SEXC(8)
424SEXC(7)
425SEXC(6)
426SEXC(5)
427SEXC(4)
428SEXC(3)
429SEXC(2)
430SEXC(1)
431
432s_exc_p1:
433	jr	ra
434	 ADD	len, len, 1
435s_exc:
436	jr	ra
437	 nop
438
439	.align	5
440LEAF(memmove)
441EXPORT_SYMBOL(memmove)
442	ADD	t0, a0, a2
443	ADD	t1, a1, a2
444	sltu	t0, a1, t0			# dst + len <= src -> memcpy
445	sltu	t1, a0, t1			# dst >= src + len -> memcpy
446	and	t0, t1
447	beqz	t0, __memcpy
448	 move	v0, a0				/* return value */
449	beqz	a2, r_out
450	END(memmove)
451
452	/* fall through to __rmemcpy */
453LEAF(__rmemcpy)					/* a0=dst a1=src a2=len */
454	 sltu	t0, a1, a0
455	beqz	t0, r_end_bytes_up		# src >= dst
456	 nop
457	ADD	a0, a2				# dst = dst + len
458	ADD	a1, a2				# src = src + len
459
460r_end_bytes:
461	lb	t0, -1(a1)
462	SUB	a2, a2, 0x1
463	sb	t0, -1(a0)
464	SUB	a1, a1, 0x1
465	bnez	a2, r_end_bytes
466	 SUB	a0, a0, 0x1
467
468r_out:
469	jr	ra
470	 move	a2, zero
471
472r_end_bytes_up:
473	lb	t0, (a1)
474	SUB	a2, a2, 0x1
475	sb	t0, (a0)
476	ADD	a1, a1, 0x1
477	bnez	a2, r_end_bytes_up
478	 ADD	a0, a0, 0x1
479
480	jr	ra
481	 move	a2, zero
482	END(__rmemcpy)
483