xref: /openbmc/linux/arch/mips/cavium-octeon/executive/cvmx-bootmem.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 /*
29  * Simple allocate only memory allocator.  Used to allocate memory at
30  * application start time.
31  */
32 
33 #include <linux/export.h>
34 #include <linux/kernel.h>
35 
36 #include <asm/octeon/cvmx.h>
37 #include <asm/octeon/cvmx-spinlock.h>
38 #include <asm/octeon/cvmx-bootmem.h>
39 
40 /*#define DEBUG */
41 
42 
43 static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
44 
45 /* See header file for descriptions of functions */
46 
47 /**
48  * This macro returns the size of a member of a structure.
49  * Logically it is the same as "sizeof(s::field)" in C++, but
50  * C lacks the "::" operator.
51  */
52 #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
53 
54 /**
55  * This macro returns a member of the
56  * cvmx_bootmem_named_block_desc_t structure. These members can't
57  * be directly addressed as they might be in memory not directly
58  * reachable. In the case where bootmem is compiled with
59  * LINUX_HOST, the structure itself might be located on a remote
60  * Octeon. The argument "field" is the member name of the
61  * cvmx_bootmem_named_block_desc_t to read. Regardless of the type
62  * of the field, the return type is always a uint64_t. The "addr"
63  * parameter is the physical address of the structure.
64  */
65 #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field)			\
66 	__cvmx_bootmem_desc_get(addr,					\
67 		offsetof(struct cvmx_bootmem_named_block_desc, field),	\
68 		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
69 
70 /**
71  * This function is the implementation of the get macros defined
72  * for individual structure members. The argument are generated
73  * by the macros inorder to read only the needed memory.
74  *
75  * @param base   64bit physical address of the complete structure
76  * @param offset Offset from the beginning of the structure to the member being
77  *               accessed.
78  * @param size   Size of the structure member.
79  *
80  * @return Value of the structure member promoted into a uint64_t.
81  */
82 static inline uint64_t __cvmx_bootmem_desc_get(uint64_t base, int offset,
83 					       int size)
84 {
85 	base = (1ull << 63) | (base + offset);
86 	switch (size) {
87 	case 4:
88 		return cvmx_read64_uint32(base);
89 	case 8:
90 		return cvmx_read64_uint64(base);
91 	default:
92 		return 0;
93 	}
94 }
95 
96 /*
97  * Wrapper functions are provided for reading/writing the size and
98  * next block values as these may not be directly addressible (in 32
99  * bit applications, for instance.)  Offsets of data elements in
100  * bootmem list, must match cvmx_bootmem_block_header_t.
101  */
102 #define NEXT_OFFSET 0
103 #define SIZE_OFFSET 8
104 
105 static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
106 {
107 	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
108 }
109 
110 static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
111 {
112 	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
113 }
114 
115 static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
116 {
117 	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
118 }
119 
120 static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
121 {
122 	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
123 }
124 
125 void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
126 			       uint64_t min_addr, uint64_t max_addr)
127 {
128 	int64_t address;
129 	address =
130 	    cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
131 
132 	if (address > 0)
133 		return cvmx_phys_to_ptr(address);
134 	else
135 		return NULL;
136 }
137 
138 void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
139 				 uint64_t alignment)
140 {
141 	return cvmx_bootmem_alloc_range(size, alignment, address,
142 					address + size);
143 }
144 
145 void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
146 {
147 	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
148 }
149 
150 void *cvmx_bootmem_alloc_named_range_once(uint64_t size, uint64_t min_addr,
151 					  uint64_t max_addr, uint64_t align,
152 					  char *name,
153 					  void (*init) (void *))
154 {
155 	int64_t addr;
156 	void *ptr;
157 	uint64_t named_block_desc_addr;
158 
159 	named_block_desc_addr = (uint64_t)
160 		cvmx_bootmem_phy_named_block_find(name,
161 						  (uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING);
162 
163 	if (named_block_desc_addr) {
164 		addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
165 						    base_addr);
166 		return cvmx_phys_to_ptr(addr);
167 	}
168 
169 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
170 						  align, name,
171 						  (uint32_t)CVMX_BOOTMEM_FLAG_NO_LOCKING);
172 
173 	if (addr < 0)
174 		return NULL;
175 	ptr = cvmx_phys_to_ptr(addr);
176 
177 	if (init)
178 		init(ptr);
179 	else
180 		memset(ptr, 0, size);
181 
182 	return ptr;
183 }
184 EXPORT_SYMBOL(cvmx_bootmem_alloc_named_range_once);
185 
186 void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
187 				     uint64_t max_addr, uint64_t align,
188 				     char *name)
189 {
190 	int64_t addr;
191 
192 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
193 						  align, name, 0);
194 	if (addr >= 0)
195 		return cvmx_phys_to_ptr(addr);
196 	else
197 		return NULL;
198 }
199 
200 void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address,
201 				       char *name)
202 {
203     return cvmx_bootmem_alloc_named_range(size, address, address + size,
204 					  0, name);
205 }
206 
207 void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
208 {
209     return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
210 }
211 EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
212 
213 int cvmx_bootmem_free_named(char *name)
214 {
215 	return cvmx_bootmem_phy_named_block_free(name, 0);
216 }
217 
218 struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
219 {
220 	return cvmx_bootmem_phy_named_block_find(name, 0);
221 }
222 EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
223 
224 void cvmx_bootmem_lock(void)
225 {
226 	cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
227 }
228 
229 void cvmx_bootmem_unlock(void)
230 {
231 	cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
232 }
233 
234 int cvmx_bootmem_init(void *mem_desc_ptr)
235 {
236 	/* Here we set the global pointer to the bootmem descriptor
237 	 * block.  This pointer will be used directly, so we will set
238 	 * it up to be directly usable by the application.  It is set
239 	 * up as follows for the various runtime/ABI combinations:
240 	 *
241 	 * Linux 64 bit: Set XKPHYS bit
242 	 * Linux 32 bit: use mmap to create mapping, use virtual address
243 	 * CVMX 64 bit:	 use physical address directly
244 	 * CVMX 32 bit:	 use physical address directly
245 	 *
246 	 * Note that the CVMX environment assumes the use of 1-1 TLB
247 	 * mappings so that the physical addresses can be used
248 	 * directly
249 	 */
250 	if (!cvmx_bootmem_desc) {
251 #if   defined(CVMX_ABI_64)
252 		/* Set XKPHYS bit */
253 		cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
254 #else
255 		cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
256 #endif
257 	}
258 
259 	return 0;
260 }
261 
262 /*
263  * The cvmx_bootmem_phy* functions below return 64 bit physical
264  * addresses, and expose more features that the cvmx_bootmem_functions
265  * above.  These are required for full memory space access in 32 bit
266  * applications, as well as for using some advance features.  Most
267  * applications should not need to use these.
268  */
269 
270 int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
271 			       uint64_t address_max, uint64_t alignment,
272 			       uint32_t flags)
273 {
274 
275 	uint64_t head_addr;
276 	uint64_t ent_addr;
277 	/* points to previous list entry, NULL current entry is head of list */
278 	uint64_t prev_addr = 0;
279 	uint64_t new_ent_addr = 0;
280 	uint64_t desired_min_addr;
281 
282 #ifdef DEBUG
283 	cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
284 		     "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
285 		     (unsigned long long)req_size,
286 		     (unsigned long long)address_min,
287 		     (unsigned long long)address_max,
288 		     (unsigned long long)alignment);
289 #endif
290 
291 	if (cvmx_bootmem_desc->major_version > 3) {
292 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
293 			     "version: %d.%d at addr: %p\n",
294 			     (int)cvmx_bootmem_desc->major_version,
295 			     (int)cvmx_bootmem_desc->minor_version,
296 			     cvmx_bootmem_desc);
297 		goto error_out;
298 	}
299 
300 	/*
301 	 * Do a variety of checks to validate the arguments.  The
302 	 * allocator code will later assume that these checks have
303 	 * been made.  We validate that the requested constraints are
304 	 * not self-contradictory before we look through the list of
305 	 * available memory.
306 	 */
307 
308 	/* 0 is not a valid req_size for this allocator */
309 	if (!req_size)
310 		goto error_out;
311 
312 	/* Round req_size up to mult of minimum alignment bytes */
313 	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
314 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
315 
316 	/*
317 	 * Convert !0 address_min and 0 address_max to special case of
318 	 * range that specifies an exact memory block to allocate.  Do
319 	 * this before other checks and adjustments so that this
320 	 * tranformation will be validated.
321 	 */
322 	if (address_min && !address_max)
323 		address_max = address_min + req_size;
324 	else if (!address_min && !address_max)
325 		address_max = ~0ull;  /* If no limits given, use max limits */
326 
327 
328 	/*
329 	 * Enforce minimum alignment (this also keeps the minimum free block
330 	 * req_size the same as the alignment req_size.
331 	 */
332 	if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
333 		alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
334 
335 	/*
336 	 * Adjust address minimum based on requested alignment (round
337 	 * up to meet alignment).  Do this here so we can reject
338 	 * impossible requests up front. (NOP for address_min == 0)
339 	 */
340 	if (alignment)
341 		address_min = ALIGN(address_min, alignment);
342 
343 	/*
344 	 * Reject inconsistent args.  We have adjusted these, so this
345 	 * may fail due to our internal changes even if this check
346 	 * would pass for the values the user supplied.
347 	 */
348 	if (req_size > address_max - address_min)
349 		goto error_out;
350 
351 	/* Walk through the list entries - first fit found is returned */
352 
353 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
354 		cvmx_bootmem_lock();
355 	head_addr = cvmx_bootmem_desc->head_addr;
356 	ent_addr = head_addr;
357 	for (; ent_addr;
358 	     prev_addr = ent_addr,
359 	     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
360 		uint64_t usable_base, usable_max;
361 		uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
362 
363 		if (cvmx_bootmem_phy_get_next(ent_addr)
364 		    && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
365 			cvmx_dprintf("Internal bootmem_alloc() error: ent: "
366 				"0x%llx, next: 0x%llx\n",
367 				(unsigned long long)ent_addr,
368 				(unsigned long long)
369 				cvmx_bootmem_phy_get_next(ent_addr));
370 			goto error_out;
371 		}
372 
373 		/*
374 		 * Determine if this is an entry that can satisify the
375 		 * request Check to make sure entry is large enough to
376 		 * satisfy request.
377 		 */
378 		usable_base =
379 		    ALIGN(max(address_min, ent_addr), alignment);
380 		usable_max = min(address_max, ent_addr + ent_size);
381 		/*
382 		 * We should be able to allocate block at address
383 		 * usable_base.
384 		 */
385 
386 		desired_min_addr = usable_base;
387 		/*
388 		 * Determine if request can be satisfied from the
389 		 * current entry.
390 		 */
391 		if (!((ent_addr + ent_size) > usable_base
392 				&& ent_addr < address_max
393 				&& req_size <= usable_max - usable_base))
394 			continue;
395 		/*
396 		 * We have found an entry that has room to satisfy the
397 		 * request, so allocate it from this entry.  If end
398 		 * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
399 		 * the end of this block rather than the beginning.
400 		 */
401 		if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
402 			desired_min_addr = usable_max - req_size;
403 			/*
404 			 * Align desired address down to required
405 			 * alignment.
406 			 */
407 			desired_min_addr &= ~(alignment - 1);
408 		}
409 
410 		/* Match at start of entry */
411 		if (desired_min_addr == ent_addr) {
412 			if (req_size < ent_size) {
413 				/*
414 				 * big enough to create a new block
415 				 * from top portion of block.
416 				 */
417 				new_ent_addr = ent_addr + req_size;
418 				cvmx_bootmem_phy_set_next(new_ent_addr,
419 					cvmx_bootmem_phy_get_next(ent_addr));
420 				cvmx_bootmem_phy_set_size(new_ent_addr,
421 							ent_size -
422 							req_size);
423 
424 				/*
425 				 * Adjust next pointer as following
426 				 * code uses this.
427 				 */
428 				cvmx_bootmem_phy_set_next(ent_addr,
429 							new_ent_addr);
430 			}
431 
432 			/*
433 			 * adjust prev ptr or head to remove this
434 			 * entry from list.
435 			 */
436 			if (prev_addr)
437 				cvmx_bootmem_phy_set_next(prev_addr,
438 					cvmx_bootmem_phy_get_next(ent_addr));
439 			else
440 				/*
441 				 * head of list being returned, so
442 				 * update head ptr.
443 				 */
444 				cvmx_bootmem_desc->head_addr =
445 					cvmx_bootmem_phy_get_next(ent_addr);
446 
447 			if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
448 				cvmx_bootmem_unlock();
449 			return desired_min_addr;
450 		}
451 		/*
452 		 * block returned doesn't start at beginning of entry,
453 		 * so we know that we will be splitting a block off
454 		 * the front of this one.  Create a new block from the
455 		 * beginning, add to list, and go to top of loop
456 		 * again.
457 		 *
458 		 * create new block from high portion of
459 		 * block, so that top block starts at desired
460 		 * addr.
461 		 */
462 		new_ent_addr = desired_min_addr;
463 		cvmx_bootmem_phy_set_next(new_ent_addr,
464 					cvmx_bootmem_phy_get_next
465 					(ent_addr));
466 		cvmx_bootmem_phy_set_size(new_ent_addr,
467 					cvmx_bootmem_phy_get_size
468 					(ent_addr) -
469 					(desired_min_addr -
470 						ent_addr));
471 		cvmx_bootmem_phy_set_size(ent_addr,
472 					desired_min_addr - ent_addr);
473 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
474 		/* Loop again to handle actual alloc from new block */
475 	}
476 error_out:
477 	/* We didn't find anything, so return error */
478 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
479 		cvmx_bootmem_unlock();
480 	return -1;
481 }
482 
483 int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
484 {
485 	uint64_t cur_addr;
486 	uint64_t prev_addr = 0; /* zero is invalid */
487 	int retval = 0;
488 
489 #ifdef DEBUG
490 	cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
491 		     (unsigned long long)phy_addr, (unsigned long long)size);
492 #endif
493 	if (cvmx_bootmem_desc->major_version > 3) {
494 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
495 			     "version: %d.%d at addr: %p\n",
496 			     (int)cvmx_bootmem_desc->major_version,
497 			     (int)cvmx_bootmem_desc->minor_version,
498 			     cvmx_bootmem_desc);
499 		return 0;
500 	}
501 
502 	/* 0 is not a valid size for this allocator */
503 	if (!size)
504 		return 0;
505 
506 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
507 		cvmx_bootmem_lock();
508 	cur_addr = cvmx_bootmem_desc->head_addr;
509 	if (cur_addr == 0 || phy_addr < cur_addr) {
510 		/* add at front of list - special case with changing head ptr */
511 		if (cur_addr && phy_addr + size > cur_addr)
512 			goto bootmem_free_done; /* error, overlapping section */
513 		else if (phy_addr + size == cur_addr) {
514 			/* Add to front of existing first block */
515 			cvmx_bootmem_phy_set_next(phy_addr,
516 						  cvmx_bootmem_phy_get_next
517 						  (cur_addr));
518 			cvmx_bootmem_phy_set_size(phy_addr,
519 						  cvmx_bootmem_phy_get_size
520 						  (cur_addr) + size);
521 			cvmx_bootmem_desc->head_addr = phy_addr;
522 
523 		} else {
524 			/* New block before first block.  OK if cur_addr is 0 */
525 			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
526 			cvmx_bootmem_phy_set_size(phy_addr, size);
527 			cvmx_bootmem_desc->head_addr = phy_addr;
528 		}
529 		retval = 1;
530 		goto bootmem_free_done;
531 	}
532 
533 	/* Find place in list to add block */
534 	while (cur_addr && phy_addr > cur_addr) {
535 		prev_addr = cur_addr;
536 		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
537 	}
538 
539 	if (!cur_addr) {
540 		/*
541 		 * We have reached the end of the list, add on to end,
542 		 * checking to see if we need to combine with last
543 		 * block
544 		 */
545 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
546 		    phy_addr) {
547 			cvmx_bootmem_phy_set_size(prev_addr,
548 						  cvmx_bootmem_phy_get_size
549 						  (prev_addr) + size);
550 		} else {
551 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
552 			cvmx_bootmem_phy_set_size(phy_addr, size);
553 			cvmx_bootmem_phy_set_next(phy_addr, 0);
554 		}
555 		retval = 1;
556 		goto bootmem_free_done;
557 	} else {
558 		/*
559 		 * insert between prev and cur nodes, checking for
560 		 * merge with either/both.
561 		 */
562 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
563 		    phy_addr) {
564 			/* Merge with previous */
565 			cvmx_bootmem_phy_set_size(prev_addr,
566 						  cvmx_bootmem_phy_get_size
567 						  (prev_addr) + size);
568 			if (phy_addr + size == cur_addr) {
569 				/* Also merge with current */
570 				cvmx_bootmem_phy_set_size(prev_addr,
571 					cvmx_bootmem_phy_get_size(cur_addr) +
572 					cvmx_bootmem_phy_get_size(prev_addr));
573 				cvmx_bootmem_phy_set_next(prev_addr,
574 					cvmx_bootmem_phy_get_next(cur_addr));
575 			}
576 			retval = 1;
577 			goto bootmem_free_done;
578 		} else if (phy_addr + size == cur_addr) {
579 			/* Merge with current */
580 			cvmx_bootmem_phy_set_size(phy_addr,
581 						  cvmx_bootmem_phy_get_size
582 						  (cur_addr) + size);
583 			cvmx_bootmem_phy_set_next(phy_addr,
584 						  cvmx_bootmem_phy_get_next
585 						  (cur_addr));
586 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
587 			retval = 1;
588 			goto bootmem_free_done;
589 		}
590 
591 		/* It is a standalone block, add in between prev and cur */
592 		cvmx_bootmem_phy_set_size(phy_addr, size);
593 		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
594 		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
595 
596 	}
597 	retval = 1;
598 
599 bootmem_free_done:
600 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
601 		cvmx_bootmem_unlock();
602 	return retval;
603 
604 }
605 
606 struct cvmx_bootmem_named_block_desc *
607 	cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
608 {
609 	unsigned int i;
610 	struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
611 
612 #ifdef DEBUG
613 	cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
614 #endif
615 	/*
616 	 * Lock the structure to make sure that it is not being
617 	 * changed while we are examining it.
618 	 */
619 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
620 		cvmx_bootmem_lock();
621 
622 	/* Use XKPHYS for 64 bit linux */
623 	named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
624 	    cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
625 
626 #ifdef DEBUG
627 	cvmx_dprintf
628 	    ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
629 	     named_block_array_ptr);
630 #endif
631 	if (cvmx_bootmem_desc->major_version == 3) {
632 		for (i = 0;
633 		     i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
634 			if ((name && named_block_array_ptr[i].size
635 			     && !strncmp(name, named_block_array_ptr[i].name,
636 					 cvmx_bootmem_desc->named_block_name_len
637 					 - 1))
638 			    || (!name && !named_block_array_ptr[i].size)) {
639 				if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
640 					cvmx_bootmem_unlock();
641 
642 				return &(named_block_array_ptr[i]);
643 			}
644 		}
645 	} else {
646 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
647 			     "version: %d.%d at addr: %p\n",
648 			     (int)cvmx_bootmem_desc->major_version,
649 			     (int)cvmx_bootmem_desc->minor_version,
650 			     cvmx_bootmem_desc);
651 	}
652 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
653 		cvmx_bootmem_unlock();
654 
655 	return NULL;
656 }
657 
658 int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
659 {
660 	struct cvmx_bootmem_named_block_desc *named_block_ptr;
661 
662 	if (cvmx_bootmem_desc->major_version != 3) {
663 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
664 			     "%d.%d at addr: %p\n",
665 			     (int)cvmx_bootmem_desc->major_version,
666 			     (int)cvmx_bootmem_desc->minor_version,
667 			     cvmx_bootmem_desc);
668 		return 0;
669 	}
670 #ifdef DEBUG
671 	cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
672 #endif
673 
674 	/*
675 	 * Take lock here, as name lookup/block free/name free need to
676 	 * be atomic.
677 	 */
678 	cvmx_bootmem_lock();
679 
680 	named_block_ptr =
681 	    cvmx_bootmem_phy_named_block_find(name,
682 					      CVMX_BOOTMEM_FLAG_NO_LOCKING);
683 	if (named_block_ptr) {
684 #ifdef DEBUG
685 		cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
686 			     "%s, base: 0x%llx, size: 0x%llx\n",
687 			     name,
688 			     (unsigned long long)named_block_ptr->base_addr,
689 			     (unsigned long long)named_block_ptr->size);
690 #endif
691 		__cvmx_bootmem_phy_free(named_block_ptr->base_addr,
692 					named_block_ptr->size,
693 					CVMX_BOOTMEM_FLAG_NO_LOCKING);
694 		named_block_ptr->size = 0;
695 		/* Set size to zero to indicate block not used. */
696 	}
697 
698 	cvmx_bootmem_unlock();
699 	return named_block_ptr != NULL; /* 0 on failure, 1 on success */
700 }
701 
702 int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
703 					   uint64_t max_addr,
704 					   uint64_t alignment,
705 					   char *name,
706 					   uint32_t flags)
707 {
708 	int64_t addr_allocated;
709 	struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
710 
711 #ifdef DEBUG
712 	cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
713 		     "0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
714 		     (unsigned long long)size,
715 		     (unsigned long long)min_addr,
716 		     (unsigned long long)max_addr,
717 		     (unsigned long long)alignment,
718 		     name);
719 #endif
720 	if (cvmx_bootmem_desc->major_version != 3) {
721 		cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
722 			     "%d.%d at addr: %p\n",
723 			     (int)cvmx_bootmem_desc->major_version,
724 			     (int)cvmx_bootmem_desc->minor_version,
725 			     cvmx_bootmem_desc);
726 		return -1;
727 	}
728 
729 	/*
730 	 * Take lock here, as name lookup/block alloc/name add need to
731 	 * be atomic.
732 	 */
733 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
734 		cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
735 
736 	/* Get pointer to first available named block descriptor */
737 	named_block_desc_ptr =
738 		cvmx_bootmem_phy_named_block_find(NULL,
739 						  flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
740 
741 	/*
742 	 * Check to see if name already in use, return error if name
743 	 * not available or no more room for blocks.
744 	 */
745 	if (cvmx_bootmem_phy_named_block_find(name,
746 					      flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
747 		if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
748 			cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
749 		return -1;
750 	}
751 
752 
753 	/*
754 	 * Round size up to mult of minimum alignment bytes We need
755 	 * the actual size allocated to allow for blocks to be
756 	 * coalesced when they are freed. The alloc routine does the
757 	 * same rounding up on all allocations.
758 	 */
759 	size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
760 
761 	addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
762 						alignment,
763 						flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
764 	if (addr_allocated >= 0) {
765 		named_block_desc_ptr->base_addr = addr_allocated;
766 		named_block_desc_ptr->size = size;
767 		strncpy(named_block_desc_ptr->name, name,
768 			cvmx_bootmem_desc->named_block_name_len);
769 		named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
770 	}
771 
772 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
773 		cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
774 	return addr_allocated;
775 }
776 
777 struct cvmx_bootmem_desc *cvmx_bootmem_get_desc(void)
778 {
779 	return cvmx_bootmem_desc;
780 }
781