xref: /openbmc/linux/arch/mips/cavium-octeon/csrc-octeon.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2012 Cavium, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
13 
14 #include <asm/cpu-info.h>
15 #include <asm/cpu-type.h>
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-ipd-defs.h>
20 #include <asm/octeon/cvmx-mio-defs.h>
21 #include <asm/octeon/cvmx-rst-defs.h>
22 
23 static u64 f;
24 static u64 rdiv;
25 static u64 sdiv;
26 static u64 octeon_udelay_factor;
27 static u64 octeon_ndelay_factor;
28 
29 void __init octeon_setup_delays(void)
30 {
31 	octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
32 	/*
33 	 * For __ndelay we divide by 2^16, so the factor is multiplied
34 	 * by the same amount.
35 	 */
36 	octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
37 
38 	preset_lpj = octeon_get_clock_rate() / HZ;
39 
40 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
41 		union cvmx_mio_rst_boot rst_boot;
42 
43 		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
44 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
45 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
46 		f = (0x8000000000000000ull / sdiv) * 2;
47 	} else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
48 		union cvmx_rst_boot rst_boot;
49 
50 		rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
51 		rdiv = rst_boot.s.c_mul;	/* CPU clock */
52 		sdiv = rst_boot.s.pnr_mul;	/* I/O clock */
53 		f = (0x8000000000000000ull / sdiv) * 2;
54 	}
55 
56 }
57 
58 /*
59  * Set the current core's cvmcount counter to the value of the
60  * IPD_CLK_COUNT.  We do this on all cores as they are brought
61  * on-line.  This allows for a read from a local cpu register to
62  * access a synchronized counter.
63  *
64  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
65  */
66 void octeon_init_cvmcount(void)
67 {
68 	unsigned long flags;
69 	unsigned loops = 2;
70 
71 	/* Clobber loops so GCC will not unroll the following while loop. */
72 	asm("" : "+r" (loops));
73 
74 	local_irq_save(flags);
75 	/*
76 	 * Loop several times so we are executing from the cache,
77 	 * which should give more deterministic timing.
78 	 */
79 	while (loops--) {
80 		u64 ipd_clk_count = cvmx_read_csr(CVMX_IPD_CLK_COUNT);
81 		if (rdiv != 0) {
82 			ipd_clk_count *= rdiv;
83 			if (f != 0) {
84 				asm("dmultu\t%[cnt],%[f]\n\t"
85 				    "mfhi\t%[cnt]"
86 				    : [cnt] "+r" (ipd_clk_count)
87 				    : [f] "r" (f)
88 				    : "hi", "lo");
89 			}
90 		}
91 		write_c0_cvmcount(ipd_clk_count);
92 	}
93 	local_irq_restore(flags);
94 }
95 
96 static cycle_t octeon_cvmcount_read(struct clocksource *cs)
97 {
98 	return read_c0_cvmcount();
99 }
100 
101 static struct clocksource clocksource_mips = {
102 	.name		= "OCTEON_CVMCOUNT",
103 	.read		= octeon_cvmcount_read,
104 	.mask		= CLOCKSOURCE_MASK(64),
105 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
106 };
107 
108 unsigned long long notrace sched_clock(void)
109 {
110 	/* 64-bit arithmatic can overflow, so use 128-bit.  */
111 	u64 t1, t2, t3;
112 	unsigned long long rv;
113 	u64 mult = clocksource_mips.mult;
114 	u64 shift = clocksource_mips.shift;
115 	u64 cnt = read_c0_cvmcount();
116 
117 	asm (
118 		"dmultu\t%[cnt],%[mult]\n\t"
119 		"nor\t%[t1],$0,%[shift]\n\t"
120 		"mfhi\t%[t2]\n\t"
121 		"mflo\t%[t3]\n\t"
122 		"dsll\t%[t2],%[t2],1\n\t"
123 		"dsrlv\t%[rv],%[t3],%[shift]\n\t"
124 		"dsllv\t%[t1],%[t2],%[t1]\n\t"
125 		"or\t%[rv],%[t1],%[rv]\n\t"
126 		: [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
127 		: [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
128 		: "hi", "lo");
129 	return rv;
130 }
131 
132 void __init plat_time_init(void)
133 {
134 	clocksource_mips.rating = 300;
135 	clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
136 }
137 
138 void __udelay(unsigned long us)
139 {
140 	u64 cur, end, inc;
141 
142 	cur = read_c0_cvmcount();
143 
144 	inc = us * octeon_udelay_factor;
145 	end = cur + inc;
146 
147 	while (end > cur)
148 		cur = read_c0_cvmcount();
149 }
150 EXPORT_SYMBOL(__udelay);
151 
152 void __ndelay(unsigned long ns)
153 {
154 	u64 cur, end, inc;
155 
156 	cur = read_c0_cvmcount();
157 
158 	inc = ((ns * octeon_ndelay_factor) >> 16);
159 	end = cur + inc;
160 
161 	while (end > cur)
162 		cur = read_c0_cvmcount();
163 }
164 EXPORT_SYMBOL(__ndelay);
165 
166 void __delay(unsigned long loops)
167 {
168 	u64 cur, end;
169 
170 	cur = read_c0_cvmcount();
171 	end = cur + loops;
172 
173 	while (end > cur)
174 		cur = read_c0_cvmcount();
175 }
176 EXPORT_SYMBOL(__delay);
177 
178 
179 /**
180  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
181  *
182  * We scale the wait by the clock ratio, and then wait for the
183  * corresponding number of core clocks.
184  *
185  * @count: The number of clocks to wait.
186  */
187 void octeon_io_clk_delay(unsigned long count)
188 {
189 	u64 cur, end;
190 
191 	cur = read_c0_cvmcount();
192 	if (rdiv != 0) {
193 		end = count * rdiv;
194 		if (f != 0) {
195 			asm("dmultu\t%[cnt],%[f]\n\t"
196 				"mfhi\t%[cnt]"
197 				: [cnt] "+r" (end)
198 				: [f] "r" (f)
199 				: "hi", "lo");
200 		}
201 		end = cur + end;
202 	} else {
203 		end = cur + count;
204 	}
205 	while (end > cur)
206 		cur = read_c0_cvmcount();
207 }
208 EXPORT_SYMBOL(octeon_io_clk_delay);
209