1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Cryptographic API. 4 * 5 * SHA-512 and SHA-384 Secure Hash Algorithm. 6 * 7 * Adapted for OCTEON by Aaro Koskinen <aaro.koskinen@iki.fi>. 8 * 9 * Based on crypto/sha512_generic.c, which is: 10 * 11 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> 12 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 13 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org> 14 */ 15 16 #include <linux/mm.h> 17 #include <crypto/sha2.h> 18 #include <crypto/sha512_base.h> 19 #include <linux/init.h> 20 #include <linux/types.h> 21 #include <linux/module.h> 22 #include <asm/byteorder.h> 23 #include <asm/octeon/octeon.h> 24 #include <crypto/internal/hash.h> 25 26 #include "octeon-crypto.h" 27 28 /* 29 * We pass everything as 64-bit. OCTEON can handle misaligned data. 30 */ 31 32 static void octeon_sha512_store_hash(struct sha512_state *sctx) 33 { 34 write_octeon_64bit_hash_sha512(sctx->state[0], 0); 35 write_octeon_64bit_hash_sha512(sctx->state[1], 1); 36 write_octeon_64bit_hash_sha512(sctx->state[2], 2); 37 write_octeon_64bit_hash_sha512(sctx->state[3], 3); 38 write_octeon_64bit_hash_sha512(sctx->state[4], 4); 39 write_octeon_64bit_hash_sha512(sctx->state[5], 5); 40 write_octeon_64bit_hash_sha512(sctx->state[6], 6); 41 write_octeon_64bit_hash_sha512(sctx->state[7], 7); 42 } 43 44 static void octeon_sha512_read_hash(struct sha512_state *sctx) 45 { 46 sctx->state[0] = read_octeon_64bit_hash_sha512(0); 47 sctx->state[1] = read_octeon_64bit_hash_sha512(1); 48 sctx->state[2] = read_octeon_64bit_hash_sha512(2); 49 sctx->state[3] = read_octeon_64bit_hash_sha512(3); 50 sctx->state[4] = read_octeon_64bit_hash_sha512(4); 51 sctx->state[5] = read_octeon_64bit_hash_sha512(5); 52 sctx->state[6] = read_octeon_64bit_hash_sha512(6); 53 sctx->state[7] = read_octeon_64bit_hash_sha512(7); 54 } 55 56 static void octeon_sha512_transform(const void *_block) 57 { 58 const u64 *block = _block; 59 60 write_octeon_64bit_block_sha512(block[0], 0); 61 write_octeon_64bit_block_sha512(block[1], 1); 62 write_octeon_64bit_block_sha512(block[2], 2); 63 write_octeon_64bit_block_sha512(block[3], 3); 64 write_octeon_64bit_block_sha512(block[4], 4); 65 write_octeon_64bit_block_sha512(block[5], 5); 66 write_octeon_64bit_block_sha512(block[6], 6); 67 write_octeon_64bit_block_sha512(block[7], 7); 68 write_octeon_64bit_block_sha512(block[8], 8); 69 write_octeon_64bit_block_sha512(block[9], 9); 70 write_octeon_64bit_block_sha512(block[10], 10); 71 write_octeon_64bit_block_sha512(block[11], 11); 72 write_octeon_64bit_block_sha512(block[12], 12); 73 write_octeon_64bit_block_sha512(block[13], 13); 74 write_octeon_64bit_block_sha512(block[14], 14); 75 octeon_sha512_start(block[15]); 76 } 77 78 static void __octeon_sha512_update(struct sha512_state *sctx, const u8 *data, 79 unsigned int len) 80 { 81 unsigned int part_len; 82 unsigned int index; 83 unsigned int i; 84 85 /* Compute number of bytes mod 128. */ 86 index = sctx->count[0] % SHA512_BLOCK_SIZE; 87 88 /* Update number of bytes. */ 89 if ((sctx->count[0] += len) < len) 90 sctx->count[1]++; 91 92 part_len = SHA512_BLOCK_SIZE - index; 93 94 /* Transform as many times as possible. */ 95 if (len >= part_len) { 96 memcpy(&sctx->buf[index], data, part_len); 97 octeon_sha512_transform(sctx->buf); 98 99 for (i = part_len; i + SHA512_BLOCK_SIZE <= len; 100 i += SHA512_BLOCK_SIZE) 101 octeon_sha512_transform(&data[i]); 102 103 index = 0; 104 } else { 105 i = 0; 106 } 107 108 /* Buffer remaining input. */ 109 memcpy(&sctx->buf[index], &data[i], len - i); 110 } 111 112 static int octeon_sha512_update(struct shash_desc *desc, const u8 *data, 113 unsigned int len) 114 { 115 struct sha512_state *sctx = shash_desc_ctx(desc); 116 struct octeon_cop2_state state; 117 unsigned long flags; 118 119 /* 120 * Small updates never reach the crypto engine, so the generic sha512 is 121 * faster because of the heavyweight octeon_crypto_enable() / 122 * octeon_crypto_disable(). 123 */ 124 if ((sctx->count[0] % SHA512_BLOCK_SIZE) + len < SHA512_BLOCK_SIZE) 125 return crypto_sha512_update(desc, data, len); 126 127 flags = octeon_crypto_enable(&state); 128 octeon_sha512_store_hash(sctx); 129 130 __octeon_sha512_update(sctx, data, len); 131 132 octeon_sha512_read_hash(sctx); 133 octeon_crypto_disable(&state, flags); 134 135 return 0; 136 } 137 138 static int octeon_sha512_final(struct shash_desc *desc, u8 *hash) 139 { 140 struct sha512_state *sctx = shash_desc_ctx(desc); 141 static u8 padding[128] = { 0x80, }; 142 struct octeon_cop2_state state; 143 __be64 *dst = (__be64 *)hash; 144 unsigned int pad_len; 145 unsigned long flags; 146 unsigned int index; 147 __be64 bits[2]; 148 int i; 149 150 /* Save number of bits. */ 151 bits[1] = cpu_to_be64(sctx->count[0] << 3); 152 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61); 153 154 /* Pad out to 112 mod 128. */ 155 index = sctx->count[0] & 0x7f; 156 pad_len = (index < 112) ? (112 - index) : ((128+112) - index); 157 158 flags = octeon_crypto_enable(&state); 159 octeon_sha512_store_hash(sctx); 160 161 __octeon_sha512_update(sctx, padding, pad_len); 162 163 /* Append length (before padding). */ 164 __octeon_sha512_update(sctx, (const u8 *)bits, sizeof(bits)); 165 166 octeon_sha512_read_hash(sctx); 167 octeon_crypto_disable(&state, flags); 168 169 /* Store state in digest. */ 170 for (i = 0; i < 8; i++) 171 dst[i] = cpu_to_be64(sctx->state[i]); 172 173 /* Zeroize sensitive information. */ 174 memset(sctx, 0, sizeof(struct sha512_state)); 175 176 return 0; 177 } 178 179 static int octeon_sha384_final(struct shash_desc *desc, u8 *hash) 180 { 181 u8 D[64]; 182 183 octeon_sha512_final(desc, D); 184 185 memcpy(hash, D, 48); 186 memzero_explicit(D, 64); 187 188 return 0; 189 } 190 191 static struct shash_alg octeon_sha512_algs[2] = { { 192 .digestsize = SHA512_DIGEST_SIZE, 193 .init = sha512_base_init, 194 .update = octeon_sha512_update, 195 .final = octeon_sha512_final, 196 .descsize = sizeof(struct sha512_state), 197 .base = { 198 .cra_name = "sha512", 199 .cra_driver_name= "octeon-sha512", 200 .cra_priority = OCTEON_CR_OPCODE_PRIORITY, 201 .cra_blocksize = SHA512_BLOCK_SIZE, 202 .cra_module = THIS_MODULE, 203 } 204 }, { 205 .digestsize = SHA384_DIGEST_SIZE, 206 .init = sha384_base_init, 207 .update = octeon_sha512_update, 208 .final = octeon_sha384_final, 209 .descsize = sizeof(struct sha512_state), 210 .base = { 211 .cra_name = "sha384", 212 .cra_driver_name= "octeon-sha384", 213 .cra_priority = OCTEON_CR_OPCODE_PRIORITY, 214 .cra_blocksize = SHA384_BLOCK_SIZE, 215 .cra_module = THIS_MODULE, 216 } 217 } }; 218 219 static int __init octeon_sha512_mod_init(void) 220 { 221 if (!octeon_has_crypto()) 222 return -ENOTSUPP; 223 return crypto_register_shashes(octeon_sha512_algs, 224 ARRAY_SIZE(octeon_sha512_algs)); 225 } 226 227 static void __exit octeon_sha512_mod_fini(void) 228 { 229 crypto_unregister_shashes(octeon_sha512_algs, 230 ARRAY_SIZE(octeon_sha512_algs)); 231 } 232 233 module_init(octeon_sha512_mod_init); 234 module_exit(octeon_sha512_mod_fini); 235 236 MODULE_LICENSE("GPL"); 237 MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms (OCTEON)"); 238 MODULE_AUTHOR("Aaro Koskinen <aaro.koskinen@iki.fi>"); 239