xref: /openbmc/linux/arch/mips/alchemy/common/dma.c (revision 81d67439)
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      A DMA channel allocator for Au1x00. API is modeled loosely off of
5  *      linux/kernel/dma.c.
6  *
7  * Copyright 2000, 2008 MontaVista Software Inc.
8  * Author: MontaVista Software, Inc. <source@mvista.com>
9  * Copyright (C) 2005 Ralf Baechle (ralf@linux-mips.org)
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/errno.h>
37 #include <linux/spinlock.h>
38 #include <linux/interrupt.h>
39 
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1000_dma.h>
42 
43 #if defined(CONFIG_SOC_AU1000) || defined(CONFIG_SOC_AU1500) || \
44     defined(CONFIG_SOC_AU1100)
45 /*
46  * A note on resource allocation:
47  *
48  * All drivers needing DMA channels, should allocate and release them
49  * through the public routines `request_dma()' and `free_dma()'.
50  *
51  * In order to avoid problems, all processes should allocate resources in
52  * the same sequence and release them in the reverse order.
53  *
54  * So, when allocating DMAs and IRQs, first allocate the DMA, then the IRQ.
55  * When releasing them, first release the IRQ, then release the DMA. The
56  * main reason for this order is that, if you are requesting the DMA buffer
57  * done interrupt, you won't know the irq number until the DMA channel is
58  * returned from request_dma.
59  */
60 
61 /* DMA Channel register block spacing */
62 #define DMA_CHANNEL_LEN		0x00000100
63 
64 DEFINE_SPINLOCK(au1000_dma_spin_lock);
65 
66 struct dma_chan au1000_dma_table[NUM_AU1000_DMA_CHANNELS] = {
67       {.dev_id = -1,},
68       {.dev_id = -1,},
69       {.dev_id = -1,},
70       {.dev_id = -1,},
71       {.dev_id = -1,},
72       {.dev_id = -1,},
73       {.dev_id = -1,},
74       {.dev_id = -1,}
75 };
76 EXPORT_SYMBOL(au1000_dma_table);
77 
78 /* Device FIFO addresses and default DMA modes */
79 static const struct dma_dev {
80 	unsigned int fifo_addr;
81 	unsigned int dma_mode;
82 } dma_dev_table[DMA_NUM_DEV] = {
83 	{ AU1000_UART0_PHYS_ADDR + 0x04, DMA_DW8 },		/* UART0_TX */
84 	{ AU1000_UART0_PHYS_ADDR + 0x00, DMA_DW8 | DMA_DR },	/* UART0_RX */
85 	{ 0, 0 },	/* DMA_REQ0 */
86 	{ 0, 0 },	/* DMA_REQ1 */
87 	{ AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 },		/* AC97 TX c */
88 	{ AU1000_AC97_PHYS_ADDR + 0x08, DMA_DW16 | DMA_DR },	/* AC97 RX c */
89 	{ AU1000_UART3_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC },	/* UART3_TX */
90 	{ AU1000_UART3_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* UART3_RX */
91 	{ AU1000_USBD_PHYS_ADDR + 0x00, DMA_DW8 | DMA_NC | DMA_DR }, /* EP0RD */
92 	{ AU1000_USBD_PHYS_ADDR + 0x04, DMA_DW8 | DMA_NC }, /* EP0WR */
93 	{ AU1000_USBD_PHYS_ADDR + 0x08, DMA_DW8 | DMA_NC }, /* EP2WR */
94 	{ AU1000_USBD_PHYS_ADDR + 0x0c, DMA_DW8 | DMA_NC }, /* EP3WR */
95 	{ AU1000_USBD_PHYS_ADDR + 0x10, DMA_DW8 | DMA_NC | DMA_DR }, /* EP4RD */
96 	{ AU1000_USBD_PHYS_ADDR + 0x14, DMA_DW8 | DMA_NC | DMA_DR }, /* EP5RD */
97 	/* on Au1500, these 2 are DMA_REQ2/3 (GPIO208/209) instead! */
98 	{ AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC},	/* I2S TX */
99 	{ AU1000_I2S_PHYS_ADDR + 0x00, DMA_DW32 | DMA_NC | DMA_DR}, /* I2S RX */
100 };
101 
102 int au1000_dma_read_proc(char *buf, char **start, off_t fpos,
103 			 int length, int *eof, void *data)
104 {
105 	int i, len = 0;
106 	struct dma_chan *chan;
107 
108 	for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++) {
109 		chan = get_dma_chan(i);
110 		if (chan != NULL)
111 			len += sprintf(buf + len, "%2d: %s\n",
112 				       i, chan->dev_str);
113 	}
114 
115 	if (fpos >= len) {
116 		*start = buf;
117 		*eof = 1;
118 		return 0;
119 	}
120 	*start = buf + fpos;
121 	len -= fpos;
122 	if (len > length)
123 		return length;
124 	*eof = 1;
125 	return len;
126 }
127 
128 /* Device FIFO addresses and default DMA modes - 2nd bank */
129 static const struct dma_dev dma_dev_table_bank2[DMA_NUM_DEV_BANK2] = {
130 	{ AU1100_SD0_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 },		/* coherent */
131 	{ AU1100_SD0_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR },	/* coherent */
132 	{ AU1100_SD1_PHYS_ADDR + 0x00, DMA_DS | DMA_DW8 },		/* coherent */
133 	{ AU1100_SD1_PHYS_ADDR + 0x04, DMA_DS | DMA_DW8 | DMA_DR }	/* coherent */
134 };
135 
136 void dump_au1000_dma_channel(unsigned int dmanr)
137 {
138 	struct dma_chan *chan;
139 
140 	if (dmanr >= NUM_AU1000_DMA_CHANNELS)
141 		return;
142 	chan = &au1000_dma_table[dmanr];
143 
144 	printk(KERN_INFO "Au1000 DMA%d Register Dump:\n", dmanr);
145 	printk(KERN_INFO "  mode = 0x%08x\n",
146 	       au_readl(chan->io + DMA_MODE_SET));
147 	printk(KERN_INFO "  addr = 0x%08x\n",
148 	       au_readl(chan->io + DMA_PERIPHERAL_ADDR));
149 	printk(KERN_INFO "  start0 = 0x%08x\n",
150 	       au_readl(chan->io + DMA_BUFFER0_START));
151 	printk(KERN_INFO "  start1 = 0x%08x\n",
152 	       au_readl(chan->io + DMA_BUFFER1_START));
153 	printk(KERN_INFO "  count0 = 0x%08x\n",
154 	       au_readl(chan->io + DMA_BUFFER0_COUNT));
155 	printk(KERN_INFO "  count1 = 0x%08x\n",
156 	       au_readl(chan->io + DMA_BUFFER1_COUNT));
157 }
158 
159 /*
160  * Finds a free channel, and binds the requested device to it.
161  * Returns the allocated channel number, or negative on error.
162  * Requests the DMA done IRQ if irqhandler != NULL.
163  */
164 int request_au1000_dma(int dev_id, const char *dev_str,
165 		       irq_handler_t irqhandler,
166 		       unsigned long irqflags,
167 		       void *irq_dev_id)
168 {
169 	struct dma_chan *chan;
170 	const struct dma_dev *dev;
171 	int i, ret;
172 
173 #if defined(CONFIG_SOC_AU1100)
174 	if (dev_id < 0 || dev_id >= (DMA_NUM_DEV + DMA_NUM_DEV_BANK2))
175 		return -EINVAL;
176 #else
177 	if (dev_id < 0 || dev_id >= DMA_NUM_DEV)
178 		return -EINVAL;
179 #endif
180 
181 	for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
182 		if (au1000_dma_table[i].dev_id < 0)
183 			break;
184 
185 	if (i == NUM_AU1000_DMA_CHANNELS)
186 		return -ENODEV;
187 
188 	chan = &au1000_dma_table[i];
189 
190 	if (dev_id >= DMA_NUM_DEV) {
191 		dev_id -= DMA_NUM_DEV;
192 		dev = &dma_dev_table_bank2[dev_id];
193 	} else
194 		dev = &dma_dev_table[dev_id];
195 
196 	if (irqhandler) {
197 		chan->irq_dev = irq_dev_id;
198 		ret = request_irq(chan->irq, irqhandler, irqflags, dev_str,
199 				  chan->irq_dev);
200 		if (ret) {
201 			chan->irq_dev = NULL;
202 			return ret;
203 		}
204 	} else {
205 		chan->irq_dev = NULL;
206 	}
207 
208 	/* fill it in */
209 	chan->io = KSEG1ADDR(AU1000_DMA_PHYS_ADDR) + i * DMA_CHANNEL_LEN;
210 	chan->dev_id = dev_id;
211 	chan->dev_str = dev_str;
212 	chan->fifo_addr = dev->fifo_addr;
213 	chan->mode = dev->dma_mode;
214 
215 	/* initialize the channel before returning */
216 	init_dma(i);
217 
218 	return i;
219 }
220 EXPORT_SYMBOL(request_au1000_dma);
221 
222 void free_au1000_dma(unsigned int dmanr)
223 {
224 	struct dma_chan *chan = get_dma_chan(dmanr);
225 
226 	if (!chan) {
227 		printk(KERN_ERR "Error trying to free DMA%d\n", dmanr);
228 		return;
229 	}
230 
231 	disable_dma(dmanr);
232 	if (chan->irq_dev)
233 		free_irq(chan->irq, chan->irq_dev);
234 
235 	chan->irq_dev = NULL;
236 	chan->dev_id = -1;
237 }
238 EXPORT_SYMBOL(free_au1000_dma);
239 
240 static int __init au1000_dma_init(void)
241 {
242         int base, i;
243 
244         switch (alchemy_get_cputype()) {
245         case ALCHEMY_CPU_AU1000:
246                 base = AU1000_DMA_INT_BASE;
247                 break;
248         case ALCHEMY_CPU_AU1500:
249                 base = AU1500_DMA_INT_BASE;
250                 break;
251         case ALCHEMY_CPU_AU1100:
252                 base = AU1100_DMA_INT_BASE;
253                 break;
254         default:
255                 goto out;
256         }
257 
258         for (i = 0; i < NUM_AU1000_DMA_CHANNELS; i++)
259                 au1000_dma_table[i].irq = base + i;
260 
261         printk(KERN_INFO "Alchemy DMA initialized\n");
262 
263 out:
264         return 0;
265 }
266 arch_initcall(au1000_dma_init);
267 
268 #endif /* AU1000 AU1500 AU1100 */
269