1 /* 2 * 3 * BRIEF MODULE DESCRIPTION 4 * The Descriptor Based DMA channel manager that first appeared 5 * on the Au1550. I started with dma.c, but I think all that is 6 * left is this initial comment :-) 7 * 8 * Copyright 2004 Embedded Edge, LLC 9 * dan@embeddededge.com 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * You should have received a copy of the GNU General Public License along 28 * with this program; if not, write to the Free Software Foundation, Inc., 29 * 675 Mass Ave, Cambridge, MA 02139, USA. 30 * 31 */ 32 33 #include <linux/init.h> 34 #include <linux/kernel.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/interrupt.h> 38 #include <linux/export.h> 39 #include <linux/syscore_ops.h> 40 #include <asm/mach-au1x00/au1000.h> 41 #include <asm/mach-au1x00/au1xxx_dbdma.h> 42 43 /* 44 * The Descriptor Based DMA supports up to 16 channels. 45 * 46 * There are 32 devices defined. We keep an internal structure 47 * of devices using these channels, along with additional 48 * information. 49 * 50 * We allocate the descriptors and allow access to them through various 51 * functions. The drivers allocate the data buffers and assign them 52 * to the descriptors. 53 */ 54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock); 55 56 /* I couldn't find a macro that did this... */ 57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1)) 58 59 static dbdma_global_t *dbdma_gptr = 60 (dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 61 static int dbdma_initialized; 62 63 static dbdev_tab_t *dbdev_tab; 64 65 static dbdev_tab_t au1550_dbdev_tab[] __initdata = { 66 /* UARTS */ 67 { AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, 68 { AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, 69 { AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 }, 70 { AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 }, 71 72 /* EXT DMA */ 73 { AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 74 { AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 75 { AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 }, 76 { AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 }, 77 78 /* USB DEV */ 79 { AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 }, 80 { AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 }, 81 { AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 }, 82 { AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 }, 83 { AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 }, 84 { AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 }, 85 86 /* PSCs */ 87 { AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 }, 88 { AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 }, 89 { AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 }, 90 { AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 }, 91 { AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 }, 92 { AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 }, 93 { AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 }, 94 { AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 }, 95 96 { AU1550_DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */ 97 { AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */ 98 99 /* MAC 0 */ 100 { AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 101 { AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, 102 103 /* MAC 1 */ 104 { AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 105 { AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 }, 106 107 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 108 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 109 }; 110 111 static dbdev_tab_t au1200_dbdev_tab[] __initdata = { 112 { AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 }, 113 { AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 }, 114 { AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 }, 115 { AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 }, 116 117 { AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 118 { AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 119 120 { AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 121 { AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 122 { AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 123 { AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 124 125 { AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, 126 { AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, 127 { AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 }, 128 { AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 }, 129 130 { AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, 131 { AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, 132 133 { AU1200_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 }, 134 { AU1200_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 }, 135 { AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 136 { AU1200_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 }, 137 { AU1200_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 }, 138 { AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 139 140 { AU1200_DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 }, 141 { AU1200_DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 }, 142 { AU1200_DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 }, 143 { AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 144 145 { AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 146 147 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 148 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 149 }; 150 151 static dbdev_tab_t au1300_dbdev_tab[] __initdata = { 152 { AU1300_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x10100004, 0, 0 }, 153 { AU1300_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x10100000, 0, 0 }, 154 { AU1300_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x10101004, 0, 0 }, 155 { AU1300_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x10101000, 0, 0 }, 156 { AU1300_DSCR_CMD0_UART2_TX, DEV_FLAGS_OUT, 0, 8, 0x10102004, 0, 0 }, 157 { AU1300_DSCR_CMD0_UART2_RX, DEV_FLAGS_IN, 0, 8, 0x10102000, 0, 0 }, 158 { AU1300_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x10103004, 0, 0 }, 159 { AU1300_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x10103000, 0, 0 }, 160 161 { AU1300_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 }, 162 { AU1300_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 }, 163 { AU1300_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 8, 8, 0x10601000, 0, 0 }, 164 { AU1300_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 8, 8, 0x10601004, 0, 0 }, 165 166 { AU1300_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 }, 167 { AU1300_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 }, 168 169 { AU1300_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0001c, 0, 0 }, 170 { AU1300_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x10a0001c, 0, 0 }, 171 { AU1300_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0101c, 0, 0 }, 172 { AU1300_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x10a0101c, 0, 0 }, 173 { AU1300_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0201c, 0, 0 }, 174 { AU1300_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 16, 0x10a0201c, 0, 0 }, 175 { AU1300_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 16, 0x10a0301c, 0, 0 }, 176 { AU1300_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 16, 0x10a0301c, 0, 0 }, 177 178 { AU1300_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 179 { AU1300_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 }, 180 181 { AU1300_DSCR_CMD0_SDMS_TX2, DEV_FLAGS_OUT, 4, 8, 0x10602000, 0, 0 }, 182 { AU1300_DSCR_CMD0_SDMS_RX2, DEV_FLAGS_IN, 4, 8, 0x10602004, 0, 0 }, 183 184 { AU1300_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 185 186 { AU1300_DSCR_CMD0_UDMA, DEV_FLAGS_ANYUSE, 0, 32, 0x14001810, 0, 0 }, 187 188 { AU1300_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 }, 189 { AU1300_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 }, 190 191 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 192 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 }, 193 }; 194 195 /* 32 predefined plus 32 custom */ 196 #define DBDEV_TAB_SIZE 64 197 198 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS]; 199 200 static dbdev_tab_t *find_dbdev_id(u32 id) 201 { 202 int i; 203 dbdev_tab_t *p; 204 for (i = 0; i < DBDEV_TAB_SIZE; ++i) { 205 p = &dbdev_tab[i]; 206 if (p->dev_id == id) 207 return p; 208 } 209 return NULL; 210 } 211 212 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp) 213 { 214 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 215 } 216 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt); 217 218 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev) 219 { 220 u32 ret = 0; 221 dbdev_tab_t *p; 222 static u16 new_id = 0x1000; 223 224 p = find_dbdev_id(~0); 225 if (NULL != p) { 226 memcpy(p, dev, sizeof(dbdev_tab_t)); 227 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id); 228 ret = p->dev_id; 229 new_id++; 230 #if 0 231 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n", 232 p->dev_id, p->dev_flags, p->dev_physaddr); 233 #endif 234 } 235 236 return ret; 237 } 238 EXPORT_SYMBOL(au1xxx_ddma_add_device); 239 240 void au1xxx_ddma_del_device(u32 devid) 241 { 242 dbdev_tab_t *p = find_dbdev_id(devid); 243 244 if (p != NULL) { 245 memset(p, 0, sizeof(dbdev_tab_t)); 246 p->dev_id = ~0; 247 } 248 } 249 EXPORT_SYMBOL(au1xxx_ddma_del_device); 250 251 /* Allocate a channel and return a non-zero descriptor if successful. */ 252 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid, 253 void (*callback)(int, void *), void *callparam) 254 { 255 unsigned long flags; 256 u32 used, chan; 257 u32 dcp; 258 int i; 259 dbdev_tab_t *stp, *dtp; 260 chan_tab_t *ctp; 261 au1x_dma_chan_t *cp; 262 263 /* 264 * We do the initialization on the first channel allocation. 265 * We have to wait because of the interrupt handler initialization 266 * which can't be done successfully during board set up. 267 */ 268 if (!dbdma_initialized) 269 return 0; 270 271 stp = find_dbdev_id(srcid); 272 if (stp == NULL) 273 return 0; 274 dtp = find_dbdev_id(destid); 275 if (dtp == NULL) 276 return 0; 277 278 used = 0; 279 280 /* Check to see if we can get both channels. */ 281 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); 282 if (!(stp->dev_flags & DEV_FLAGS_INUSE) || 283 (stp->dev_flags & DEV_FLAGS_ANYUSE)) { 284 /* Got source */ 285 stp->dev_flags |= DEV_FLAGS_INUSE; 286 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) || 287 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) { 288 /* Got destination */ 289 dtp->dev_flags |= DEV_FLAGS_INUSE; 290 } else { 291 /* Can't get dest. Release src. */ 292 stp->dev_flags &= ~DEV_FLAGS_INUSE; 293 used++; 294 } 295 } else 296 used++; 297 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); 298 299 if (used) 300 return 0; 301 302 /* Let's see if we can allocate a channel for it. */ 303 ctp = NULL; 304 chan = 0; 305 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags); 306 for (i = 0; i < NUM_DBDMA_CHANS; i++) 307 if (chan_tab_ptr[i] == NULL) { 308 /* 309 * If kmalloc fails, it is caught below same 310 * as a channel not available. 311 */ 312 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC); 313 chan_tab_ptr[i] = ctp; 314 break; 315 } 316 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags); 317 318 if (ctp != NULL) { 319 memset(ctp, 0, sizeof(chan_tab_t)); 320 ctp->chan_index = chan = i; 321 dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 322 dcp += (0x0100 * chan); 323 ctp->chan_ptr = (au1x_dma_chan_t *)dcp; 324 cp = (au1x_dma_chan_t *)dcp; 325 ctp->chan_src = stp; 326 ctp->chan_dest = dtp; 327 ctp->chan_callback = callback; 328 ctp->chan_callparam = callparam; 329 330 /* Initialize channel configuration. */ 331 i = 0; 332 if (stp->dev_intlevel) 333 i |= DDMA_CFG_SED; 334 if (stp->dev_intpolarity) 335 i |= DDMA_CFG_SP; 336 if (dtp->dev_intlevel) 337 i |= DDMA_CFG_DED; 338 if (dtp->dev_intpolarity) 339 i |= DDMA_CFG_DP; 340 if ((stp->dev_flags & DEV_FLAGS_SYNC) || 341 (dtp->dev_flags & DEV_FLAGS_SYNC)) 342 i |= DDMA_CFG_SYNC; 343 cp->ddma_cfg = i; 344 wmb(); /* drain writebuffer */ 345 346 /* 347 * Return a non-zero value that can be used to find the channel 348 * information in subsequent operations. 349 */ 350 return (u32)(&chan_tab_ptr[chan]); 351 } 352 353 /* Release devices */ 354 stp->dev_flags &= ~DEV_FLAGS_INUSE; 355 dtp->dev_flags &= ~DEV_FLAGS_INUSE; 356 357 return 0; 358 } 359 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc); 360 361 /* 362 * Set the device width if source or destination is a FIFO. 363 * Should be 8, 16, or 32 bits. 364 */ 365 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits) 366 { 367 u32 rv; 368 chan_tab_t *ctp; 369 dbdev_tab_t *stp, *dtp; 370 371 ctp = *((chan_tab_t **)chanid); 372 stp = ctp->chan_src; 373 dtp = ctp->chan_dest; 374 rv = 0; 375 376 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */ 377 rv = stp->dev_devwidth; 378 stp->dev_devwidth = bits; 379 } 380 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */ 381 rv = dtp->dev_devwidth; 382 dtp->dev_devwidth = bits; 383 } 384 385 return rv; 386 } 387 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth); 388 389 /* Allocate a descriptor ring, initializing as much as possible. */ 390 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries) 391 { 392 int i; 393 u32 desc_base, srcid, destid; 394 u32 cmd0, cmd1, src1, dest1; 395 u32 src0, dest0; 396 chan_tab_t *ctp; 397 dbdev_tab_t *stp, *dtp; 398 au1x_ddma_desc_t *dp; 399 400 /* 401 * I guess we could check this to be within the 402 * range of the table...... 403 */ 404 ctp = *((chan_tab_t **)chanid); 405 stp = ctp->chan_src; 406 dtp = ctp->chan_dest; 407 408 /* 409 * The descriptors must be 32-byte aligned. There is a 410 * possibility the allocation will give us such an address, 411 * and if we try that first we are likely to not waste larger 412 * slabs of memory. 413 */ 414 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t), 415 GFP_KERNEL|GFP_DMA); 416 if (desc_base == 0) 417 return 0; 418 419 if (desc_base & 0x1f) { 420 /* 421 * Lost....do it again, allocate extra, and round 422 * the address base. 423 */ 424 kfree((const void *)desc_base); 425 i = entries * sizeof(au1x_ddma_desc_t); 426 i += (sizeof(au1x_ddma_desc_t) - 1); 427 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA); 428 if (desc_base == 0) 429 return 0; 430 431 ctp->cdb_membase = desc_base; 432 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t)); 433 } else 434 ctp->cdb_membase = desc_base; 435 436 dp = (au1x_ddma_desc_t *)desc_base; 437 438 /* Keep track of the base descriptor. */ 439 ctp->chan_desc_base = dp; 440 441 /* Initialize the rings with as much information as we know. */ 442 srcid = stp->dev_id; 443 destid = dtp->dev_id; 444 445 cmd0 = cmd1 = src1 = dest1 = 0; 446 src0 = dest0 = 0; 447 448 cmd0 |= DSCR_CMD0_SID(srcid); 449 cmd0 |= DSCR_CMD0_DID(destid); 450 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV; 451 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE); 452 453 /* Is it mem to mem transfer? */ 454 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) || 455 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) && 456 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) || 457 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS))) 458 cmd0 |= DSCR_CMD0_MEM; 459 460 switch (stp->dev_devwidth) { 461 case 8: 462 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE); 463 break; 464 case 16: 465 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD); 466 break; 467 case 32: 468 default: 469 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD); 470 break; 471 } 472 473 switch (dtp->dev_devwidth) { 474 case 8: 475 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE); 476 break; 477 case 16: 478 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD); 479 break; 480 case 32: 481 default: 482 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD); 483 break; 484 } 485 486 /* 487 * If the device is marked as an in/out FIFO, ensure it is 488 * set non-coherent. 489 */ 490 if (stp->dev_flags & DEV_FLAGS_IN) 491 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */ 492 if (dtp->dev_flags & DEV_FLAGS_OUT) 493 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */ 494 495 /* 496 * Set up source1. For now, assume no stride and increment. 497 * A channel attribute update can change this later. 498 */ 499 switch (stp->dev_tsize) { 500 case 1: 501 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1); 502 break; 503 case 2: 504 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2); 505 break; 506 case 4: 507 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4); 508 break; 509 case 8: 510 default: 511 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8); 512 break; 513 } 514 515 /* If source input is FIFO, set static address. */ 516 if (stp->dev_flags & DEV_FLAGS_IN) { 517 if (stp->dev_flags & DEV_FLAGS_BURSTABLE) 518 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST); 519 else 520 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC); 521 } 522 523 if (stp->dev_physaddr) 524 src0 = stp->dev_physaddr; 525 526 /* 527 * Set up dest1. For now, assume no stride and increment. 528 * A channel attribute update can change this later. 529 */ 530 switch (dtp->dev_tsize) { 531 case 1: 532 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1); 533 break; 534 case 2: 535 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2); 536 break; 537 case 4: 538 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4); 539 break; 540 case 8: 541 default: 542 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8); 543 break; 544 } 545 546 /* If destination output is FIFO, set static address. */ 547 if (dtp->dev_flags & DEV_FLAGS_OUT) { 548 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE) 549 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST); 550 else 551 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC); 552 } 553 554 if (dtp->dev_physaddr) 555 dest0 = dtp->dev_physaddr; 556 557 #if 0 558 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x " 559 "source1:%x dest0:%x dest1:%x\n", 560 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0, 561 src1, dest0, dest1); 562 #endif 563 for (i = 0; i < entries; i++) { 564 dp->dscr_cmd0 = cmd0; 565 dp->dscr_cmd1 = cmd1; 566 dp->dscr_source0 = src0; 567 dp->dscr_source1 = src1; 568 dp->dscr_dest0 = dest0; 569 dp->dscr_dest1 = dest1; 570 dp->dscr_stat = 0; 571 dp->sw_context = 0; 572 dp->sw_status = 0; 573 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1)); 574 dp++; 575 } 576 577 /* Make last descrptor point to the first. */ 578 dp--; 579 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base)); 580 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; 581 582 return (u32)ctp->chan_desc_base; 583 } 584 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc); 585 586 /* 587 * Put a source buffer into the DMA ring. 588 * This updates the source pointer and byte count. Normally used 589 * for memory to fifo transfers. 590 */ 591 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) 592 { 593 chan_tab_t *ctp; 594 au1x_ddma_desc_t *dp; 595 596 /* 597 * I guess we could check this to be within the 598 * range of the table...... 599 */ 600 ctp = *(chan_tab_t **)chanid; 601 602 /* 603 * We should have multiple callers for a particular channel, 604 * an interrupt doesn't affect this pointer nor the descriptor, 605 * so no locking should be needed. 606 */ 607 dp = ctp->put_ptr; 608 609 /* 610 * If the descriptor is valid, we are way ahead of the DMA 611 * engine, so just return an error condition. 612 */ 613 if (dp->dscr_cmd0 & DSCR_CMD0_V) 614 return 0; 615 616 /* Load up buffer address and byte count. */ 617 dp->dscr_source0 = buf & ~0UL; 618 dp->dscr_cmd1 = nbytes; 619 /* Check flags */ 620 if (flags & DDMA_FLAGS_IE) 621 dp->dscr_cmd0 |= DSCR_CMD0_IE; 622 if (flags & DDMA_FLAGS_NOIE) 623 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 624 625 /* 626 * There is an errata on the Au1200/Au1550 parts that could result 627 * in "stale" data being DMA'ed. It has to do with the snoop logic on 628 * the cache eviction buffer. DMA_NONCOHERENT is on by default for 629 * these parts. If it is fixed in the future, these dma_cache_inv will 630 * just be nothing more than empty macros. See io.h. 631 */ 632 dma_cache_wback_inv((unsigned long)buf, nbytes); 633 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ 634 wmb(); /* drain writebuffer */ 635 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); 636 ctp->chan_ptr->ddma_dbell = 0; 637 638 /* Get next descriptor pointer. */ 639 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 640 641 /* Return something non-zero. */ 642 return nbytes; 643 } 644 EXPORT_SYMBOL(au1xxx_dbdma_put_source); 645 646 /* Put a destination buffer into the DMA ring. 647 * This updates the destination pointer and byte count. Normally used 648 * to place an empty buffer into the ring for fifo to memory transfers. 649 */ 650 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags) 651 { 652 chan_tab_t *ctp; 653 au1x_ddma_desc_t *dp; 654 655 /* I guess we could check this to be within the 656 * range of the table...... 657 */ 658 ctp = *((chan_tab_t **)chanid); 659 660 /* We should have multiple callers for a particular channel, 661 * an interrupt doesn't affect this pointer nor the descriptor, 662 * so no locking should be needed. 663 */ 664 dp = ctp->put_ptr; 665 666 /* If the descriptor is valid, we are way ahead of the DMA 667 * engine, so just return an error condition. 668 */ 669 if (dp->dscr_cmd0 & DSCR_CMD0_V) 670 return 0; 671 672 /* Load up buffer address and byte count */ 673 674 /* Check flags */ 675 if (flags & DDMA_FLAGS_IE) 676 dp->dscr_cmd0 |= DSCR_CMD0_IE; 677 if (flags & DDMA_FLAGS_NOIE) 678 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 679 680 dp->dscr_dest0 = buf & ~0UL; 681 dp->dscr_cmd1 = nbytes; 682 #if 0 683 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n", 684 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0, 685 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1); 686 #endif 687 /* 688 * There is an errata on the Au1200/Au1550 parts that could result in 689 * "stale" data being DMA'ed. It has to do with the snoop logic on the 690 * cache eviction buffer. DMA_NONCOHERENT is on by default for these 691 * parts. If it is fixed in the future, these dma_cache_inv will just 692 * be nothing more than empty macros. See io.h. 693 */ 694 dma_cache_inv((unsigned long)buf, nbytes); 695 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */ 696 wmb(); /* drain writebuffer */ 697 dma_cache_wback_inv((unsigned long)dp, sizeof(*dp)); 698 ctp->chan_ptr->ddma_dbell = 0; 699 700 /* Get next descriptor pointer. */ 701 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 702 703 /* Return something non-zero. */ 704 return nbytes; 705 } 706 EXPORT_SYMBOL(au1xxx_dbdma_put_dest); 707 708 /* 709 * Get a destination buffer into the DMA ring. 710 * Normally used to get a full buffer from the ring during fifo 711 * to memory transfers. This does not set the valid bit, you will 712 * have to put another destination buffer to keep the DMA going. 713 */ 714 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes) 715 { 716 chan_tab_t *ctp; 717 au1x_ddma_desc_t *dp; 718 u32 rv; 719 720 /* 721 * I guess we could check this to be within the 722 * range of the table...... 723 */ 724 ctp = *((chan_tab_t **)chanid); 725 726 /* 727 * We should have multiple callers for a particular channel, 728 * an interrupt doesn't affect this pointer nor the descriptor, 729 * so no locking should be needed. 730 */ 731 dp = ctp->get_ptr; 732 733 /* 734 * If the descriptor is valid, we are way ahead of the DMA 735 * engine, so just return an error condition. 736 */ 737 if (dp->dscr_cmd0 & DSCR_CMD0_V) 738 return 0; 739 740 /* Return buffer address and byte count. */ 741 *buf = (void *)(phys_to_virt(dp->dscr_dest0)); 742 *nbytes = dp->dscr_cmd1; 743 rv = dp->dscr_stat; 744 745 /* Get next descriptor pointer. */ 746 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 747 748 /* Return something non-zero. */ 749 return rv; 750 } 751 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest); 752 753 void au1xxx_dbdma_stop(u32 chanid) 754 { 755 chan_tab_t *ctp; 756 au1x_dma_chan_t *cp; 757 int halt_timeout = 0; 758 759 ctp = *((chan_tab_t **)chanid); 760 761 cp = ctp->chan_ptr; 762 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */ 763 wmb(); /* drain writebuffer */ 764 while (!(cp->ddma_stat & DDMA_STAT_H)) { 765 udelay(1); 766 halt_timeout++; 767 if (halt_timeout > 100) { 768 printk(KERN_WARNING "warning: DMA channel won't halt\n"); 769 break; 770 } 771 } 772 /* clear current desc valid and doorbell */ 773 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V); 774 wmb(); /* drain writebuffer */ 775 } 776 EXPORT_SYMBOL(au1xxx_dbdma_stop); 777 778 /* 779 * Start using the current descriptor pointer. If the DBDMA encounters 780 * a non-valid descriptor, it will stop. In this case, we can just 781 * continue by adding a buffer to the list and starting again. 782 */ 783 void au1xxx_dbdma_start(u32 chanid) 784 { 785 chan_tab_t *ctp; 786 au1x_dma_chan_t *cp; 787 788 ctp = *((chan_tab_t **)chanid); 789 cp = ctp->chan_ptr; 790 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr); 791 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */ 792 wmb(); /* drain writebuffer */ 793 cp->ddma_dbell = 0; 794 wmb(); /* drain writebuffer */ 795 } 796 EXPORT_SYMBOL(au1xxx_dbdma_start); 797 798 void au1xxx_dbdma_reset(u32 chanid) 799 { 800 chan_tab_t *ctp; 801 au1x_ddma_desc_t *dp; 802 803 au1xxx_dbdma_stop(chanid); 804 805 ctp = *((chan_tab_t **)chanid); 806 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base; 807 808 /* Run through the descriptors and reset the valid indicator. */ 809 dp = ctp->chan_desc_base; 810 811 do { 812 dp->dscr_cmd0 &= ~DSCR_CMD0_V; 813 /* 814 * Reset our software status -- this is used to determine 815 * if a descriptor is in use by upper level software. Since 816 * posting can reset 'V' bit. 817 */ 818 dp->sw_status = 0; 819 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 820 } while (dp != ctp->chan_desc_base); 821 } 822 EXPORT_SYMBOL(au1xxx_dbdma_reset); 823 824 u32 au1xxx_get_dma_residue(u32 chanid) 825 { 826 chan_tab_t *ctp; 827 au1x_dma_chan_t *cp; 828 u32 rv; 829 830 ctp = *((chan_tab_t **)chanid); 831 cp = ctp->chan_ptr; 832 833 /* This is only valid if the channel is stopped. */ 834 rv = cp->ddma_bytecnt; 835 wmb(); /* drain writebuffer */ 836 837 return rv; 838 } 839 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue); 840 841 void au1xxx_dbdma_chan_free(u32 chanid) 842 { 843 chan_tab_t *ctp; 844 dbdev_tab_t *stp, *dtp; 845 846 ctp = *((chan_tab_t **)chanid); 847 stp = ctp->chan_src; 848 dtp = ctp->chan_dest; 849 850 au1xxx_dbdma_stop(chanid); 851 852 kfree((void *)ctp->cdb_membase); 853 854 stp->dev_flags &= ~DEV_FLAGS_INUSE; 855 dtp->dev_flags &= ~DEV_FLAGS_INUSE; 856 chan_tab_ptr[ctp->chan_index] = NULL; 857 858 kfree(ctp); 859 } 860 EXPORT_SYMBOL(au1xxx_dbdma_chan_free); 861 862 static irqreturn_t dbdma_interrupt(int irq, void *dev_id) 863 { 864 u32 intstat; 865 u32 chan_index; 866 chan_tab_t *ctp; 867 au1x_ddma_desc_t *dp; 868 au1x_dma_chan_t *cp; 869 870 intstat = dbdma_gptr->ddma_intstat; 871 wmb(); /* drain writebuffer */ 872 chan_index = __ffs(intstat); 873 874 ctp = chan_tab_ptr[chan_index]; 875 cp = ctp->chan_ptr; 876 dp = ctp->cur_ptr; 877 878 /* Reset interrupt. */ 879 cp->ddma_irq = 0; 880 wmb(); /* drain writebuffer */ 881 882 if (ctp->chan_callback) 883 ctp->chan_callback(irq, ctp->chan_callparam); 884 885 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 886 return IRQ_RETVAL(1); 887 } 888 889 void au1xxx_dbdma_dump(u32 chanid) 890 { 891 chan_tab_t *ctp; 892 au1x_ddma_desc_t *dp; 893 dbdev_tab_t *stp, *dtp; 894 au1x_dma_chan_t *cp; 895 u32 i = 0; 896 897 ctp = *((chan_tab_t **)chanid); 898 stp = ctp->chan_src; 899 dtp = ctp->chan_dest; 900 cp = ctp->chan_ptr; 901 902 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d)\n", 903 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp, 904 dtp - dbdev_tab); 905 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n", 906 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr), 907 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr)); 908 909 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp); 910 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n", 911 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr); 912 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n", 913 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat, 914 cp->ddma_bytecnt); 915 916 /* Run through the descriptors */ 917 dp = ctp->chan_desc_base; 918 919 do { 920 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n", 921 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1); 922 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n", 923 dp->dscr_source0, dp->dscr_source1, 924 dp->dscr_dest0, dp->dscr_dest1); 925 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n", 926 dp->dscr_stat, dp->dscr_nxtptr); 927 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 928 } while (dp != ctp->chan_desc_base); 929 } 930 931 /* Put a descriptor into the DMA ring. 932 * This updates the source/destination pointers and byte count. 933 */ 934 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr) 935 { 936 chan_tab_t *ctp; 937 au1x_ddma_desc_t *dp; 938 u32 nbytes = 0; 939 940 /* 941 * I guess we could check this to be within the 942 * range of the table...... 943 */ 944 ctp = *((chan_tab_t **)chanid); 945 946 /* 947 * We should have multiple callers for a particular channel, 948 * an interrupt doesn't affect this pointer nor the descriptor, 949 * so no locking should be needed. 950 */ 951 dp = ctp->put_ptr; 952 953 /* 954 * If the descriptor is valid, we are way ahead of the DMA 955 * engine, so just return an error condition. 956 */ 957 if (dp->dscr_cmd0 & DSCR_CMD0_V) 958 return 0; 959 960 /* Load up buffer addresses and byte count. */ 961 dp->dscr_dest0 = dscr->dscr_dest0; 962 dp->dscr_source0 = dscr->dscr_source0; 963 dp->dscr_dest1 = dscr->dscr_dest1; 964 dp->dscr_source1 = dscr->dscr_source1; 965 dp->dscr_cmd1 = dscr->dscr_cmd1; 966 nbytes = dscr->dscr_cmd1; 967 /* Allow the caller to specify if an interrupt is generated */ 968 dp->dscr_cmd0 &= ~DSCR_CMD0_IE; 969 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V; 970 ctp->chan_ptr->ddma_dbell = 0; 971 972 /* Get next descriptor pointer. */ 973 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr)); 974 975 /* Return something non-zero. */ 976 return nbytes; 977 } 978 979 980 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6]; 981 982 static int alchemy_dbdma_suspend(void) 983 { 984 int i; 985 void __iomem *addr; 986 987 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 988 alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00); 989 alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04); 990 alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08); 991 alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c); 992 993 /* save channel configurations */ 994 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 995 for (i = 1; i <= NUM_DBDMA_CHANS; i++) { 996 alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00); 997 alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04); 998 alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08); 999 alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c); 1000 alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10); 1001 alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14); 1002 1003 /* halt channel */ 1004 __raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00); 1005 wmb(); 1006 while (!(__raw_readl(addr + 0x14) & 1)) 1007 wmb(); 1008 1009 addr += 0x100; /* next channel base */ 1010 } 1011 /* disable channel interrupts */ 1012 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 1013 __raw_writel(0, addr + 0x0c); 1014 wmb(); 1015 1016 return 0; 1017 } 1018 1019 static void alchemy_dbdma_resume(void) 1020 { 1021 int i; 1022 void __iomem *addr; 1023 1024 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR); 1025 __raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00); 1026 __raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04); 1027 __raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08); 1028 __raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c); 1029 1030 /* restore channel configurations */ 1031 addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR); 1032 for (i = 1; i <= NUM_DBDMA_CHANS; i++) { 1033 __raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00); 1034 __raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04); 1035 __raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08); 1036 __raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c); 1037 __raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10); 1038 __raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14); 1039 wmb(); 1040 addr += 0x100; /* next channel base */ 1041 } 1042 } 1043 1044 static struct syscore_ops alchemy_dbdma_syscore_ops = { 1045 .suspend = alchemy_dbdma_suspend, 1046 .resume = alchemy_dbdma_resume, 1047 }; 1048 1049 static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable) 1050 { 1051 int ret; 1052 1053 dbdev_tab = kzalloc(sizeof(dbdev_tab_t) * DBDEV_TAB_SIZE, GFP_KERNEL); 1054 if (!dbdev_tab) 1055 return -ENOMEM; 1056 1057 memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t)); 1058 for (ret = 32; ret < DBDEV_TAB_SIZE; ret++) 1059 dbdev_tab[ret].dev_id = ~0; 1060 1061 dbdma_gptr->ddma_config = 0; 1062 dbdma_gptr->ddma_throttle = 0; 1063 dbdma_gptr->ddma_inten = 0xffff; 1064 wmb(); /* drain writebuffer */ 1065 1066 ret = request_irq(irq, dbdma_interrupt, 0, "dbdma", (void *)dbdma_gptr); 1067 if (ret) 1068 printk(KERN_ERR "Cannot grab DBDMA interrupt!\n"); 1069 else { 1070 dbdma_initialized = 1; 1071 register_syscore_ops(&alchemy_dbdma_syscore_ops); 1072 } 1073 1074 return ret; 1075 } 1076 1077 static int __init alchemy_dbdma_init(void) 1078 { 1079 switch (alchemy_get_cputype()) { 1080 case ALCHEMY_CPU_AU1550: 1081 return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab); 1082 case ALCHEMY_CPU_AU1200: 1083 return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab); 1084 case ALCHEMY_CPU_AU1300: 1085 return dbdma_setup(AU1300_DDMA_INT, au1300_dbdev_tab); 1086 } 1087 return 0; 1088 } 1089 subsys_initcall(alchemy_dbdma_init); 1090