xref: /openbmc/linux/arch/mips/alchemy/common/dbdma.c (revision 615c36f5)
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *	on the Au1550.  I started with dma.c, but I think all that is
6  *	left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *	dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32 
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
42 
43 /*
44  * The Descriptor Based DMA supports up to 16 channels.
45  *
46  * There are 32 devices defined. We keep an internal structure
47  * of devices using these channels, along with additional
48  * information.
49  *
50  * We allocate the descriptors and allow access to them through various
51  * functions.  The drivers allocate the data buffers and assign them
52  * to the descriptors.
53  */
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
55 
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a)	((((u32)(x)) + (a-1)) & ~(a-1))
58 
59 static dbdma_global_t *dbdma_gptr =
60 			(dbdma_global_t *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
61 static int dbdma_initialized;
62 
63 static dbdev_tab_t *dbdev_tab;
64 
65 static dbdev_tab_t au1550_dbdev_tab[] __initdata = {
66 	/* UARTS */
67 	{ AU1550_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
68 	{ AU1550_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
69 	{ AU1550_DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
70 	{ AU1550_DSCR_CMD0_UART3_RX, DEV_FLAGS_IN,  0, 8, 0x11400000, 0, 0 },
71 
72 	/* EXT DMA */
73 	{ AU1550_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
74 	{ AU1550_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
75 	{ AU1550_DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
76 	{ AU1550_DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
77 
78 	/* USB DEV */
79 	{ AU1550_DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN,  4, 8, 0x10200000, 0, 0 },
80 	{ AU1550_DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
81 	{ AU1550_DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
82 	{ AU1550_DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
83 	{ AU1550_DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN,  4, 8, 0x10200010, 0, 0 },
84 	{ AU1550_DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN,  4, 8, 0x10200014, 0, 0 },
85 
86 	/* PSCs */
87 	{ AU1550_DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
88 	{ AU1550_DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN,  0, 0, 0x11a0001c, 0, 0 },
89 	{ AU1550_DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
90 	{ AU1550_DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN,  0, 0, 0x11b0001c, 0, 0 },
91 	{ AU1550_DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
92 	{ AU1550_DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN,  0, 0, 0x10a0001c, 0, 0 },
93 	{ AU1550_DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
94 	{ AU1550_DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN,  0, 0, 0x10b0001c, 0, 0 },
95 
96 	{ AU1550_DSCR_CMD0_PCI_WRITE,  0, 0, 0, 0x00000000, 0, 0 },  /* PCI */
97 	{ AU1550_DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
98 
99 	/* MAC 0 */
100 	{ AU1550_DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
101 	{ AU1550_DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
102 
103 	/* MAC 1 */
104 	{ AU1550_DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN,  0, 0, 0x00000000, 0, 0 },
105 	{ AU1550_DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
106 
107 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
108 	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
109 };
110 
111 static dbdev_tab_t au1200_dbdev_tab[] __initdata = {
112 	{ AU1200_DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
113 	{ AU1200_DSCR_CMD0_UART0_RX, DEV_FLAGS_IN,  0, 8, 0x11100000, 0, 0 },
114 	{ AU1200_DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
115 	{ AU1200_DSCR_CMD0_UART1_RX, DEV_FLAGS_IN,  0, 8, 0x11200000, 0, 0 },
116 
117 	{ AU1200_DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
118 	{ AU1200_DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
119 
120 	{ AU1200_DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
121 	{ AU1200_DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
122 	{ AU1200_DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
123 	{ AU1200_DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 
125 	{ AU1200_DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
126 	{ AU1200_DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN,  4, 8, 0x10600004, 0, 0 },
127 	{ AU1200_DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
128 	{ AU1200_DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN,  4, 8, 0x10680004, 0, 0 },
129 
130 	{ AU1200_DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
131 	{ AU1200_DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
132 
133 	{ AU1200_DSCR_CMD0_PSC0_TX,   DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
134 	{ AU1200_DSCR_CMD0_PSC0_RX,   DEV_FLAGS_IN,  0, 16, 0x11a0001c, 0, 0 },
135 	{ AU1200_DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
136 	{ AU1200_DSCR_CMD0_PSC1_TX,   DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
137 	{ AU1200_DSCR_CMD0_PSC1_RX,   DEV_FLAGS_IN,  0, 16, 0x11b0001c, 0, 0 },
138 	{ AU1200_DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139 
140 	{ AU1200_DSCR_CMD0_CIM_RXA,  DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
141 	{ AU1200_DSCR_CMD0_CIM_RXB,  DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
142 	{ AU1200_DSCR_CMD0_CIM_RXC,  DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
143 	{ AU1200_DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
144 
145 	{ AU1200_DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
146 
147 	{ DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148 	{ DSCR_CMD0_ALWAYS,   DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149 };
150 
151 /* 32 predefined plus 32 custom */
152 #define DBDEV_TAB_SIZE		64
153 
154 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
155 
156 static dbdev_tab_t *find_dbdev_id(u32 id)
157 {
158 	int i;
159 	dbdev_tab_t *p;
160 	for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
161 		p = &dbdev_tab[i];
162 		if (p->dev_id == id)
163 			return p;
164 	}
165 	return NULL;
166 }
167 
168 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
169 {
170 	return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
171 }
172 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
173 
174 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
175 {
176 	u32 ret = 0;
177 	dbdev_tab_t *p;
178 	static u16 new_id = 0x1000;
179 
180 	p = find_dbdev_id(~0);
181 	if (NULL != p) {
182 		memcpy(p, dev, sizeof(dbdev_tab_t));
183 		p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
184 		ret = p->dev_id;
185 		new_id++;
186 #if 0
187 		printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
188 				  p->dev_id, p->dev_flags, p->dev_physaddr);
189 #endif
190 	}
191 
192 	return ret;
193 }
194 EXPORT_SYMBOL(au1xxx_ddma_add_device);
195 
196 void au1xxx_ddma_del_device(u32 devid)
197 {
198 	dbdev_tab_t *p = find_dbdev_id(devid);
199 
200 	if (p != NULL) {
201 		memset(p, 0, sizeof(dbdev_tab_t));
202 		p->dev_id = ~0;
203 	}
204 }
205 EXPORT_SYMBOL(au1xxx_ddma_del_device);
206 
207 /* Allocate a channel and return a non-zero descriptor if successful. */
208 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
209        void (*callback)(int, void *), void *callparam)
210 {
211 	unsigned long   flags;
212 	u32		used, chan;
213 	u32		dcp;
214 	int		i;
215 	dbdev_tab_t	*stp, *dtp;
216 	chan_tab_t	*ctp;
217 	au1x_dma_chan_t *cp;
218 
219 	/*
220 	 * We do the intialization on the first channel allocation.
221 	 * We have to wait because of the interrupt handler initialization
222 	 * which can't be done successfully during board set up.
223 	 */
224 	if (!dbdma_initialized)
225 		return 0;
226 
227 	stp = find_dbdev_id(srcid);
228 	if (stp == NULL)
229 		return 0;
230 	dtp = find_dbdev_id(destid);
231 	if (dtp == NULL)
232 		return 0;
233 
234 	used = 0;
235 
236 	/* Check to see if we can get both channels. */
237 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
238 	if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
239 	     (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
240 		/* Got source */
241 		stp->dev_flags |= DEV_FLAGS_INUSE;
242 		if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
243 		     (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
244 			/* Got destination */
245 			dtp->dev_flags |= DEV_FLAGS_INUSE;
246 		} else {
247 			/* Can't get dest.  Release src. */
248 			stp->dev_flags &= ~DEV_FLAGS_INUSE;
249 			used++;
250 		}
251 	} else
252 		used++;
253 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
254 
255 	if (used)
256 		return 0;
257 
258 	/* Let's see if we can allocate a channel for it. */
259 	ctp = NULL;
260 	chan = 0;
261 	spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
262 	for (i = 0; i < NUM_DBDMA_CHANS; i++)
263 		if (chan_tab_ptr[i] == NULL) {
264 			/*
265 			 * If kmalloc fails, it is caught below same
266 			 * as a channel not available.
267 			 */
268 			ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
269 			chan_tab_ptr[i] = ctp;
270 			break;
271 		}
272 	spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
273 
274 	if (ctp != NULL) {
275 		memset(ctp, 0, sizeof(chan_tab_t));
276 		ctp->chan_index = chan = i;
277 		dcp = KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
278 		dcp += (0x0100 * chan);
279 		ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
280 		cp = (au1x_dma_chan_t *)dcp;
281 		ctp->chan_src = stp;
282 		ctp->chan_dest = dtp;
283 		ctp->chan_callback = callback;
284 		ctp->chan_callparam = callparam;
285 
286 		/* Initialize channel configuration. */
287 		i = 0;
288 		if (stp->dev_intlevel)
289 			i |= DDMA_CFG_SED;
290 		if (stp->dev_intpolarity)
291 			i |= DDMA_CFG_SP;
292 		if (dtp->dev_intlevel)
293 			i |= DDMA_CFG_DED;
294 		if (dtp->dev_intpolarity)
295 			i |= DDMA_CFG_DP;
296 		if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
297 			(dtp->dev_flags & DEV_FLAGS_SYNC))
298 				i |= DDMA_CFG_SYNC;
299 		cp->ddma_cfg = i;
300 		au_sync();
301 
302 		/*
303 		 * Return a non-zero value that can be used to find the channel
304 		 * information in subsequent operations.
305 		 */
306 		return (u32)(&chan_tab_ptr[chan]);
307 	}
308 
309 	/* Release devices */
310 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
311 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
316 
317 /*
318  * Set the device width if source or destination is a FIFO.
319  * Should be 8, 16, or 32 bits.
320  */
321 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
322 {
323 	u32		rv;
324 	chan_tab_t	*ctp;
325 	dbdev_tab_t	*stp, *dtp;
326 
327 	ctp = *((chan_tab_t **)chanid);
328 	stp = ctp->chan_src;
329 	dtp = ctp->chan_dest;
330 	rv = 0;
331 
332 	if (stp->dev_flags & DEV_FLAGS_IN) {	/* Source in fifo */
333 		rv = stp->dev_devwidth;
334 		stp->dev_devwidth = bits;
335 	}
336 	if (dtp->dev_flags & DEV_FLAGS_OUT) {	/* Destination out fifo */
337 		rv = dtp->dev_devwidth;
338 		dtp->dev_devwidth = bits;
339 	}
340 
341 	return rv;
342 }
343 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
344 
345 /* Allocate a descriptor ring, initializing as much as possible. */
346 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
347 {
348 	int			i;
349 	u32			desc_base, srcid, destid;
350 	u32			cmd0, cmd1, src1, dest1;
351 	u32			src0, dest0;
352 	chan_tab_t		*ctp;
353 	dbdev_tab_t		*stp, *dtp;
354 	au1x_ddma_desc_t	*dp;
355 
356 	/*
357 	 * I guess we could check this to be within the
358 	 * range of the table......
359 	 */
360 	ctp = *((chan_tab_t **)chanid);
361 	stp = ctp->chan_src;
362 	dtp = ctp->chan_dest;
363 
364 	/*
365 	 * The descriptors must be 32-byte aligned.  There is a
366 	 * possibility the allocation will give us such an address,
367 	 * and if we try that first we are likely to not waste larger
368 	 * slabs of memory.
369 	 */
370 	desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
371 				 GFP_KERNEL|GFP_DMA);
372 	if (desc_base == 0)
373 		return 0;
374 
375 	if (desc_base & 0x1f) {
376 		/*
377 		 * Lost....do it again, allocate extra, and round
378 		 * the address base.
379 		 */
380 		kfree((const void *)desc_base);
381 		i = entries * sizeof(au1x_ddma_desc_t);
382 		i += (sizeof(au1x_ddma_desc_t) - 1);
383 		desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
384 		if (desc_base == 0)
385 			return 0;
386 
387 		ctp->cdb_membase = desc_base;
388 		desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
389 	} else
390 		ctp->cdb_membase = desc_base;
391 
392 	dp = (au1x_ddma_desc_t *)desc_base;
393 
394 	/* Keep track of the base descriptor. */
395 	ctp->chan_desc_base = dp;
396 
397 	/* Initialize the rings with as much information as we know. */
398 	srcid = stp->dev_id;
399 	destid = dtp->dev_id;
400 
401 	cmd0 = cmd1 = src1 = dest1 = 0;
402 	src0 = dest0 = 0;
403 
404 	cmd0 |= DSCR_CMD0_SID(srcid);
405 	cmd0 |= DSCR_CMD0_DID(destid);
406 	cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
407 	cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
408 
409 	/* Is it mem to mem transfer? */
410 	if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
411 	     (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
412 	    ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
413 	     (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
414 		cmd0 |= DSCR_CMD0_MEM;
415 
416 	switch (stp->dev_devwidth) {
417 	case 8:
418 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
419 		break;
420 	case 16:
421 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
422 		break;
423 	case 32:
424 	default:
425 		cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
426 		break;
427 	}
428 
429 	switch (dtp->dev_devwidth) {
430 	case 8:
431 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
432 		break;
433 	case 16:
434 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
435 		break;
436 	case 32:
437 	default:
438 		cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
439 		break;
440 	}
441 
442 	/*
443 	 * If the device is marked as an in/out FIFO, ensure it is
444 	 * set non-coherent.
445 	 */
446 	if (stp->dev_flags & DEV_FLAGS_IN)
447 		cmd0 |= DSCR_CMD0_SN;		/* Source in FIFO */
448 	if (dtp->dev_flags & DEV_FLAGS_OUT)
449 		cmd0 |= DSCR_CMD0_DN;		/* Destination out FIFO */
450 
451 	/*
452 	 * Set up source1.  For now, assume no stride and increment.
453 	 * A channel attribute update can change this later.
454 	 */
455 	switch (stp->dev_tsize) {
456 	case 1:
457 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
458 		break;
459 	case 2:
460 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
461 		break;
462 	case 4:
463 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
464 		break;
465 	case 8:
466 	default:
467 		src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
468 		break;
469 	}
470 
471 	/* If source input is FIFO, set static address.	*/
472 	if (stp->dev_flags & DEV_FLAGS_IN) {
473 		if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
474 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
475 		else
476 			src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
477 	}
478 
479 	if (stp->dev_physaddr)
480 		src0 = stp->dev_physaddr;
481 
482 	/*
483 	 * Set up dest1.  For now, assume no stride and increment.
484 	 * A channel attribute update can change this later.
485 	 */
486 	switch (dtp->dev_tsize) {
487 	case 1:
488 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
489 		break;
490 	case 2:
491 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
492 		break;
493 	case 4:
494 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
495 		break;
496 	case 8:
497 	default:
498 		dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
499 		break;
500 	}
501 
502 	/* If destination output is FIFO, set static address. */
503 	if (dtp->dev_flags & DEV_FLAGS_OUT) {
504 		if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
505 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
506 		else
507 			dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
508 	}
509 
510 	if (dtp->dev_physaddr)
511 		dest0 = dtp->dev_physaddr;
512 
513 #if 0
514 		printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
515 				  "source1:%x dest0:%x dest1:%x\n",
516 				  dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
517 				  src1, dest0, dest1);
518 #endif
519 	for (i = 0; i < entries; i++) {
520 		dp->dscr_cmd0 = cmd0;
521 		dp->dscr_cmd1 = cmd1;
522 		dp->dscr_source0 = src0;
523 		dp->dscr_source1 = src1;
524 		dp->dscr_dest0 = dest0;
525 		dp->dscr_dest1 = dest1;
526 		dp->dscr_stat = 0;
527 		dp->sw_context = 0;
528 		dp->sw_status = 0;
529 		dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
530 		dp++;
531 	}
532 
533 	/* Make last descrptor point to the first. */
534 	dp--;
535 	dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
536 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
537 
538 	return (u32)ctp->chan_desc_base;
539 }
540 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
541 
542 /*
543  * Put a source buffer into the DMA ring.
544  * This updates the source pointer and byte count.  Normally used
545  * for memory to fifo transfers.
546  */
547 u32 au1xxx_dbdma_put_source(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
548 {
549 	chan_tab_t		*ctp;
550 	au1x_ddma_desc_t	*dp;
551 
552 	/*
553 	 * I guess we could check this to be within the
554 	 * range of the table......
555 	 */
556 	ctp = *(chan_tab_t **)chanid;
557 
558 	/*
559 	 * We should have multiple callers for a particular channel,
560 	 * an interrupt doesn't affect this pointer nor the descriptor,
561 	 * so no locking should be needed.
562 	 */
563 	dp = ctp->put_ptr;
564 
565 	/*
566 	 * If the descriptor is valid, we are way ahead of the DMA
567 	 * engine, so just return an error condition.
568 	 */
569 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
570 		return 0;
571 
572 	/* Load up buffer address and byte count. */
573 	dp->dscr_source0 = buf & ~0UL;
574 	dp->dscr_cmd1 = nbytes;
575 	/* Check flags */
576 	if (flags & DDMA_FLAGS_IE)
577 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
578 	if (flags & DDMA_FLAGS_NOIE)
579 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
580 
581 	/*
582 	 * There is an errata on the Au1200/Au1550 parts that could result
583 	 * in "stale" data being DMA'ed. It has to do with the snoop logic on
584 	 * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
585 	 * these parts. If it is fixed in the future, these dma_cache_inv will
586 	 * just be nothing more than empty macros. See io.h.
587 	 */
588 	dma_cache_wback_inv((unsigned long)buf, nbytes);
589 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
590 	au_sync();
591 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
592 	ctp->chan_ptr->ddma_dbell = 0;
593 
594 	/* Get next descriptor pointer.	*/
595 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
596 
597 	/* Return something non-zero. */
598 	return nbytes;
599 }
600 EXPORT_SYMBOL(au1xxx_dbdma_put_source);
601 
602 /* Put a destination buffer into the DMA ring.
603  * This updates the destination pointer and byte count.  Normally used
604  * to place an empty buffer into the ring for fifo to memory transfers.
605  */
606 u32 au1xxx_dbdma_put_dest(u32 chanid, dma_addr_t buf, int nbytes, u32 flags)
607 {
608 	chan_tab_t		*ctp;
609 	au1x_ddma_desc_t	*dp;
610 
611 	/* I guess we could check this to be within the
612 	 * range of the table......
613 	 */
614 	ctp = *((chan_tab_t **)chanid);
615 
616 	/* We should have multiple callers for a particular channel,
617 	 * an interrupt doesn't affect this pointer nor the descriptor,
618 	 * so no locking should be needed.
619 	 */
620 	dp = ctp->put_ptr;
621 
622 	/* If the descriptor is valid, we are way ahead of the DMA
623 	 * engine, so just return an error condition.
624 	 */
625 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
626 		return 0;
627 
628 	/* Load up buffer address and byte count */
629 
630 	/* Check flags  */
631 	if (flags & DDMA_FLAGS_IE)
632 		dp->dscr_cmd0 |= DSCR_CMD0_IE;
633 	if (flags & DDMA_FLAGS_NOIE)
634 		dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
635 
636 	dp->dscr_dest0 = buf & ~0UL;
637 	dp->dscr_cmd1 = nbytes;
638 #if 0
639 	printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
640 			  dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
641 			  dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
642 #endif
643 	/*
644 	 * There is an errata on the Au1200/Au1550 parts that could result in
645 	 * "stale" data being DMA'ed. It has to do with the snoop logic on the
646 	 * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
647 	 * parts. If it is fixed in the future, these dma_cache_inv will just
648 	 * be nothing more than empty macros. See io.h.
649 	 */
650 	dma_cache_inv((unsigned long)buf, nbytes);
651 	dp->dscr_cmd0 |= DSCR_CMD0_V;	/* Let it rip */
652 	au_sync();
653 	dma_cache_wback_inv((unsigned long)dp, sizeof(*dp));
654 	ctp->chan_ptr->ddma_dbell = 0;
655 
656 	/* Get next descriptor pointer.	*/
657 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
658 
659 	/* Return something non-zero. */
660 	return nbytes;
661 }
662 EXPORT_SYMBOL(au1xxx_dbdma_put_dest);
663 
664 /*
665  * Get a destination buffer into the DMA ring.
666  * Normally used to get a full buffer from the ring during fifo
667  * to memory transfers.  This does not set the valid bit, you will
668  * have to put another destination buffer to keep the DMA going.
669  */
670 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
671 {
672 	chan_tab_t		*ctp;
673 	au1x_ddma_desc_t	*dp;
674 	u32			rv;
675 
676 	/*
677 	 * I guess we could check this to be within the
678 	 * range of the table......
679 	 */
680 	ctp = *((chan_tab_t **)chanid);
681 
682 	/*
683 	 * We should have multiple callers for a particular channel,
684 	 * an interrupt doesn't affect this pointer nor the descriptor,
685 	 * so no locking should be needed.
686 	 */
687 	dp = ctp->get_ptr;
688 
689 	/*
690 	 * If the descriptor is valid, we are way ahead of the DMA
691 	 * engine, so just return an error condition.
692 	 */
693 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
694 		return 0;
695 
696 	/* Return buffer address and byte count. */
697 	*buf = (void *)(phys_to_virt(dp->dscr_dest0));
698 	*nbytes = dp->dscr_cmd1;
699 	rv = dp->dscr_stat;
700 
701 	/* Get next descriptor pointer.	*/
702 	ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
703 
704 	/* Return something non-zero. */
705 	return rv;
706 }
707 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
708 
709 void au1xxx_dbdma_stop(u32 chanid)
710 {
711 	chan_tab_t	*ctp;
712 	au1x_dma_chan_t *cp;
713 	int halt_timeout = 0;
714 
715 	ctp = *((chan_tab_t **)chanid);
716 
717 	cp = ctp->chan_ptr;
718 	cp->ddma_cfg &= ~DDMA_CFG_EN;	/* Disable channel */
719 	au_sync();
720 	while (!(cp->ddma_stat & DDMA_STAT_H)) {
721 		udelay(1);
722 		halt_timeout++;
723 		if (halt_timeout > 100) {
724 			printk(KERN_WARNING "warning: DMA channel won't halt\n");
725 			break;
726 		}
727 	}
728 	/* clear current desc valid and doorbell */
729 	cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
730 	au_sync();
731 }
732 EXPORT_SYMBOL(au1xxx_dbdma_stop);
733 
734 /*
735  * Start using the current descriptor pointer.  If the DBDMA encounters
736  * a non-valid descriptor, it will stop.  In this case, we can just
737  * continue by adding a buffer to the list and starting again.
738  */
739 void au1xxx_dbdma_start(u32 chanid)
740 {
741 	chan_tab_t	*ctp;
742 	au1x_dma_chan_t *cp;
743 
744 	ctp = *((chan_tab_t **)chanid);
745 	cp = ctp->chan_ptr;
746 	cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
747 	cp->ddma_cfg |= DDMA_CFG_EN;	/* Enable channel */
748 	au_sync();
749 	cp->ddma_dbell = 0;
750 	au_sync();
751 }
752 EXPORT_SYMBOL(au1xxx_dbdma_start);
753 
754 void au1xxx_dbdma_reset(u32 chanid)
755 {
756 	chan_tab_t		*ctp;
757 	au1x_ddma_desc_t	*dp;
758 
759 	au1xxx_dbdma_stop(chanid);
760 
761 	ctp = *((chan_tab_t **)chanid);
762 	ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
763 
764 	/* Run through the descriptors and reset the valid indicator. */
765 	dp = ctp->chan_desc_base;
766 
767 	do {
768 		dp->dscr_cmd0 &= ~DSCR_CMD0_V;
769 		/*
770 		 * Reset our software status -- this is used to determine
771 		 * if a descriptor is in use by upper level software. Since
772 		 * posting can reset 'V' bit.
773 		 */
774 		dp->sw_status = 0;
775 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
776 	} while (dp != ctp->chan_desc_base);
777 }
778 EXPORT_SYMBOL(au1xxx_dbdma_reset);
779 
780 u32 au1xxx_get_dma_residue(u32 chanid)
781 {
782 	chan_tab_t	*ctp;
783 	au1x_dma_chan_t *cp;
784 	u32		rv;
785 
786 	ctp = *((chan_tab_t **)chanid);
787 	cp = ctp->chan_ptr;
788 
789 	/* This is only valid if the channel is stopped. */
790 	rv = cp->ddma_bytecnt;
791 	au_sync();
792 
793 	return rv;
794 }
795 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
796 
797 void au1xxx_dbdma_chan_free(u32 chanid)
798 {
799 	chan_tab_t	*ctp;
800 	dbdev_tab_t	*stp, *dtp;
801 
802 	ctp = *((chan_tab_t **)chanid);
803 	stp = ctp->chan_src;
804 	dtp = ctp->chan_dest;
805 
806 	au1xxx_dbdma_stop(chanid);
807 
808 	kfree((void *)ctp->cdb_membase);
809 
810 	stp->dev_flags &= ~DEV_FLAGS_INUSE;
811 	dtp->dev_flags &= ~DEV_FLAGS_INUSE;
812 	chan_tab_ptr[ctp->chan_index] = NULL;
813 
814 	kfree(ctp);
815 }
816 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
817 
818 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
819 {
820 	u32 intstat;
821 	u32 chan_index;
822 	chan_tab_t		*ctp;
823 	au1x_ddma_desc_t	*dp;
824 	au1x_dma_chan_t *cp;
825 
826 	intstat = dbdma_gptr->ddma_intstat;
827 	au_sync();
828 	chan_index = __ffs(intstat);
829 
830 	ctp = chan_tab_ptr[chan_index];
831 	cp = ctp->chan_ptr;
832 	dp = ctp->cur_ptr;
833 
834 	/* Reset interrupt. */
835 	cp->ddma_irq = 0;
836 	au_sync();
837 
838 	if (ctp->chan_callback)
839 		ctp->chan_callback(irq, ctp->chan_callparam);
840 
841 	ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
842 	return IRQ_RETVAL(1);
843 }
844 
845 void au1xxx_dbdma_dump(u32 chanid)
846 {
847 	chan_tab_t	 *ctp;
848 	au1x_ddma_desc_t *dp;
849 	dbdev_tab_t	 *stp, *dtp;
850 	au1x_dma_chan_t  *cp;
851 	u32 i		 = 0;
852 
853 	ctp = *((chan_tab_t **)chanid);
854 	stp = ctp->chan_src;
855 	dtp = ctp->chan_dest;
856 	cp = ctp->chan_ptr;
857 
858 	printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d)\n",
859 			  (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
860 			  dtp - dbdev_tab);
861 	printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
862 			  (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
863 			  (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
864 
865 	printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
866 	printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
867 			  cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
868 	printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
869 			  cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
870 			  cp->ddma_bytecnt);
871 
872 	/* Run through the descriptors */
873 	dp = ctp->chan_desc_base;
874 
875 	do {
876 		printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
877 				  i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
878 		printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
879 				  dp->dscr_source0, dp->dscr_source1,
880 				  dp->dscr_dest0, dp->dscr_dest1);
881 		printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
882 				  dp->dscr_stat, dp->dscr_nxtptr);
883 		dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
884 	} while (dp != ctp->chan_desc_base);
885 }
886 
887 /* Put a descriptor into the DMA ring.
888  * This updates the source/destination pointers and byte count.
889  */
890 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
891 {
892 	chan_tab_t *ctp;
893 	au1x_ddma_desc_t *dp;
894 	u32 nbytes = 0;
895 
896 	/*
897 	 * I guess we could check this to be within the
898 	 * range of the table......
899 	 */
900 	ctp = *((chan_tab_t **)chanid);
901 
902 	/*
903 	 * We should have multiple callers for a particular channel,
904 	 * an interrupt doesn't affect this pointer nor the descriptor,
905 	 * so no locking should be needed.
906 	 */
907 	dp = ctp->put_ptr;
908 
909 	/*
910 	 * If the descriptor is valid, we are way ahead of the DMA
911 	 * engine, so just return an error condition.
912 	 */
913 	if (dp->dscr_cmd0 & DSCR_CMD0_V)
914 		return 0;
915 
916 	/* Load up buffer addresses and byte count. */
917 	dp->dscr_dest0 = dscr->dscr_dest0;
918 	dp->dscr_source0 = dscr->dscr_source0;
919 	dp->dscr_dest1 = dscr->dscr_dest1;
920 	dp->dscr_source1 = dscr->dscr_source1;
921 	dp->dscr_cmd1 = dscr->dscr_cmd1;
922 	nbytes = dscr->dscr_cmd1;
923 	/* Allow the caller to specifiy if an interrupt is generated */
924 	dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
925 	dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
926 	ctp->chan_ptr->ddma_dbell = 0;
927 
928 	/* Get next descriptor pointer.	*/
929 	ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
930 
931 	/* Return something non-zero. */
932 	return nbytes;
933 }
934 
935 
936 static unsigned long alchemy_dbdma_pm_data[NUM_DBDMA_CHANS + 1][6];
937 
938 static int alchemy_dbdma_suspend(void)
939 {
940 	int i;
941 	void __iomem *addr;
942 
943 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
944 	alchemy_dbdma_pm_data[0][0] = __raw_readl(addr + 0x00);
945 	alchemy_dbdma_pm_data[0][1] = __raw_readl(addr + 0x04);
946 	alchemy_dbdma_pm_data[0][2] = __raw_readl(addr + 0x08);
947 	alchemy_dbdma_pm_data[0][3] = __raw_readl(addr + 0x0c);
948 
949 	/* save channel configurations */
950 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
951 	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
952 		alchemy_dbdma_pm_data[i][0] = __raw_readl(addr + 0x00);
953 		alchemy_dbdma_pm_data[i][1] = __raw_readl(addr + 0x04);
954 		alchemy_dbdma_pm_data[i][2] = __raw_readl(addr + 0x08);
955 		alchemy_dbdma_pm_data[i][3] = __raw_readl(addr + 0x0c);
956 		alchemy_dbdma_pm_data[i][4] = __raw_readl(addr + 0x10);
957 		alchemy_dbdma_pm_data[i][5] = __raw_readl(addr + 0x14);
958 
959 		/* halt channel */
960 		__raw_writel(alchemy_dbdma_pm_data[i][0] & ~1, addr + 0x00);
961 		wmb();
962 		while (!(__raw_readl(addr + 0x14) & 1))
963 			wmb();
964 
965 		addr += 0x100;	/* next channel base */
966 	}
967 	/* disable channel interrupts */
968 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
969 	__raw_writel(0, addr + 0x0c);
970 	wmb();
971 
972 	return 0;
973 }
974 
975 static void alchemy_dbdma_resume(void)
976 {
977 	int i;
978 	void __iomem *addr;
979 
980 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR);
981 	__raw_writel(alchemy_dbdma_pm_data[0][0], addr + 0x00);
982 	__raw_writel(alchemy_dbdma_pm_data[0][1], addr + 0x04);
983 	__raw_writel(alchemy_dbdma_pm_data[0][2], addr + 0x08);
984 	__raw_writel(alchemy_dbdma_pm_data[0][3], addr + 0x0c);
985 
986 	/* restore channel configurations */
987 	addr = (void __iomem *)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR);
988 	for (i = 1; i <= NUM_DBDMA_CHANS; i++) {
989 		__raw_writel(alchemy_dbdma_pm_data[i][0], addr + 0x00);
990 		__raw_writel(alchemy_dbdma_pm_data[i][1], addr + 0x04);
991 		__raw_writel(alchemy_dbdma_pm_data[i][2], addr + 0x08);
992 		__raw_writel(alchemy_dbdma_pm_data[i][3], addr + 0x0c);
993 		__raw_writel(alchemy_dbdma_pm_data[i][4], addr + 0x10);
994 		__raw_writel(alchemy_dbdma_pm_data[i][5], addr + 0x14);
995 		wmb();
996 		addr += 0x100;	/* next channel base */
997 	}
998 }
999 
1000 static struct syscore_ops alchemy_dbdma_syscore_ops = {
1001 	.suspend	= alchemy_dbdma_suspend,
1002 	.resume		= alchemy_dbdma_resume,
1003 };
1004 
1005 static int __init dbdma_setup(unsigned int irq, dbdev_tab_t *idtable)
1006 {
1007 	int ret;
1008 
1009 	dbdev_tab = kzalloc(sizeof(dbdev_tab_t) * DBDEV_TAB_SIZE, GFP_KERNEL);
1010 	if (!dbdev_tab)
1011 		return -ENOMEM;
1012 
1013 	memcpy(dbdev_tab, idtable, 32 * sizeof(dbdev_tab_t));
1014 	for (ret = 32; ret < DBDEV_TAB_SIZE; ret++)
1015 		dbdev_tab[ret].dev_id = ~0;
1016 
1017 	dbdma_gptr->ddma_config = 0;
1018 	dbdma_gptr->ddma_throttle = 0;
1019 	dbdma_gptr->ddma_inten = 0xffff;
1020 	au_sync();
1021 
1022 	ret = request_irq(irq, dbdma_interrupt, IRQF_DISABLED, "dbdma",
1023 			  (void *)dbdma_gptr);
1024 	if (ret)
1025 		printk(KERN_ERR "Cannot grab DBDMA interrupt!\n");
1026 	else {
1027 		dbdma_initialized = 1;
1028 		register_syscore_ops(&alchemy_dbdma_syscore_ops);
1029 	}
1030 
1031 	return ret;
1032 }
1033 
1034 static int __init alchemy_dbdma_init(void)
1035 {
1036 	switch (alchemy_get_cputype()) {
1037 	case ALCHEMY_CPU_AU1550:
1038 		return dbdma_setup(AU1550_DDMA_INT, au1550_dbdev_tab);
1039 	case ALCHEMY_CPU_AU1200:
1040 		return dbdma_setup(AU1200_DDMA_INT, au1200_dbdev_tab);
1041 	}
1042 	return 0;
1043 }
1044 subsys_initcall(alchemy_dbdma_init);
1045