xref: /openbmc/linux/arch/microblaze/mm/init.c (revision 85250a24)
1 /*
2  * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu>
3  * Copyright (C) 2006 Atmark Techno, Inc.
4  *
5  * This file is subject to the terms and conditions of the GNU General Public
6  * License. See the file "COPYING" in the main directory of this archive
7  * for more details.
8  */
9 
10 #include <linux/dma-map-ops.h>
11 #include <linux/memblock.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h> /* mem_init */
15 #include <linux/initrd.h>
16 #include <linux/of_fdt.h>
17 #include <linux/pagemap.h>
18 #include <linux/pfn.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/export.h>
22 
23 #include <asm/page.h>
24 #include <asm/mmu_context.h>
25 #include <asm/pgalloc.h>
26 #include <asm/sections.h>
27 #include <asm/tlb.h>
28 #include <asm/fixmap.h>
29 
30 /* Use for MMU and noMMU because of PCI generic code */
31 int mem_init_done;
32 
33 char *klimit = _end;
34 
35 /*
36  * Initialize the bootmem system and give it all the memory we
37  * have available.
38  */
39 unsigned long memory_start;
40 EXPORT_SYMBOL(memory_start);
41 unsigned long memory_size;
42 EXPORT_SYMBOL(memory_size);
43 unsigned long lowmem_size;
44 
45 EXPORT_SYMBOL(min_low_pfn);
46 EXPORT_SYMBOL(max_low_pfn);
47 
48 #ifdef CONFIG_HIGHMEM
49 static void __init highmem_init(void)
50 {
51 	pr_debug("%x\n", (u32)PKMAP_BASE);
52 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
53 	pkmap_page_table = virt_to_kpte(PKMAP_BASE);
54 }
55 
56 static void __meminit highmem_setup(void)
57 {
58 	unsigned long pfn;
59 
60 	for (pfn = max_low_pfn; pfn < max_pfn; ++pfn) {
61 		struct page *page = pfn_to_page(pfn);
62 
63 		/* FIXME not sure about */
64 		if (!memblock_is_reserved(pfn << PAGE_SHIFT))
65 			free_highmem_page(page);
66 	}
67 }
68 #endif /* CONFIG_HIGHMEM */
69 
70 /*
71  * paging_init() sets up the page tables - in fact we've already done this.
72  */
73 static void __init paging_init(void)
74 {
75 	unsigned long zones_size[MAX_NR_ZONES];
76 	int idx;
77 
78 	/* Setup fixmaps */
79 	for (idx = 0; idx < __end_of_fixed_addresses; idx++)
80 		clear_fixmap(idx);
81 
82 	/* Clean every zones */
83 	memset(zones_size, 0, sizeof(zones_size));
84 
85 #ifdef CONFIG_HIGHMEM
86 	highmem_init();
87 
88 	zones_size[ZONE_DMA] = max_low_pfn;
89 	zones_size[ZONE_HIGHMEM] = max_pfn;
90 #else
91 	zones_size[ZONE_DMA] = max_pfn;
92 #endif
93 
94 	/* We don't have holes in memory map */
95 	free_area_init(zones_size);
96 }
97 
98 void __init setup_memory(void)
99 {
100 	/*
101 	 * Kernel:
102 	 * start: base phys address of kernel - page align
103 	 * end: base phys address of kernel - page align
104 	 *
105 	 * min_low_pfn - the first page (mm/bootmem.c - node_boot_start)
106 	 * max_low_pfn
107 	 * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn)
108 	 */
109 
110 	/* memory start is from the kernel end (aligned) to higher addr */
111 	min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */
112 	/* RAM is assumed contiguous */
113 	max_mapnr = memory_size >> PAGE_SHIFT;
114 	max_low_pfn = ((u64)memory_start + (u64)lowmem_size) >> PAGE_SHIFT;
115 	max_pfn = ((u64)memory_start + (u64)memory_size) >> PAGE_SHIFT;
116 
117 	pr_info("%s: max_mapnr: %#lx\n", __func__, max_mapnr);
118 	pr_info("%s: min_low_pfn: %#lx\n", __func__, min_low_pfn);
119 	pr_info("%s: max_low_pfn: %#lx\n", __func__, max_low_pfn);
120 	pr_info("%s: max_pfn: %#lx\n", __func__, max_pfn);
121 
122 	paging_init();
123 }
124 
125 void __init mem_init(void)
126 {
127 	high_memory = (void *)__va(memory_start + lowmem_size - 1);
128 
129 	/* this will put all memory onto the freelists */
130 	memblock_free_all();
131 #ifdef CONFIG_HIGHMEM
132 	highmem_setup();
133 #endif
134 
135 	mem_init_done = 1;
136 }
137 
138 int page_is_ram(unsigned long pfn)
139 {
140 	return pfn < max_low_pfn;
141 }
142 
143 /*
144  * Check for command-line options that affect what MMU_init will do.
145  */
146 static void mm_cmdline_setup(void)
147 {
148 	unsigned long maxmem = 0;
149 	char *p = cmd_line;
150 
151 	/* Look for mem= option on command line */
152 	p = strstr(cmd_line, "mem=");
153 	if (p) {
154 		p += 4;
155 		maxmem = memparse(p, &p);
156 		if (maxmem && memory_size > maxmem) {
157 			memory_size = maxmem;
158 			memblock.memory.regions[0].size = memory_size;
159 		}
160 	}
161 }
162 
163 /*
164  * MMU_init_hw does the chip-specific initialization of the MMU hardware.
165  */
166 static void __init mmu_init_hw(void)
167 {
168 	/*
169 	 * The Zone Protection Register (ZPR) defines how protection will
170 	 * be applied to every page which is a member of a given zone. At
171 	 * present, we utilize only two of the zones.
172 	 * The zone index bits (of ZSEL) in the PTE are used for software
173 	 * indicators, except the LSB.  For user access, zone 1 is used,
174 	 * for kernel access, zone 0 is used.  We set all but zone 1
175 	 * to zero, allowing only kernel access as indicated in the PTE.
176 	 * For zone 1, we set a 01 binary (a value of 10 will not work)
177 	 * to allow user access as indicated in the PTE.  This also allows
178 	 * kernel access as indicated in the PTE.
179 	 */
180 	__asm__ __volatile__ ("ori r11, r0, 0x10000000;" \
181 			"mts rzpr, r11;"
182 			: : : "r11");
183 }
184 
185 /*
186  * MMU_init sets up the basic memory mappings for the kernel,
187  * including both RAM and possibly some I/O regions,
188  * and sets up the page tables and the MMU hardware ready to go.
189  */
190 
191 /* called from head.S */
192 asmlinkage void __init mmu_init(void)
193 {
194 	unsigned int kstart, ksize;
195 
196 	if (!memblock.reserved.cnt) {
197 		pr_emerg("Error memory count\n");
198 		machine_restart(NULL);
199 	}
200 
201 	if ((u32) memblock.memory.regions[0].size < 0x400000) {
202 		pr_emerg("Memory must be greater than 4MB\n");
203 		machine_restart(NULL);
204 	}
205 
206 	if ((u32) memblock.memory.regions[0].size < kernel_tlb) {
207 		pr_emerg("Kernel size is greater than memory node\n");
208 		machine_restart(NULL);
209 	}
210 
211 	/* Find main memory where the kernel is */
212 	memory_start = (u32) memblock.memory.regions[0].base;
213 	lowmem_size = memory_size = (u32) memblock.memory.regions[0].size;
214 
215 	if (lowmem_size > CONFIG_LOWMEM_SIZE) {
216 		lowmem_size = CONFIG_LOWMEM_SIZE;
217 #ifndef CONFIG_HIGHMEM
218 		memory_size = lowmem_size;
219 #endif
220 	}
221 
222 	mm_cmdline_setup(); /* FIXME parse args from command line - not used */
223 
224 	/*
225 	 * Map out the kernel text/data/bss from the available physical
226 	 * memory.
227 	 */
228 	kstart = __pa(CONFIG_KERNEL_START); /* kernel start */
229 	/* kernel size */
230 	ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START));
231 	memblock_reserve(kstart, ksize);
232 
233 #if defined(CONFIG_BLK_DEV_INITRD)
234 	/* Remove the init RAM disk from the available memory. */
235 	if (initrd_start) {
236 		unsigned long size;
237 		size = initrd_end - initrd_start;
238 		memblock_reserve(__virt_to_phys(initrd_start), size);
239 	}
240 #endif /* CONFIG_BLK_DEV_INITRD */
241 
242 	/* Initialize the MMU hardware */
243 	mmu_init_hw();
244 
245 	/* Map in all of RAM starting at CONFIG_KERNEL_START */
246 	mapin_ram();
247 
248 	/* Extend vmalloc and ioremap area as big as possible */
249 #ifdef CONFIG_HIGHMEM
250 	ioremap_base = ioremap_bot = PKMAP_BASE;
251 #else
252 	ioremap_base = ioremap_bot = FIXADDR_START;
253 #endif
254 
255 	/* Initialize the context management stuff */
256 	mmu_context_init();
257 
258 	/* Shortly after that, the entire linear mapping will be available */
259 	/* This will also cause that unflatten device tree will be allocated
260 	 * inside 768MB limit */
261 	memblock_set_current_limit(memory_start + lowmem_size - 1);
262 
263 	parse_early_param();
264 
265 	early_init_fdt_scan_reserved_mem();
266 
267 	/* CMA initialization */
268 	dma_contiguous_reserve(memory_start + lowmem_size - 1);
269 
270 	memblock_dump_all();
271 }
272 
273 void * __ref zalloc_maybe_bootmem(size_t size, gfp_t mask)
274 {
275 	void *p;
276 
277 	if (mem_init_done) {
278 		p = kzalloc(size, mask);
279 	} else {
280 		p = memblock_alloc(size, SMP_CACHE_BYTES);
281 		if (!p)
282 			panic("%s: Failed to allocate %zu bytes\n",
283 			      __func__, size);
284 	}
285 
286 	return p;
287 }
288 
289 static const pgprot_t protection_map[16] = {
290 	[VM_NONE]					= PAGE_NONE,
291 	[VM_READ]					= PAGE_READONLY_X,
292 	[VM_WRITE]					= PAGE_COPY,
293 	[VM_WRITE | VM_READ]				= PAGE_COPY_X,
294 	[VM_EXEC]					= PAGE_READONLY,
295 	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
296 	[VM_EXEC | VM_WRITE]				= PAGE_COPY,
297 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
298 	[VM_SHARED]					= PAGE_NONE,
299 	[VM_SHARED | VM_READ]				= PAGE_READONLY_X,
300 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
301 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED_X,
302 	[VM_SHARED | VM_EXEC]				= PAGE_READONLY,
303 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
304 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED,
305 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
306 };
307 DECLARE_VM_GET_PAGE_PROT
308