1 /* 2 * Copyright (C) 2007-2008 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2006 Atmark Techno, Inc. 4 * 5 * This file is subject to the terms and conditions of the GNU General Public 6 * License. See the file "COPYING" in the main directory of this archive 7 * for more details. 8 */ 9 10 #include <linux/bootmem.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/memblock.h> 14 #include <linux/mm.h> /* mem_init */ 15 #include <linux/initrd.h> 16 #include <linux/pagemap.h> 17 #include <linux/pfn.h> 18 #include <linux/slab.h> 19 #include <linux/swap.h> 20 #include <linux/export.h> 21 22 #include <asm/page.h> 23 #include <asm/mmu_context.h> 24 #include <asm/pgalloc.h> 25 #include <asm/sections.h> 26 #include <asm/tlb.h> 27 #include <asm/fixmap.h> 28 29 /* Use for MMU and noMMU because of PCI generic code */ 30 int mem_init_done; 31 32 #ifndef CONFIG_MMU 33 unsigned int __page_offset; 34 EXPORT_SYMBOL(__page_offset); 35 36 #else 37 static int init_bootmem_done; 38 #endif /* CONFIG_MMU */ 39 40 char *klimit = _end; 41 42 /* 43 * Initialize the bootmem system and give it all the memory we 44 * have available. 45 */ 46 unsigned long memory_start; 47 EXPORT_SYMBOL(memory_start); 48 unsigned long memory_size; 49 EXPORT_SYMBOL(memory_size); 50 unsigned long lowmem_size; 51 52 #ifdef CONFIG_HIGHMEM 53 pte_t *kmap_pte; 54 EXPORT_SYMBOL(kmap_pte); 55 pgprot_t kmap_prot; 56 EXPORT_SYMBOL(kmap_prot); 57 58 static inline pte_t *virt_to_kpte(unsigned long vaddr) 59 { 60 return pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), 61 vaddr), vaddr); 62 } 63 64 static void __init highmem_init(void) 65 { 66 pr_debug("%x\n", (u32)PKMAP_BASE); 67 map_page(PKMAP_BASE, 0, 0); /* XXX gross */ 68 pkmap_page_table = virt_to_kpte(PKMAP_BASE); 69 70 kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); 71 kmap_prot = PAGE_KERNEL; 72 } 73 74 static unsigned long highmem_setup(void) 75 { 76 unsigned long pfn; 77 unsigned long reservedpages = 0; 78 79 for (pfn = max_low_pfn; pfn < max_pfn; ++pfn) { 80 struct page *page = pfn_to_page(pfn); 81 82 /* FIXME not sure about */ 83 if (memblock_is_reserved(pfn << PAGE_SHIFT)) 84 continue; 85 ClearPageReserved(page); 86 init_page_count(page); 87 __free_page(page); 88 totalhigh_pages++; 89 reservedpages++; 90 } 91 totalram_pages += totalhigh_pages; 92 printk(KERN_INFO "High memory: %luk\n", 93 totalhigh_pages << (PAGE_SHIFT-10)); 94 95 return reservedpages; 96 } 97 #endif /* CONFIG_HIGHMEM */ 98 99 /* 100 * paging_init() sets up the page tables - in fact we've already done this. 101 */ 102 static void __init paging_init(void) 103 { 104 unsigned long zones_size[MAX_NR_ZONES]; 105 #ifdef CONFIG_MMU 106 int idx; 107 108 /* Setup fixmaps */ 109 for (idx = 0; idx < __end_of_fixed_addresses; idx++) 110 clear_fixmap(idx); 111 #endif 112 113 /* Clean every zones */ 114 memset(zones_size, 0, sizeof(zones_size)); 115 116 #ifdef CONFIG_HIGHMEM 117 highmem_init(); 118 119 zones_size[ZONE_DMA] = max_low_pfn; 120 zones_size[ZONE_HIGHMEM] = max_pfn; 121 #else 122 zones_size[ZONE_DMA] = max_pfn; 123 #endif 124 125 /* We don't have holes in memory map */ 126 free_area_init_nodes(zones_size); 127 } 128 129 void __init setup_memory(void) 130 { 131 unsigned long map_size; 132 struct memblock_region *reg; 133 134 #ifndef CONFIG_MMU 135 u32 kernel_align_start, kernel_align_size; 136 137 /* Find main memory where is the kernel */ 138 for_each_memblock(memory, reg) { 139 memory_start = (u32)reg->base; 140 lowmem_size = reg->size; 141 if ((memory_start <= (u32)_text) && 142 ((u32)_text <= (memory_start + lowmem_size - 1))) { 143 memory_size = lowmem_size; 144 PAGE_OFFSET = memory_start; 145 printk(KERN_INFO "%s: Main mem: 0x%x, " 146 "size 0x%08x\n", __func__, (u32) memory_start, 147 (u32) memory_size); 148 break; 149 } 150 } 151 152 if (!memory_start || !memory_size) { 153 panic("%s: Missing memory setting 0x%08x, size=0x%08x\n", 154 __func__, (u32) memory_start, (u32) memory_size); 155 } 156 157 /* reservation of region where is the kernel */ 158 kernel_align_start = PAGE_DOWN((u32)_text); 159 /* ALIGN can be remove because _end in vmlinux.lds.S is align */ 160 kernel_align_size = PAGE_UP((u32)klimit) - kernel_align_start; 161 printk(KERN_INFO "%s: kernel addr:0x%08x-0x%08x size=0x%08x\n", 162 __func__, kernel_align_start, kernel_align_start 163 + kernel_align_size, kernel_align_size); 164 memblock_reserve(kernel_align_start, kernel_align_size); 165 #endif 166 /* 167 * Kernel: 168 * start: base phys address of kernel - page align 169 * end: base phys address of kernel - page align 170 * 171 * min_low_pfn - the first page (mm/bootmem.c - node_boot_start) 172 * max_low_pfn 173 * max_mapnr - the first unused page (mm/bootmem.c - node_low_pfn) 174 * num_physpages - number of all pages 175 */ 176 177 /* memory start is from the kernel end (aligned) to higher addr */ 178 min_low_pfn = memory_start >> PAGE_SHIFT; /* minimum for allocation */ 179 /* RAM is assumed contiguous */ 180 num_physpages = max_mapnr = memory_size >> PAGE_SHIFT; 181 max_low_pfn = ((u64)memory_start + (u64)lowmem_size) >> PAGE_SHIFT; 182 max_pfn = ((u64)memory_start + (u64)memory_size) >> PAGE_SHIFT; 183 184 printk(KERN_INFO "%s: max_mapnr: %#lx\n", __func__, max_mapnr); 185 printk(KERN_INFO "%s: min_low_pfn: %#lx\n", __func__, min_low_pfn); 186 printk(KERN_INFO "%s: max_low_pfn: %#lx\n", __func__, max_low_pfn); 187 printk(KERN_INFO "%s: max_pfn: %#lx\n", __func__, max_pfn); 188 189 /* 190 * Find an area to use for the bootmem bitmap. 191 * We look for the first area which is at least 192 * 128kB in length (128kB is enough for a bitmap 193 * for 4GB of memory, using 4kB pages), plus 1 page 194 * (in case the address isn't page-aligned). 195 */ 196 map_size = init_bootmem_node(NODE_DATA(0), 197 PFN_UP(TOPHYS((u32)klimit)), min_low_pfn, max_low_pfn); 198 memblock_reserve(PFN_UP(TOPHYS((u32)klimit)) << PAGE_SHIFT, map_size); 199 200 /* Add active regions with valid PFNs */ 201 for_each_memblock(memory, reg) { 202 unsigned long start_pfn, end_pfn; 203 204 start_pfn = memblock_region_memory_base_pfn(reg); 205 end_pfn = memblock_region_memory_end_pfn(reg); 206 memblock_set_node(start_pfn << PAGE_SHIFT, 207 (end_pfn - start_pfn) << PAGE_SHIFT, 0); 208 } 209 210 /* free bootmem is whole main memory */ 211 free_bootmem_with_active_regions(0, max_low_pfn); 212 213 /* reserve allocate blocks */ 214 for_each_memblock(reserved, reg) { 215 unsigned long top = reg->base + reg->size - 1; 216 217 pr_debug("reserved - 0x%08x-0x%08x, %lx, %lx\n", 218 (u32) reg->base, (u32) reg->size, top, 219 memory_start + lowmem_size - 1); 220 221 if (top <= (memory_start + lowmem_size - 1)) { 222 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT); 223 } else if (reg->base < (memory_start + lowmem_size - 1)) { 224 unsigned long trunc_size = memory_start + lowmem_size - 225 reg->base; 226 reserve_bootmem(reg->base, trunc_size, BOOTMEM_DEFAULT); 227 } 228 } 229 230 /* XXX need to clip this if using highmem? */ 231 sparse_memory_present_with_active_regions(0); 232 233 #ifdef CONFIG_MMU 234 init_bootmem_done = 1; 235 #endif 236 paging_init(); 237 } 238 239 void free_init_pages(char *what, unsigned long begin, unsigned long end) 240 { 241 unsigned long addr; 242 243 for (addr = begin; addr < end; addr += PAGE_SIZE) { 244 ClearPageReserved(virt_to_page(addr)); 245 init_page_count(virt_to_page(addr)); 246 free_page(addr); 247 totalram_pages++; 248 } 249 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 250 } 251 252 #ifdef CONFIG_BLK_DEV_INITRD 253 void free_initrd_mem(unsigned long start, unsigned long end) 254 { 255 int pages = 0; 256 for (; start < end; start += PAGE_SIZE) { 257 ClearPageReserved(virt_to_page(start)); 258 init_page_count(virt_to_page(start)); 259 free_page(start); 260 totalram_pages++; 261 pages++; 262 } 263 printk(KERN_NOTICE "Freeing initrd memory: %dk freed\n", 264 (int)(pages * (PAGE_SIZE / 1024))); 265 } 266 #endif 267 268 void free_initmem(void) 269 { 270 free_init_pages("unused kernel memory", 271 (unsigned long)(&__init_begin), 272 (unsigned long)(&__init_end)); 273 } 274 275 void __init mem_init(void) 276 { 277 pg_data_t *pgdat; 278 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; 279 280 high_memory = (void *)__va(memory_start + lowmem_size - 1); 281 282 /* this will put all memory onto the freelists */ 283 totalram_pages += free_all_bootmem(); 284 285 for_each_online_pgdat(pgdat) { 286 unsigned long i; 287 struct page *page; 288 289 for (i = 0; i < pgdat->node_spanned_pages; i++) { 290 if (!pfn_valid(pgdat->node_start_pfn + i)) 291 continue; 292 page = pgdat_page_nr(pgdat, i); 293 if (PageReserved(page)) 294 reservedpages++; 295 } 296 } 297 298 #ifdef CONFIG_HIGHMEM 299 reservedpages -= highmem_setup(); 300 #endif 301 302 codesize = (unsigned long)&_sdata - (unsigned long)&_stext; 303 datasize = (unsigned long)&_edata - (unsigned long)&_sdata; 304 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; 305 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; 306 307 pr_info("Memory: %luk/%luk available (%luk kernel code, " 308 "%luk reserved, %luk data, %luk bss, %luk init)\n", 309 nr_free_pages() << (PAGE_SHIFT-10), 310 num_physpages << (PAGE_SHIFT-10), 311 codesize >> 10, 312 reservedpages << (PAGE_SHIFT-10), 313 datasize >> 10, 314 bsssize >> 10, 315 initsize >> 10); 316 317 #ifdef CONFIG_MMU 318 pr_info("Kernel virtual memory layout:\n"); 319 pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP); 320 #ifdef CONFIG_HIGHMEM 321 pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n", 322 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP)); 323 #endif /* CONFIG_HIGHMEM */ 324 pr_info(" * 0x%08lx..0x%08lx : early ioremap\n", 325 ioremap_bot, ioremap_base); 326 pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n", 327 (unsigned long)VMALLOC_START, VMALLOC_END); 328 #endif 329 mem_init_done = 1; 330 } 331 332 #ifndef CONFIG_MMU 333 int page_is_ram(unsigned long pfn) 334 { 335 return __range_ok(pfn, 0); 336 } 337 #else 338 int page_is_ram(unsigned long pfn) 339 { 340 return pfn < max_low_pfn; 341 } 342 343 /* 344 * Check for command-line options that affect what MMU_init will do. 345 */ 346 static void mm_cmdline_setup(void) 347 { 348 unsigned long maxmem = 0; 349 char *p = cmd_line; 350 351 /* Look for mem= option on command line */ 352 p = strstr(cmd_line, "mem="); 353 if (p) { 354 p += 4; 355 maxmem = memparse(p, &p); 356 if (maxmem && memory_size > maxmem) { 357 memory_size = maxmem; 358 memblock.memory.regions[0].size = memory_size; 359 } 360 } 361 } 362 363 /* 364 * MMU_init_hw does the chip-specific initialization of the MMU hardware. 365 */ 366 static void __init mmu_init_hw(void) 367 { 368 /* 369 * The Zone Protection Register (ZPR) defines how protection will 370 * be applied to every page which is a member of a given zone. At 371 * present, we utilize only two of the zones. 372 * The zone index bits (of ZSEL) in the PTE are used for software 373 * indicators, except the LSB. For user access, zone 1 is used, 374 * for kernel access, zone 0 is used. We set all but zone 1 375 * to zero, allowing only kernel access as indicated in the PTE. 376 * For zone 1, we set a 01 binary (a value of 10 will not work) 377 * to allow user access as indicated in the PTE. This also allows 378 * kernel access as indicated in the PTE. 379 */ 380 __asm__ __volatile__ ("ori r11, r0, 0x10000000;" \ 381 "mts rzpr, r11;" 382 : : : "r11"); 383 } 384 385 /* 386 * MMU_init sets up the basic memory mappings for the kernel, 387 * including both RAM and possibly some I/O regions, 388 * and sets up the page tables and the MMU hardware ready to go. 389 */ 390 391 /* called from head.S */ 392 asmlinkage void __init mmu_init(void) 393 { 394 unsigned int kstart, ksize; 395 396 if (!memblock.reserved.cnt) { 397 printk(KERN_EMERG "Error memory count\n"); 398 machine_restart(NULL); 399 } 400 401 if ((u32) memblock.memory.regions[0].size < 0x400000) { 402 printk(KERN_EMERG "Memory must be greater than 4MB\n"); 403 machine_restart(NULL); 404 } 405 406 if ((u32) memblock.memory.regions[0].size < kernel_tlb) { 407 printk(KERN_EMERG "Kernel size is greater than memory node\n"); 408 machine_restart(NULL); 409 } 410 411 /* Find main memory where the kernel is */ 412 memory_start = (u32) memblock.memory.regions[0].base; 413 lowmem_size = memory_size = (u32) memblock.memory.regions[0].size; 414 415 if (lowmem_size > CONFIG_LOWMEM_SIZE) { 416 lowmem_size = CONFIG_LOWMEM_SIZE; 417 #ifndef CONFIG_HIGHMEM 418 memory_size = lowmem_size; 419 #endif 420 } 421 422 mm_cmdline_setup(); /* FIXME parse args from command line - not used */ 423 424 /* 425 * Map out the kernel text/data/bss from the available physical 426 * memory. 427 */ 428 kstart = __pa(CONFIG_KERNEL_START); /* kernel start */ 429 /* kernel size */ 430 ksize = PAGE_ALIGN(((u32)_end - (u32)CONFIG_KERNEL_START)); 431 memblock_reserve(kstart, ksize); 432 433 #if defined(CONFIG_BLK_DEV_INITRD) 434 /* Remove the init RAM disk from the available memory. */ 435 /* if (initrd_start) { 436 mem_pieces_remove(&phys_avail, __pa(initrd_start), 437 initrd_end - initrd_start, 1); 438 }*/ 439 #endif /* CONFIG_BLK_DEV_INITRD */ 440 441 /* Initialize the MMU hardware */ 442 mmu_init_hw(); 443 444 /* Map in all of RAM starting at CONFIG_KERNEL_START */ 445 mapin_ram(); 446 447 /* Extend vmalloc and ioremap area as big as possible */ 448 #ifdef CONFIG_HIGHMEM 449 ioremap_base = ioremap_bot = PKMAP_BASE; 450 #else 451 ioremap_base = ioremap_bot = FIXADDR_START; 452 #endif 453 454 /* Initialize the context management stuff */ 455 mmu_context_init(); 456 457 /* Shortly after that, the entire linear mapping will be available */ 458 /* This will also cause that unflatten device tree will be allocated 459 * inside 768MB limit */ 460 memblock_set_current_limit(memory_start + lowmem_size - 1); 461 } 462 463 /* This is only called until mem_init is done. */ 464 void __init *early_get_page(void) 465 { 466 void *p; 467 if (init_bootmem_done) { 468 p = alloc_bootmem_pages(PAGE_SIZE); 469 } else { 470 /* 471 * Mem start + kernel_tlb -> here is limit 472 * because of mem mapping from head.S 473 */ 474 p = __va(memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 475 memory_start + kernel_tlb)); 476 } 477 return p; 478 } 479 480 #endif /* CONFIG_MMU */ 481 482 void * __init_refok alloc_maybe_bootmem(size_t size, gfp_t mask) 483 { 484 if (mem_init_done) 485 return kmalloc(size, mask); 486 else 487 return alloc_bootmem(size); 488 } 489 490 void * __init_refok zalloc_maybe_bootmem(size_t size, gfp_t mask) 491 { 492 void *p; 493 494 if (mem_init_done) 495 p = kzalloc(size, mask); 496 else { 497 p = alloc_bootmem(size); 498 if (p) 499 memset(p, 0, size); 500 } 501 return p; 502 } 503