xref: /openbmc/linux/arch/microblaze/mm/fault.c (revision e2f1cf25)
1 /*
2  *  arch/microblaze/mm/fault.c
3  *
4  *    Copyright (C) 2007 Xilinx, Inc.  All rights reserved.
5  *
6  *  Derived from "arch/ppc/mm/fault.c"
7  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8  *
9  *  Derived from "arch/i386/mm/fault.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Modified by Cort Dougan and Paul Mackerras.
13  *
14  * This file is subject to the terms and conditions of the GNU General
15  * Public License.  See the file COPYING in the main directory of this
16  * archive for more details.
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/mmu.h>
35 #include <linux/mmu_context.h>
36 #include <linux/uaccess.h>
37 #include <asm/exceptions.h>
38 
39 static unsigned long pte_misses;	/* updated by do_page_fault() */
40 static unsigned long pte_errors;	/* updated by do_page_fault() */
41 
42 /*
43  * Check whether the instruction at regs->pc is a store using
44  * an update addressing form which will update r1.
45  */
46 static int store_updates_sp(struct pt_regs *regs)
47 {
48 	unsigned int inst;
49 
50 	if (get_user(inst, (unsigned int __user *)regs->pc))
51 		return 0;
52 	/* check for 1 in the rD field */
53 	if (((inst >> 21) & 0x1f) != 1)
54 		return 0;
55 	/* check for store opcodes */
56 	if ((inst & 0xd0000000) == 0xd0000000)
57 		return 1;
58 	return 0;
59 }
60 
61 
62 /*
63  * bad_page_fault is called when we have a bad access from the kernel.
64  * It is called from do_page_fault above and from some of the procedures
65  * in traps.c.
66  */
67 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
68 {
69 	const struct exception_table_entry *fixup;
70 /* MS: no context */
71 	/* Are we prepared to handle this fault?  */
72 	fixup = search_exception_tables(regs->pc);
73 	if (fixup) {
74 		regs->pc = fixup->fixup;
75 		return;
76 	}
77 
78 	/* kernel has accessed a bad area */
79 	die("kernel access of bad area", regs, sig);
80 }
81 
82 /*
83  * The error_code parameter is ESR for a data fault,
84  * 0 for an instruction fault.
85  */
86 void do_page_fault(struct pt_regs *regs, unsigned long address,
87 		   unsigned long error_code)
88 {
89 	struct vm_area_struct *vma;
90 	struct mm_struct *mm = current->mm;
91 	siginfo_t info;
92 	int code = SEGV_MAPERR;
93 	int is_write = error_code & ESR_S;
94 	int fault;
95 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
96 
97 	regs->ear = address;
98 	regs->esr = error_code;
99 
100 	/* On a kernel SLB miss we can only check for a valid exception entry */
101 	if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) {
102 		pr_warn("kernel task_size exceed");
103 		_exception(SIGSEGV, regs, code, address);
104 	}
105 
106 	/* for instr TLB miss and instr storage exception ESR_S is undefined */
107 	if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
108 		is_write = 0;
109 
110 	if (unlikely(faulthandler_disabled() || !mm)) {
111 		if (kernel_mode(regs))
112 			goto bad_area_nosemaphore;
113 
114 		/* faulthandler_disabled() in user mode is really bad,
115 		   as is current->mm == NULL. */
116 		pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n",
117 			 mm);
118 		pr_emerg("r15 = %lx  MSR = %lx\n",
119 		       regs->r15, regs->msr);
120 		die("Weird page fault", regs, SIGSEGV);
121 	}
122 
123 	if (user_mode(regs))
124 		flags |= FAULT_FLAG_USER;
125 
126 	/* When running in the kernel we expect faults to occur only to
127 	 * addresses in user space.  All other faults represent errors in the
128 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
129 	 * erroneous fault occurring in a code path which already holds mmap_sem
130 	 * we will deadlock attempting to validate the fault against the
131 	 * address space.  Luckily the kernel only validly references user
132 	 * space from well defined areas of code, which are listed in the
133 	 * exceptions table.
134 	 *
135 	 * As the vast majority of faults will be valid we will only perform
136 	 * the source reference check when there is a possibility of a deadlock.
137 	 * Attempt to lock the address space, if we cannot we then validate the
138 	 * source.  If this is invalid we can skip the address space check,
139 	 * thus avoiding the deadlock.
140 	 */
141 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
142 		if (kernel_mode(regs) && !search_exception_tables(regs->pc))
143 			goto bad_area_nosemaphore;
144 
145 retry:
146 		down_read(&mm->mmap_sem);
147 	}
148 
149 	vma = find_vma(mm, address);
150 	if (unlikely(!vma))
151 		goto bad_area;
152 
153 	if (vma->vm_start <= address)
154 		goto good_area;
155 
156 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
157 		goto bad_area;
158 
159 	if (unlikely(!is_write))
160 		goto bad_area;
161 
162 	/*
163 	 * N.B. The ABI allows programs to access up to
164 	 * a few hundred bytes below the stack pointer (TBD).
165 	 * The kernel signal delivery code writes up to about 1.5kB
166 	 * below the stack pointer (r1) before decrementing it.
167 	 * The exec code can write slightly over 640kB to the stack
168 	 * before setting the user r1.  Thus we allow the stack to
169 	 * expand to 1MB without further checks.
170 	 */
171 	if (unlikely(address + 0x100000 < vma->vm_end)) {
172 
173 		/* get user regs even if this fault is in kernel mode */
174 		struct pt_regs *uregs = current->thread.regs;
175 		if (uregs == NULL)
176 			goto bad_area;
177 
178 		/*
179 		 * A user-mode access to an address a long way below
180 		 * the stack pointer is only valid if the instruction
181 		 * is one which would update the stack pointer to the
182 		 * address accessed if the instruction completed,
183 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
184 		 * (or the byte, halfword, float or double forms).
185 		 *
186 		 * If we don't check this then any write to the area
187 		 * between the last mapped region and the stack will
188 		 * expand the stack rather than segfaulting.
189 		 */
190 		if (address + 2048 < uregs->r1
191 			&& (kernel_mode(regs) || !store_updates_sp(regs)))
192 				goto bad_area;
193 	}
194 	if (expand_stack(vma, address))
195 		goto bad_area;
196 
197 good_area:
198 	code = SEGV_ACCERR;
199 
200 	/* a write */
201 	if (unlikely(is_write)) {
202 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
203 			goto bad_area;
204 		flags |= FAULT_FLAG_WRITE;
205 	/* a read */
206 	} else {
207 		/* protection fault */
208 		if (unlikely(error_code & 0x08000000))
209 			goto bad_area;
210 		if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC))))
211 			goto bad_area;
212 	}
213 
214 	/*
215 	 * If for any reason at all we couldn't handle the fault,
216 	 * make sure we exit gracefully rather than endlessly redo
217 	 * the fault.
218 	 */
219 	fault = handle_mm_fault(mm, vma, address, flags);
220 
221 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
222 		return;
223 
224 	if (unlikely(fault & VM_FAULT_ERROR)) {
225 		if (fault & VM_FAULT_OOM)
226 			goto out_of_memory;
227 		else if (fault & VM_FAULT_SIGSEGV)
228 			goto bad_area;
229 		else if (fault & VM_FAULT_SIGBUS)
230 			goto do_sigbus;
231 		BUG();
232 	}
233 
234 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
235 		if (unlikely(fault & VM_FAULT_MAJOR))
236 			current->maj_flt++;
237 		else
238 			current->min_flt++;
239 		if (fault & VM_FAULT_RETRY) {
240 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
241 			flags |= FAULT_FLAG_TRIED;
242 
243 			/*
244 			 * No need to up_read(&mm->mmap_sem) as we would
245 			 * have already released it in __lock_page_or_retry
246 			 * in mm/filemap.c.
247 			 */
248 
249 			goto retry;
250 		}
251 	}
252 
253 	up_read(&mm->mmap_sem);
254 
255 	/*
256 	 * keep track of tlb+htab misses that are good addrs but
257 	 * just need pte's created via handle_mm_fault()
258 	 * -- Cort
259 	 */
260 	pte_misses++;
261 	return;
262 
263 bad_area:
264 	up_read(&mm->mmap_sem);
265 
266 bad_area_nosemaphore:
267 	pte_errors++;
268 
269 	/* User mode accesses cause a SIGSEGV */
270 	if (user_mode(regs)) {
271 		_exception(SIGSEGV, regs, code, address);
272 /*		info.si_signo = SIGSEGV;
273 		info.si_errno = 0;
274 		info.si_code = code;
275 		info.si_addr = (void *) address;
276 		force_sig_info(SIGSEGV, &info, current);*/
277 		return;
278 	}
279 
280 	bad_page_fault(regs, address, SIGSEGV);
281 	return;
282 
283 /*
284  * We ran out of memory, or some other thing happened to us that made
285  * us unable to handle the page fault gracefully.
286  */
287 out_of_memory:
288 	up_read(&mm->mmap_sem);
289 	if (!user_mode(regs))
290 		bad_page_fault(regs, address, SIGKILL);
291 	else
292 		pagefault_out_of_memory();
293 	return;
294 
295 do_sigbus:
296 	up_read(&mm->mmap_sem);
297 	if (user_mode(regs)) {
298 		info.si_signo = SIGBUS;
299 		info.si_errno = 0;
300 		info.si_code = BUS_ADRERR;
301 		info.si_addr = (void __user *)address;
302 		force_sig_info(SIGBUS, &info, current);
303 		return;
304 	}
305 	bad_page_fault(regs, address, SIGBUS);
306 }
307