xref: /openbmc/linux/arch/microblaze/mm/consistent.c (revision 176f011b)
1 /*
2  * Microblaze support for cache consistent memory.
3  * Copyright (C) 2010 Michal Simek <monstr@monstr.eu>
4  * Copyright (C) 2010 PetaLogix
5  * Copyright (C) 2005 John Williams <jwilliams@itee.uq.edu.au>
6  *
7  * Based on PowerPC version derived from arch/arm/mm/consistent.c
8  * Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
9  * Copyright (C) 2000 Russell King
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 
16 #include <linux/export.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/swap.h>
27 #include <linux/stddef.h>
28 #include <linux/vmalloc.h>
29 #include <linux/init.h>
30 #include <linux/delay.h>
31 #include <linux/memblock.h>
32 #include <linux/highmem.h>
33 #include <linux/pci.h>
34 #include <linux/interrupt.h>
35 #include <linux/gfp.h>
36 #include <linux/dma-noncoherent.h>
37 
38 #include <asm/pgalloc.h>
39 #include <linux/io.h>
40 #include <linux/hardirq.h>
41 #include <linux/mmu_context.h>
42 #include <asm/mmu.h>
43 #include <linux/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/cpuinfo.h>
46 #include <asm/tlbflush.h>
47 
48 #ifndef CONFIG_MMU
49 /* I have to use dcache values because I can't relate on ram size */
50 # define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1)
51 #endif
52 
53 /*
54  * Consistent memory allocators. Used for DMA devices that want to
55  * share uncached memory with the processor core.
56  * My crufty no-MMU approach is simple. In the HW platform we can optionally
57  * mirror the DDR up above the processor cacheable region.  So, memory accessed
58  * in this mirror region will not be cached.  It's alloced from the same
59  * pool as normal memory, but the handle we return is shifted up into the
60  * uncached region.  This will no doubt cause big problems if memory allocated
61  * here is not also freed properly. -- JW
62  */
63 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
64 		gfp_t gfp, unsigned long attrs)
65 {
66 	unsigned long order, vaddr;
67 	void *ret;
68 	unsigned int i, err = 0;
69 	struct page *page, *end;
70 
71 #ifdef CONFIG_MMU
72 	phys_addr_t pa;
73 	struct vm_struct *area;
74 	unsigned long va;
75 #endif
76 
77 	if (in_interrupt())
78 		BUG();
79 
80 	/* Only allocate page size areas. */
81 	size = PAGE_ALIGN(size);
82 	order = get_order(size);
83 
84 	vaddr = __get_free_pages(gfp | __GFP_ZERO, order);
85 	if (!vaddr)
86 		return NULL;
87 
88 	/*
89 	 * we need to ensure that there are no cachelines in use,
90 	 * or worse dirty in this area.
91 	 */
92 	flush_dcache_range(virt_to_phys((void *)vaddr),
93 					virt_to_phys((void *)vaddr) + size);
94 
95 #ifndef CONFIG_MMU
96 	ret = (void *)vaddr;
97 	/*
98 	 * Here's the magic!  Note if the uncached shadow is not implemented,
99 	 * it's up to the calling code to also test that condition and make
100 	 * other arranegments, such as manually flushing the cache and so on.
101 	 */
102 # ifdef CONFIG_XILINX_UNCACHED_SHADOW
103 	ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK);
104 # endif
105 	if ((unsigned int)ret > cpuinfo.dcache_base &&
106 				(unsigned int)ret < cpuinfo.dcache_high)
107 		pr_warn("ERROR: Your cache coherent area is CACHED!!!\n");
108 
109 	/* dma_handle is same as physical (shadowed) address */
110 	*dma_handle = (dma_addr_t)ret;
111 #else
112 	/* Allocate some common virtual space to map the new pages. */
113 	area = get_vm_area(size, VM_ALLOC);
114 	if (!area) {
115 		free_pages(vaddr, order);
116 		return NULL;
117 	}
118 	va = (unsigned long) area->addr;
119 	ret = (void *)va;
120 
121 	/* This gives us the real physical address of the first page. */
122 	*dma_handle = pa = __virt_to_phys(vaddr);
123 #endif
124 
125 	/*
126 	 * free wasted pages.  We skip the first page since we know
127 	 * that it will have count = 1 and won't require freeing.
128 	 * We also mark the pages in use as reserved so that
129 	 * remap_page_range works.
130 	 */
131 	page = virt_to_page(vaddr);
132 	end = page + (1 << order);
133 
134 	split_page(page, order);
135 
136 	for (i = 0; i < size && err == 0; i += PAGE_SIZE) {
137 #ifdef CONFIG_MMU
138 		/* MS: This is the whole magic - use cache inhibit pages */
139 		err = map_page(va + i, pa + i, _PAGE_KERNEL | _PAGE_NO_CACHE);
140 #endif
141 
142 		SetPageReserved(page);
143 		page++;
144 	}
145 
146 	/* Free the otherwise unused pages. */
147 	while (page < end) {
148 		__free_page(page);
149 		page++;
150 	}
151 
152 	if (err) {
153 		free_pages(vaddr, order);
154 		return NULL;
155 	}
156 
157 	return ret;
158 }
159 
160 #ifdef CONFIG_MMU
161 static pte_t *consistent_virt_to_pte(void *vaddr)
162 {
163 	unsigned long addr = (unsigned long)vaddr;
164 
165 	return pte_offset_kernel(pmd_offset(pgd_offset_k(addr), addr), addr);
166 }
167 
168 long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr,
169 		dma_addr_t dma_addr)
170 {
171 	pte_t *ptep = consistent_virt_to_pte(vaddr);
172 
173 	if (pte_none(*ptep) || !pte_present(*ptep))
174 		return 0;
175 
176 	return pte_pfn(*ptep);
177 }
178 #endif
179 
180 /*
181  * free page(s) as defined by the above mapping.
182  */
183 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
184 		dma_addr_t dma_addr, unsigned long attrs)
185 {
186 	struct page *page;
187 
188 	if (in_interrupt())
189 		BUG();
190 
191 	size = PAGE_ALIGN(size);
192 
193 #ifndef CONFIG_MMU
194 	/* Clear SHADOW_MASK bit in address, and free as per usual */
195 # ifdef CONFIG_XILINX_UNCACHED_SHADOW
196 	vaddr = (void *)((unsigned)vaddr & ~UNCACHED_SHADOW_MASK);
197 # endif
198 	page = virt_to_page(vaddr);
199 
200 	do {
201 		__free_reserved_page(page);
202 		page++;
203 	} while (size -= PAGE_SIZE);
204 #else
205 	do {
206 		pte_t *ptep = consistent_virt_to_pte(vaddr);
207 		unsigned long pfn;
208 
209 		if (!pte_none(*ptep) && pte_present(*ptep)) {
210 			pfn = pte_pfn(*ptep);
211 			pte_clear(&init_mm, (unsigned int)vaddr, ptep);
212 			if (pfn_valid(pfn)) {
213 				page = pfn_to_page(pfn);
214 				__free_reserved_page(page);
215 			}
216 		}
217 		vaddr += PAGE_SIZE;
218 	} while (size -= PAGE_SIZE);
219 
220 	/* flush tlb */
221 	flush_tlb_all();
222 #endif
223 }
224