1/*
2 * Exception handling for Microblaze
3 *
4 * Rewriten interrupt handling
5 *
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
8 *
9 * uClinux customisation (C) 2005 John Williams
10 *
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 *		Initial PowerPC version.
14 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
15 *		Rewritten for PReP
16 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 *		Low-level exception handers, MMU support, and rewrite.
18 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 *		PowerPC 8xx modifications.
20 *	Copyright (C) 1998-1999 TiVo, Inc.
21 *		PowerPC 403GCX modifications.
22 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 *		PowerPC 403GCX/405GP modifications.
24 *	Copyright 2000 MontaVista Software Inc.
25 *		PPC405 modifications
26 *	PowerPC 403GCX/405GP modifications.
27 *		Author: MontaVista Software, Inc.
28 *		frank_rowand@mvista.com or source@mvista.com
29 *		debbie_chu@mvista.com
30 *
31 * Original code
32 * Copyright (C) 2004 Xilinx, Inc.
33 *
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
37 */
38
39/*
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
47 *
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
50 *   - Unalignment
51 *   - Instruction bus error
52 *   - Data bus error
53 *   - Illegal instruction opcode
54 *   - Divide-by-zero
55 *
56 *   - Privileged instruction exception (MMU)
57 *   - Data storage exception (MMU)
58 *   - Instruction storage exception (MMU)
59 *   - Data TLB miss exception (MMU)
60 *   - Instruction TLB miss exception (MMU)
61 *
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
64 * exceptions. JW
65 */
66
67#include <asm/exceptions.h>
68#include <asm/unistd.h>
69#include <asm/page.h>
70
71#include <asm/entry.h>
72#include <asm/current.h>
73#include <linux/linkage.h>
74
75#include <asm/mmu.h>
76#include <asm/pgtable.h>
77#include <asm/signal.h>
78#include <asm/asm-offsets.h>
79
80/* Helpful Macros */
81#ifndef CONFIG_MMU
82#define EX_HANDLER_STACK_SIZ	(4*19)
83#endif
84#define NUM_TO_REG(num)		r ## num
85
86#ifdef CONFIG_MMU
87/* FIXME you can't change first load of MSR because there is
88 * hardcoded jump bri 4 */
89	#define RESTORE_STATE			\
90		lwi	r3, r1, PT_R3;		\
91		lwi	r4, r1, PT_R4;		\
92		lwi	r5, r1, PT_R5;		\
93		lwi	r6, r1, PT_R6;		\
94		lwi	r11, r1, PT_R11;	\
95		lwi	r31, r1, PT_R31;	\
96		lwi	r1, r0, TOPHYS(r0_ram + 0);
97#endif /* CONFIG_MMU */
98
99#define LWREG_NOP			\
100	bri	ex_handler_unhandled;	\
101	nop;
102
103#define SWREG_NOP			\
104	bri	ex_handler_unhandled;	\
105	nop;
106
107/* FIXME this is weird - for noMMU kernel is not possible to use brid
108 * instruction which can shorten executed time
109 */
110
111/* r3 is the source */
112#define R3_TO_LWREG_V(regnum)				\
113	swi	r3, r1, 4 * regnum;				\
114	bri	ex_handler_done;
115
116/* r3 is the source */
117#define R3_TO_LWREG(regnum)				\
118	or	NUM_TO_REG (regnum), r0, r3;		\
119	bri	ex_handler_done;
120
121/* r3 is the target */
122#define SWREG_TO_R3_V(regnum)				\
123	lwi	r3, r1, 4 * regnum;				\
124	bri	ex_sw_tail;
125
126/* r3 is the target */
127#define SWREG_TO_R3(regnum)				\
128	or	r3, r0, NUM_TO_REG (regnum);		\
129	bri	ex_sw_tail;
130
131#ifdef CONFIG_MMU
132	#define R3_TO_LWREG_VM_V(regnum)		\
133		brid	ex_lw_end_vm;			\
134		swi	r3, r7, 4 * regnum;
135
136	#define R3_TO_LWREG_VM(regnum)			\
137		brid	ex_lw_end_vm;			\
138		or	NUM_TO_REG (regnum), r0, r3;
139
140	#define SWREG_TO_R3_VM_V(regnum)		\
141		brid	ex_sw_tail_vm;			\
142		lwi	r3, r7, 4 * regnum;
143
144	#define SWREG_TO_R3_VM(regnum)			\
145		brid	ex_sw_tail_vm;			\
146		or	r3, r0, NUM_TO_REG (regnum);
147
148	/* Shift right instruction depending on available configuration */
149	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
150	#define BSRLI(rD, rA, imm)	\
151		bsrli rD, rA, imm
152	#elif CONFIG_XILINX_MICROBLAZE0_USE_DIV > 0
153	#define BSRLI(rD, rA, imm)	\
154		ori rD, r0, (1 << imm);	\
155		idivu rD, rD, rA
156	#else
157	#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
158	/* Only the used shift constants defined here - add more if needed */
159	#define BSRLI2(rD, rA)				\
160		srl rD, rA;		/* << 1 */	\
161		srl rD, rD;		/* << 2 */
162	#define BSRLI10(rD, rA)				\
163		srl rD, rA;		/* << 1 */	\
164		srl rD, rD;		/* << 2 */	\
165		srl rD, rD;		/* << 3 */	\
166		srl rD, rD;		/* << 4 */	\
167		srl rD, rD;		/* << 5 */	\
168		srl rD, rD;		/* << 6 */	\
169		srl rD, rD;		/* << 7 */	\
170		srl rD, rD;		/* << 8 */	\
171		srl rD, rD;		/* << 9 */	\
172		srl rD, rD		/* << 10 */
173	#define BSRLI20(rD, rA)		\
174		BSRLI10(rD, rA);	\
175		BSRLI10(rD, rD)
176	#endif
177#endif /* CONFIG_MMU */
178
179.extern other_exception_handler /* Defined in exception.c */
180
181/*
182 * hw_exception_handler - Handler for exceptions
183 *
184 * Exception handler notes:
185 * - Handles all exceptions
186 * - Does not handle unaligned exceptions during load into r17, r1, r0.
187 * - Does not handle unaligned exceptions during store from r17 (cannot be
188 *   done) and r1 (slows down common case)
189 *
190 *  Relevant register structures
191 *
192 *  EAR - |----|----|----|----|----|----|----|----|
193 *      - <  ##   32 bit faulting address     ##  >
194 *
195 *  ESR - |----|----|----|----|----| - | - |-----|-----|
196 *      -                            W   S   REG   EXC
197 *
198 *
199 * STACK FRAME STRUCTURE (for NO_MMU)
200 * ---------------------------------
201 *
202 *      +-------------+         + 0
203 *      |     MSR     |
204 *      +-------------+         + 4
205 *      |     r1      |
206 *      |      .      |
207 *      |      .      |
208 *      |      .      |
209 *      |      .      |
210 *      |     r18     |
211 *      +-------------+         + 76
212 *      |      .      |
213 *      |      .      |
214 *
215 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
216 * which is used for storing register values - old style was, that value were
217 * stored in stack but in case of failure you lost information about register.
218 * Currently you can see register value in memory in specific place.
219 * In compare to with previous solution the speed should be the same.
220 *
221 * MMU exception handler has different handling compare to no MMU kernel.
222 * Exception handler use jump table for directing of what happen. For MMU kernel
223 * is this approach better because MMU relate exception are handled by asm code
224 * in this file. In compare to with MMU expect of unaligned exception
225 * is everything handled by C code.
226 */
227
228/*
229 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
230 * and clobbered so care should be taken to restore them if someone is going to
231 * return from exception
232 */
233
234/* wrappers to restore state before coming to entry.S */
235
236#ifdef CONFIG_MMU
237.section .rodata
238.align 4
239_MB_HW_ExceptionVectorTable:
240/*  0 - Undefined */
241	.long	TOPHYS(ex_handler_unhandled)
242/*  1 - Unaligned data access exception */
243	.long	TOPHYS(handle_unaligned_ex)
244/*  2 - Illegal op-code exception */
245	.long	TOPHYS(full_exception_trapw)
246/*  3 - Instruction bus error exception */
247	.long	TOPHYS(full_exception_trapw)
248/*  4 - Data bus error exception */
249	.long	TOPHYS(full_exception_trapw)
250/*  5 - Divide by zero exception */
251	.long	TOPHYS(full_exception_trapw)
252/*  6 - Floating point unit exception */
253	.long	TOPHYS(full_exception_trapw)
254/*  7 - Privileged instruction exception */
255	.long	TOPHYS(full_exception_trapw)
256/*  8 - 15 - Undefined */
257	.long	TOPHYS(ex_handler_unhandled)
258	.long	TOPHYS(ex_handler_unhandled)
259	.long	TOPHYS(ex_handler_unhandled)
260	.long	TOPHYS(ex_handler_unhandled)
261	.long	TOPHYS(ex_handler_unhandled)
262	.long	TOPHYS(ex_handler_unhandled)
263	.long	TOPHYS(ex_handler_unhandled)
264	.long	TOPHYS(ex_handler_unhandled)
265/* 16 - Data storage exception */
266	.long	TOPHYS(handle_data_storage_exception)
267/* 17 - Instruction storage exception */
268	.long	TOPHYS(handle_instruction_storage_exception)
269/* 18 - Data TLB miss exception */
270	.long	TOPHYS(handle_data_tlb_miss_exception)
271/* 19 - Instruction TLB miss exception */
272	.long	TOPHYS(handle_instruction_tlb_miss_exception)
273/* 20 - 31 - Undefined */
274	.long	TOPHYS(ex_handler_unhandled)
275	.long	TOPHYS(ex_handler_unhandled)
276	.long	TOPHYS(ex_handler_unhandled)
277	.long	TOPHYS(ex_handler_unhandled)
278	.long	TOPHYS(ex_handler_unhandled)
279	.long	TOPHYS(ex_handler_unhandled)
280	.long	TOPHYS(ex_handler_unhandled)
281	.long	TOPHYS(ex_handler_unhandled)
282	.long	TOPHYS(ex_handler_unhandled)
283	.long	TOPHYS(ex_handler_unhandled)
284	.long	TOPHYS(ex_handler_unhandled)
285	.long	TOPHYS(ex_handler_unhandled)
286#endif
287
288.global _hw_exception_handler
289.section .text
290.align 4
291.ent _hw_exception_handler
292_hw_exception_handler:
293#ifndef CONFIG_MMU
294	addik	r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
295#else
296	swi	r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
297	/* Save date to kernel memory. Here is the problem
298	 * when you came from user space */
299	ori	r1, r0, TOPHYS(r0_ram + 28);
300#endif
301	swi	r3, r1, PT_R3
302	swi	r4, r1, PT_R4
303	swi	r5, r1, PT_R5
304	swi	r6, r1, PT_R6
305
306#ifdef CONFIG_MMU
307	swi	r11, r1, PT_R11
308	swi	r31, r1, PT_R31
309	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
310#endif
311
312	mfs	r3, resr
313	nop
314	mfs	r4, rear;
315	nop
316
317#ifndef CONFIG_MMU
318	andi	r5, r3, 0x1000;		/* Check ESR[DS] */
319	beqi	r5, not_in_delay_slot;	/* Branch if ESR[DS] not set */
320	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
321	nop
322not_in_delay_slot:
323	swi	r17, r1, PT_R17
324#endif
325
326	andi	r5, r3, 0x1F;		/* Extract ESR[EXC] */
327
328#ifdef CONFIG_MMU
329	/* Calculate exception vector offset = r5 << 2 */
330	addk	r6, r5, r5; /* << 1 */
331	addk	r6, r6, r6; /* << 2 */
332
333/* counting which exception happen */
334	lwi	r5, r0, 0x200 + TOPHYS(r0_ram)
335	addi	r5, r5, 1
336	swi	r5, r0, 0x200 + TOPHYS(r0_ram)
337	lwi	r5, r6, 0x200 + TOPHYS(r0_ram)
338	addi	r5, r5, 1
339	swi	r5, r6, 0x200 + TOPHYS(r0_ram)
340/* end */
341	/* Load the HW Exception vector */
342	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
343	bra	r6
344
345full_exception_trapw:
346	RESTORE_STATE
347	bri	full_exception_trap
348#else
349	/* Exceptions enabled here. This will allow nested exceptions */
350	mfs	r6, rmsr;
351	nop
352	swi	r6, r1, 0; /* RMSR_OFFSET */
353	ori	r6, r6, 0x100; /* Turn ON the EE bit */
354	andi	r6, r6, ~2; /* Disable interrupts */
355	mts	rmsr, r6;
356	nop
357
358	xori	r6, r5, 1; /* 00001 = Unaligned Exception */
359	/* Jump to unalignment exception handler */
360	beqi	r6, handle_unaligned_ex;
361
362handle_other_ex: /* Handle Other exceptions here */
363	/* Save other volatiles before we make procedure calls below */
364	swi	r7, r1, PT_R7
365	swi	r8, r1, PT_R8
366	swi	r9, r1, PT_R9
367	swi	r10, r1, PT_R10
368	swi	r11, r1, PT_R11
369	swi	r12, r1, PT_R12
370	swi	r14, r1, PT_R14
371	swi	r15, r1, PT_R15
372	swi	r18, r1, PT_R18
373
374	or	r5, r1, r0
375	andi	r6, r3, 0x1F; /* Load ESR[EC] */
376	lwi	r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
377	swi	r7, r1, PT_MODE
378	mfs	r7, rfsr
379	nop
380	addk	r8, r17, r0; /* Load exception address */
381	bralid	r15, full_exception; /* Branch to the handler */
382	nop;
383
384	/*
385	 * Trigger execution of the signal handler by enabling
386	 * interrupts and calling an invalid syscall.
387	 */
388	mfs	r5, rmsr;
389	nop
390	ori	r5, r5, 2;
391	mts	rmsr, r5; /* enable interrupt */
392	nop
393	addi	r12, r0, __NR_syscalls;
394	brki	r14, 0x08;
395	mfs	r5, rmsr; /* disable interrupt */
396	nop
397	andi	r5, r5, ~2;
398	mts	rmsr, r5;
399	nop
400
401	lwi	r7, r1, PT_R7
402	lwi	r8, r1, PT_R8
403	lwi	r9, r1, PT_R9
404	lwi	r10, r1, PT_R10
405	lwi	r11, r1, PT_R11
406	lwi	r12, r1, PT_R12
407	lwi	r14, r1, PT_R14
408	lwi	r15, r1, PT_R15
409	lwi	r18, r1, PT_R18
410
411	bri	ex_handler_done; /* Complete exception handling */
412#endif
413
414/* 0x01 - Unaligned data access exception
415 * This occurs when a word access is not aligned on a word boundary,
416 * or when a 16-bit access is not aligned on a 16-bit boundary.
417 * This handler perform the access, and returns, except for MMU when
418 * the unaligned address is last on a 4k page or the physical address is
419 * not found in the page table, in which case unaligned_data_trap is called.
420 */
421handle_unaligned_ex:
422	/* Working registers already saved: R3, R4, R5, R6
423	 *  R3 = ESR
424	 *  R4 = EAR
425	 */
426#ifdef CONFIG_MMU
427	andi	r6, r3, 0x1000			/* Check ESR[DS] */
428	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
429	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
430	nop
431_no_delayslot:
432	/* jump to high level unaligned handler */
433	RESTORE_STATE;
434	bri	unaligned_data_trap
435#endif
436	andi	r6, r3, 0x3E0; /* Mask and extract the register operand */
437	srl	r6, r6; /* r6 >> 5 */
438	srl	r6, r6;
439	srl	r6, r6;
440	srl	r6, r6;
441	srl	r6, r6;
442	/* Store the register operand in a temporary location */
443	sbi	r6, r0, TOPHYS(ex_reg_op);
444
445	andi	r6, r3, 0x400; /* Extract ESR[S] */
446	bnei	r6, ex_sw;
447ex_lw:
448	andi	r6, r3, 0x800; /* Extract ESR[W] */
449	beqi	r6, ex_lhw;
450	lbui	r5, r4, 0; /* Exception address in r4 */
451	/* Load a word, byte-by-byte from destination address
452		and save it in tmp space */
453	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
454	lbui	r5, r4, 1;
455	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
456	lbui	r5, r4, 2;
457	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
458	lbui	r5, r4, 3;
459	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
460	/* Get the destination register value into r3 */
461	lwi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
462	bri	ex_lw_tail;
463ex_lhw:
464	lbui	r5, r4, 0; /* Exception address in r4 */
465	/* Load a half-word, byte-by-byte from destination
466		address and save it in tmp space */
467	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
468	lbui	r5, r4, 1;
469	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
470	/* Get the destination register value into r3 */
471	lhui	r3, r0, TOPHYS(ex_tmp_data_loc_0);
472ex_lw_tail:
473	/* Get the destination register number into r5 */
474	lbui	r5, r0, TOPHYS(ex_reg_op);
475	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
476	la	r6, r0, TOPHYS(lw_table);
477	addk	r5, r5, r5;
478	addk	r5, r5, r5;
479	addk	r5, r5, r5;
480	addk	r5, r5, r6;
481	bra	r5;
482ex_lw_end: /* Exception handling of load word, ends */
483ex_sw:
484	/* Get the destination register number into r5 */
485	lbui	r5, r0, TOPHYS(ex_reg_op);
486	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
487	la	r6, r0, TOPHYS(sw_table);
488	add	r5, r5, r5;
489	add	r5, r5, r5;
490	add	r5, r5, r5;
491	add	r5, r5, r6;
492	bra	r5;
493ex_sw_tail:
494	mfs	r6, resr;
495	nop
496	andi	r6, r6, 0x800; /* Extract ESR[W] */
497	beqi	r6, ex_shw;
498	/* Get the word - delay slot */
499	swi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
500	/* Store the word, byte-by-byte into destination address */
501	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_0);
502	sbi	r3, r4, 0;
503	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_1);
504	sbi	r3, r4, 1;
505	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_2);
506	sbi	r3, r4, 2;
507	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_3);
508	sbi	r3, r4, 3;
509	bri	ex_handler_done;
510
511ex_shw:
512	/* Store the lower half-word, byte-by-byte into destination address */
513	swi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
514	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_2);
515	sbi	r3, r4, 0;
516	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_3);
517	sbi	r3, r4, 1;
518ex_sw_end: /* Exception handling of store word, ends. */
519
520ex_handler_done:
521#ifndef CONFIG_MMU
522	lwi	r5, r1, 0 /* RMSR */
523	mts	rmsr, r5
524	nop
525	lwi	r3, r1, PT_R3
526	lwi	r4, r1, PT_R4
527	lwi	r5, r1, PT_R5
528	lwi	r6, r1, PT_R6
529	lwi	r17, r1, PT_R17
530
531	rted	r17, 0
532	addik	r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
533#else
534	RESTORE_STATE;
535	rted	r17, 0
536	nop
537#endif
538
539#ifdef CONFIG_MMU
540	/* Exception vector entry code. This code runs with address translation
541	 * turned off (i.e. using physical addresses). */
542
543	/* Exception vectors. */
544
545	/* 0x10 - Data Storage Exception
546	 * This happens for just a few reasons. U0 set (but we don't do that),
547	 * or zone protection fault (user violation, write to protected page).
548	 * If this is just an update of modified status, we do that quickly
549	 * and exit. Otherwise, we call heavyweight functions to do the work.
550	 */
551	handle_data_storage_exception:
552		/* Working registers already saved: R3, R4, R5, R6
553		 * R3 = ESR
554		 */
555		mfs	r11, rpid
556		nop
557		bri	4
558		mfs	r3, rear		/* Get faulting address */
559		nop
560		/* If we are faulting a kernel address, we have to use the
561		 * kernel page tables.
562		 */
563		ori	r4, r0, CONFIG_KERNEL_START
564		cmpu	r4, r3, r4
565		bgti	r4, ex3
566		/* First, check if it was a zone fault (which means a user
567		 * tried to access a kernel or read-protected page - always
568		 * a SEGV). All other faults here must be stores, so no
569		 * need to check ESR_S as well. */
570		mfs	r4, resr
571		nop
572		andi	r4, r4, 0x800		/* ESR_Z - zone protection */
573		bnei	r4, ex2
574
575		ori	r4, r0, swapper_pg_dir
576		mts	rpid, r0		/* TLB will have 0 TID */
577		nop
578		bri	ex4
579
580		/* Get the PGD for the current thread. */
581	ex3:
582		/* First, check if it was a zone fault (which means a user
583		 * tried to access a kernel or read-protected page - always
584		 * a SEGV). All other faults here must be stores, so no
585		 * need to check ESR_S as well. */
586		mfs	r4, resr
587		nop
588		andi	r4, r4, 0x800		/* ESR_Z */
589		bnei	r4, ex2
590		/* get current task address */
591		addi	r4 ,CURRENT_TASK, TOPHYS(0);
592		lwi	r4, r4, TASK_THREAD+PGDIR
593	ex4:
594		tophys(r4,r4)
595		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
596		andi	r5, r5, 0xffc
597/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
598		or	r4, r4, r5
599		lwi	r4, r4, 0		/* Get L1 entry */
600		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
601		beqi	r5, ex2			/* Bail if no table */
602
603		tophys(r5,r5)
604		BSRLI(r6,r3,10)			/* Compute PTE address */
605		andi	r6, r6, 0xffc
606		andi	r5, r5, 0xfffff003
607		or	r5, r5, r6
608		lwi	r4, r5, 0		/* Get Linux PTE */
609
610		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
611		beqi	r6, ex2			/* Bail if not */
612
613		/* Update 'changed' */
614		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
615		swi	r4, r5, 0		/* Update Linux page table */
616
617		/* Most of the Linux PTE is ready to load into the TLB LO.
618		 * We set ZSEL, where only the LS-bit determines user access.
619		 * We set execute, because we don't have the granularity to
620		 * properly set this at the page level (Linux problem).
621		 * If shared is set, we cause a zero PID->TID load.
622		 * Many of these bits are software only. Bits we don't set
623		 * here we (properly should) assume have the appropriate value.
624		 */
625		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
626		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
627
628		/* find the TLB index that caused the fault. It has to be here*/
629		mts	rtlbsx, r3
630		nop
631		mfs	r5, rtlbx		/* DEBUG: TBD */
632		nop
633		mts	rtlblo, r4		/* Load TLB LO */
634		nop
635						/* Will sync shadow TLBs */
636
637		/* Done...restore registers and get out of here. */
638		mts	rpid, r11
639		nop
640		bri 4
641
642		RESTORE_STATE;
643		rted	r17, 0
644		nop
645	ex2:
646		/* The bailout. Restore registers to pre-exception conditions
647		 * and call the heavyweights to help us out. */
648		mts	rpid, r11
649		nop
650		bri 4
651		RESTORE_STATE;
652		bri	page_fault_data_trap
653
654
655	/* 0x11 - Instruction Storage Exception
656	 * This is caused by a fetch from non-execute or guarded pages. */
657	handle_instruction_storage_exception:
658		/* Working registers already saved: R3, R4, R5, R6
659		 * R3 = ESR
660		 */
661
662		mfs	r3, rear		/* Get faulting address */
663		nop
664		RESTORE_STATE;
665		bri	page_fault_instr_trap
666
667	/* 0x12 - Data TLB Miss Exception
668	 * As the name implies, translation is not in the MMU, so search the
669	 * page tables and fix it. The only purpose of this function is to
670	 * load TLB entries from the page table if they exist.
671	 */
672	handle_data_tlb_miss_exception:
673		/* Working registers already saved: R3, R4, R5, R6
674		 * R3 = ESR
675		 */
676		mfs	r11, rpid
677		nop
678		bri	4
679		mfs	r3, rear		/* Get faulting address */
680		nop
681
682		/* If we are faulting a kernel address, we have to use the
683		 * kernel page tables. */
684		ori	r4, r0, CONFIG_KERNEL_START
685		cmpu	r4, r3, r4
686		bgti	r4, ex5
687		ori	r4, r0, swapper_pg_dir
688		mts	rpid, r0		/* TLB will have 0 TID */
689		nop
690		bri	ex6
691
692		/* Get the PGD for the current thread. */
693	ex5:
694		/* get current task address */
695		addi	r4 ,CURRENT_TASK, TOPHYS(0);
696		lwi	r4, r4, TASK_THREAD+PGDIR
697	ex6:
698		tophys(r4,r4)
699		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
700		andi	r5, r5, 0xffc
701/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
702		or	r4, r4, r5
703		lwi	r4, r4, 0		/* Get L1 entry */
704		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
705		beqi	r5, ex7			/* Bail if no table */
706
707		tophys(r5,r5)
708		BSRLI(r6,r3,10)			/* Compute PTE address */
709		andi	r6, r6, 0xffc
710		andi	r5, r5, 0xfffff003
711		or	r5, r5, r6
712		lwi	r4, r5, 0		/* Get Linux PTE */
713
714		andi	r6, r4, _PAGE_PRESENT
715		beqi	r6, ex7
716
717		ori	r4, r4, _PAGE_ACCESSED
718		swi	r4, r5, 0
719
720		/* Most of the Linux PTE is ready to load into the TLB LO.
721		 * We set ZSEL, where only the LS-bit determines user access.
722		 * We set execute, because we don't have the granularity to
723		 * properly set this at the page level (Linux problem).
724		 * If shared is set, we cause a zero PID->TID load.
725		 * Many of these bits are software only. Bits we don't set
726		 * here we (properly should) assume have the appropriate value.
727		 */
728		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
729
730		bri	finish_tlb_load
731	ex7:
732		/* The bailout. Restore registers to pre-exception conditions
733		 * and call the heavyweights to help us out.
734		 */
735		mts	rpid, r11
736		nop
737		bri	4
738		RESTORE_STATE;
739		bri	page_fault_data_trap
740
741	/* 0x13 - Instruction TLB Miss Exception
742	 * Nearly the same as above, except we get our information from
743	 * different registers and bailout to a different point.
744	 */
745	handle_instruction_tlb_miss_exception:
746		/* Working registers already saved: R3, R4, R5, R6
747		 *  R3 = ESR
748		 */
749		mfs	r11, rpid
750		nop
751		bri	4
752		mfs	r3, rear		/* Get faulting address */
753		nop
754
755		/* If we are faulting a kernel address, we have to use the
756		 * kernel page tables.
757		 */
758		ori	r4, r0, CONFIG_KERNEL_START
759		cmpu	r4, r3, r4
760		bgti	r4, ex8
761		ori	r4, r0, swapper_pg_dir
762		mts	rpid, r0		/* TLB will have 0 TID */
763		nop
764		bri	ex9
765
766		/* Get the PGD for the current thread. */
767	ex8:
768		/* get current task address */
769		addi	r4 ,CURRENT_TASK, TOPHYS(0);
770		lwi	r4, r4, TASK_THREAD+PGDIR
771	ex9:
772		tophys(r4,r4)
773		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
774		andi	r5, r5, 0xffc
775/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
776		or	r4, r4, r5
777		lwi	r4, r4, 0		/* Get L1 entry */
778		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
779		beqi	r5, ex10		/* Bail if no table */
780
781		tophys(r5,r5)
782		BSRLI(r6,r3,10)			/* Compute PTE address */
783		andi	r6, r6, 0xffc
784		andi	r5, r5, 0xfffff003
785		or	r5, r5, r6
786		lwi	r4, r5, 0		/* Get Linux PTE */
787
788		andi	r6, r4, _PAGE_PRESENT
789		beqi	r6, ex7
790
791		ori	r4, r4, _PAGE_ACCESSED
792		swi	r4, r5, 0
793
794		/* Most of the Linux PTE is ready to load into the TLB LO.
795		 * We set ZSEL, where only the LS-bit determines user access.
796		 * We set execute, because we don't have the granularity to
797		 * properly set this at the page level (Linux problem).
798		 * If shared is set, we cause a zero PID->TID load.
799		 * Many of these bits are software only. Bits we don't set
800		 * here we (properly should) assume have the appropriate value.
801		 */
802		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
803
804		bri	finish_tlb_load
805	ex10:
806		/* The bailout. Restore registers to pre-exception conditions
807		 * and call the heavyweights to help us out.
808		 */
809		mts	rpid, r11
810		nop
811		bri 4
812		RESTORE_STATE;
813		bri	page_fault_instr_trap
814
815/* Both the instruction and data TLB miss get to this point to load the TLB.
816 *	r3 - EA of fault
817 *	r4 - TLB LO (info from Linux PTE)
818 *	r5, r6 - available to use
819 *	PID - loaded with proper value when we get here
820 *	Upon exit, we reload everything and RFI.
821 * A common place to load the TLB.
822 */
823	tlb_index:
824		.long	1 /* MS: storing last used tlb index */
825	finish_tlb_load:
826		/* MS: load the last used TLB index. */
827		lwi	r5, r0, TOPHYS(tlb_index)
828		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
829
830/* MS: FIXME this is potential fault, because this is mask not count */
831		andi	r5, r5, (MICROBLAZE_TLB_SIZE-1)
832		ori	r6, r0, 1
833		cmp	r31, r5, r6
834		blti	r31, sem
835		addik	r5, r6, 1
836	sem:
837		/* MS: save back current TLB index */
838		swi	r5, r0, TOPHYS(tlb_index)
839
840		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
841		mts	rtlbx, r5		/* MS: save current TLB */
842		nop
843		mts	rtlblo,	r4		/* MS: save to TLB LO */
844		nop
845
846		/* Create EPN. This is the faulting address plus a static
847		 * set of bits. These are size, valid, E, U0, and ensure
848		 * bits 20 and 21 are zero.
849		 */
850		andi	r3, r3, 0xfffff000
851		ori	r3, r3, 0x0c0
852		mts	rtlbhi,	r3		/* Load TLB HI */
853		nop
854
855		/* Done...restore registers and get out of here. */
856	ex12:
857		mts	rpid, r11
858		nop
859		bri 4
860		RESTORE_STATE;
861		rted	r17, 0
862		nop
863
864	/* extern void giveup_fpu(struct task_struct *prev)
865	 *
866	 * The MicroBlaze processor may have an FPU, so this should not just
867	 * return: TBD.
868	 */
869	.globl giveup_fpu;
870	.align 4;
871	giveup_fpu:
872		bralid	r15,0			/* TBD */
873		nop
874
875	/* At present, this routine just hangs. - extern void abort(void) */
876	.globl abort;
877	.align 4;
878	abort:
879		br	r0
880
881	.globl set_context;
882	.align 4;
883	set_context:
884		mts	rpid, r5	/* Shadow TLBs are automatically */
885		nop
886		bri	4		/* flushed by changing PID */
887		rtsd	r15,8
888		nop
889
890#endif
891.end _hw_exception_handler
892
893#ifdef CONFIG_MMU
894/* Unaligned data access exception last on a 4k page for MMU.
895 * When this is called, we are in virtual mode with exceptions enabled
896 * and registers 1-13,15,17,18 saved.
897 *
898 * R3 = ESR
899 * R4 = EAR
900 * R7 = pointer to saved registers (struct pt_regs *regs)
901 *
902 * This handler perform the access, and returns via ret_from_exc.
903 */
904.global _unaligned_data_exception
905.ent _unaligned_data_exception
906_unaligned_data_exception:
907	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
908	BSRLI(r8,r8,2);		/* r8 >> 2 = register operand * 8 */
909	andi	r6, r3, 0x400;	/* Extract ESR[S] */
910	bneid	r6, ex_sw_vm;
911	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
912ex_lw_vm:
913	beqid	r6, ex_lhw_vm;
914load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
915/* Load a word, byte-by-byte from destination address and save it in tmp space*/
916	la	r6, r0, ex_tmp_data_loc_0;
917	sbi	r5, r6, 0;
918load2:	lbui	r5, r4, 1;
919	sbi	r5, r6, 1;
920load3:	lbui	r5, r4, 2;
921	sbi	r5, r6, 2;
922load4:	lbui	r5, r4, 3;
923	sbi	r5, r6, 3;
924	brid	ex_lw_tail_vm;
925/* Get the destination register value into r3 - delay slot */
926	lwi	r3, r6, 0;
927ex_lhw_vm:
928	/* Load a half-word, byte-by-byte from destination address and
929	 * save it in tmp space */
930	la	r6, r0, ex_tmp_data_loc_0;
931	sbi	r5, r6, 0;
932load5:	lbui	r5, r4, 1;
933	sbi	r5, r6, 1;
934	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
935ex_lw_tail_vm:
936	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
937	addik	r5, r8, lw_table_vm;
938	bra	r5;
939ex_lw_end_vm:			/* Exception handling of load word, ends */
940	brai	ret_from_exc;
941ex_sw_vm:
942/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
943	addik	r5, r8, sw_table_vm;
944	bra	r5;
945ex_sw_tail_vm:
946	la	r5, r0, ex_tmp_data_loc_0;
947	beqid	r6, ex_shw_vm;
948	swi	r3, r5, 0;	/* Get the word - delay slot */
949	/* Store the word, byte-by-byte into destination address */
950	lbui	r3, r5, 0;
951store1:	sbi	r3, r4, 0;
952	lbui	r3, r5, 1;
953store2:	sbi	r3, r4, 1;
954	lbui	r3, r5, 2;
955store3:	sbi	r3, r4, 2;
956	lbui	r3, r5, 3;
957	brid	ret_from_exc;
958store4:	sbi	r3, r4, 3;	/* Delay slot */
959ex_shw_vm:
960	/* Store the lower half-word, byte-by-byte into destination address */
961	lbui	r3, r5, 2;
962store5:	sbi	r3, r4, 0;
963	lbui	r3, r5, 3;
964	brid	ret_from_exc;
965store6:	sbi	r3, r4, 1;	/* Delay slot */
966ex_sw_end_vm:			/* Exception handling of store word, ends. */
967
968/* We have to prevent cases that get/put_user macros get unaligned pointer
969 * to bad page area. We have to find out which origin instruction caused it
970 * and called fixup for that origin instruction not instruction in unaligned
971 * handler */
972ex_unaligned_fixup:
973	ori	r5, r7, 0 /* setup pointer to pt_regs */
974	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
975	addik	r6, r6, -4 /* for finding proper fixup */
976	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
977	addik	r7, r0, SIGSEGV
978	/* call bad_page_fault for finding aligned fixup, fixup address is saved
979	 * in PT_PC which is used as return address from exception */
980	la	r15, r0, ret_from_exc-8 /* setup return address */
981	brid	bad_page_fault
982	nop
983
984/* We prevent all load/store because it could failed any attempt to access */
985.section __ex_table,"a";
986	.word	load1,ex_unaligned_fixup;
987	.word	load2,ex_unaligned_fixup;
988	.word	load3,ex_unaligned_fixup;
989	.word	load4,ex_unaligned_fixup;
990	.word	load5,ex_unaligned_fixup;
991	.word	store1,ex_unaligned_fixup;
992	.word	store2,ex_unaligned_fixup;
993	.word	store3,ex_unaligned_fixup;
994	.word	store4,ex_unaligned_fixup;
995	.word	store5,ex_unaligned_fixup;
996	.word	store6,ex_unaligned_fixup;
997.previous;
998.end _unaligned_data_exception
999#endif /* CONFIG_MMU */
1000
1001ex_handler_unhandled:
1002/* FIXME add handle function for unhandled exception - dump register */
1003	bri 0
1004
1005/*
1006 * hw_exception_handler Jump Table
1007 * - Contains code snippets for each register that caused the unalign exception
1008 * - Hence exception handler is NOT self-modifying
1009 * - Separate table for load exceptions and store exceptions.
1010 * - Each table is of size: (8 * 32) = 256 bytes
1011 */
1012
1013.section .text
1014.align 4
1015lw_table:
1016lw_r0:		R3_TO_LWREG	(0);
1017lw_r1:		LWREG_NOP;
1018lw_r2:		R3_TO_LWREG	(2);
1019lw_r3:		R3_TO_LWREG_V	(3);
1020lw_r4:		R3_TO_LWREG_V	(4);
1021lw_r5:		R3_TO_LWREG_V	(5);
1022lw_r6:		R3_TO_LWREG_V	(6);
1023lw_r7:		R3_TO_LWREG	(7);
1024lw_r8:		R3_TO_LWREG	(8);
1025lw_r9:		R3_TO_LWREG	(9);
1026lw_r10:		R3_TO_LWREG	(10);
1027lw_r11:		R3_TO_LWREG	(11);
1028lw_r12:		R3_TO_LWREG	(12);
1029lw_r13:		R3_TO_LWREG	(13);
1030lw_r14:		R3_TO_LWREG	(14);
1031lw_r15:		R3_TO_LWREG	(15);
1032lw_r16:		R3_TO_LWREG	(16);
1033lw_r17:		LWREG_NOP;
1034lw_r18:		R3_TO_LWREG	(18);
1035lw_r19:		R3_TO_LWREG	(19);
1036lw_r20:		R3_TO_LWREG	(20);
1037lw_r21:		R3_TO_LWREG	(21);
1038lw_r22:		R3_TO_LWREG	(22);
1039lw_r23:		R3_TO_LWREG	(23);
1040lw_r24:		R3_TO_LWREG	(24);
1041lw_r25:		R3_TO_LWREG	(25);
1042lw_r26:		R3_TO_LWREG	(26);
1043lw_r27:		R3_TO_LWREG	(27);
1044lw_r28:		R3_TO_LWREG	(28);
1045lw_r29:		R3_TO_LWREG	(29);
1046lw_r30:		R3_TO_LWREG	(30);
1047#ifdef CONFIG_MMU
1048lw_r31: 	R3_TO_LWREG_V	(31);
1049#else
1050lw_r31:		R3_TO_LWREG	(31);
1051#endif
1052
1053sw_table:
1054sw_r0:		SWREG_TO_R3	(0);
1055sw_r1:		SWREG_NOP;
1056sw_r2:		SWREG_TO_R3	(2);
1057sw_r3:		SWREG_TO_R3_V	(3);
1058sw_r4:		SWREG_TO_R3_V	(4);
1059sw_r5:		SWREG_TO_R3_V	(5);
1060sw_r6:		SWREG_TO_R3_V	(6);
1061sw_r7:		SWREG_TO_R3	(7);
1062sw_r8:		SWREG_TO_R3	(8);
1063sw_r9:		SWREG_TO_R3	(9);
1064sw_r10:		SWREG_TO_R3	(10);
1065sw_r11:		SWREG_TO_R3	(11);
1066sw_r12:		SWREG_TO_R3	(12);
1067sw_r13:		SWREG_TO_R3	(13);
1068sw_r14:		SWREG_TO_R3	(14);
1069sw_r15:		SWREG_TO_R3	(15);
1070sw_r16:		SWREG_TO_R3	(16);
1071sw_r17:		SWREG_NOP;
1072sw_r18:		SWREG_TO_R3	(18);
1073sw_r19:		SWREG_TO_R3	(19);
1074sw_r20:		SWREG_TO_R3	(20);
1075sw_r21:		SWREG_TO_R3	(21);
1076sw_r22:		SWREG_TO_R3	(22);
1077sw_r23:		SWREG_TO_R3	(23);
1078sw_r24:		SWREG_TO_R3	(24);
1079sw_r25:		SWREG_TO_R3	(25);
1080sw_r26:		SWREG_TO_R3	(26);
1081sw_r27:		SWREG_TO_R3	(27);
1082sw_r28:		SWREG_TO_R3	(28);
1083sw_r29:		SWREG_TO_R3	(29);
1084sw_r30:		SWREG_TO_R3	(30);
1085#ifdef CONFIG_MMU
1086sw_r31:		SWREG_TO_R3_V	(31);
1087#else
1088sw_r31:		SWREG_TO_R3	(31);
1089#endif
1090
1091#ifdef CONFIG_MMU
1092lw_table_vm:
1093lw_r0_vm:	R3_TO_LWREG_VM		(0);
1094lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1095lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1096lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1097lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1098lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1099lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1100lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1101lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1102lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1103lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1104lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1105lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1106lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1107lw_r14_vm:	R3_TO_LWREG_VM		(14);
1108lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1109lw_r16_vm:	R3_TO_LWREG_VM		(16);
1110lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1111lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1112lw_r19_vm:	R3_TO_LWREG_VM		(19);
1113lw_r20_vm:	R3_TO_LWREG_VM		(20);
1114lw_r21_vm:	R3_TO_LWREG_VM		(21);
1115lw_r22_vm:	R3_TO_LWREG_VM		(22);
1116lw_r23_vm:	R3_TO_LWREG_VM		(23);
1117lw_r24_vm:	R3_TO_LWREG_VM		(24);
1118lw_r25_vm:	R3_TO_LWREG_VM		(25);
1119lw_r26_vm:	R3_TO_LWREG_VM		(26);
1120lw_r27_vm:	R3_TO_LWREG_VM		(27);
1121lw_r28_vm:	R3_TO_LWREG_VM		(28);
1122lw_r29_vm:	R3_TO_LWREG_VM		(29);
1123lw_r30_vm:	R3_TO_LWREG_VM		(30);
1124lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1125
1126sw_table_vm:
1127sw_r0_vm:	SWREG_TO_R3_VM		(0);
1128sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1129sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1130sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1131sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1132sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1133sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1134sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1135sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1136sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1137sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1138sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1139sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1140sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1141sw_r14_vm:	SWREG_TO_R3_VM		(14);
1142sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1143sw_r16_vm:	SWREG_TO_R3_VM		(16);
1144sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1145sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1146sw_r19_vm:	SWREG_TO_R3_VM		(19);
1147sw_r20_vm:	SWREG_TO_R3_VM		(20);
1148sw_r21_vm:	SWREG_TO_R3_VM		(21);
1149sw_r22_vm:	SWREG_TO_R3_VM		(22);
1150sw_r23_vm:	SWREG_TO_R3_VM		(23);
1151sw_r24_vm:	SWREG_TO_R3_VM		(24);
1152sw_r25_vm:	SWREG_TO_R3_VM		(25);
1153sw_r26_vm:	SWREG_TO_R3_VM		(26);
1154sw_r27_vm:	SWREG_TO_R3_VM		(27);
1155sw_r28_vm:	SWREG_TO_R3_VM		(28);
1156sw_r29_vm:	SWREG_TO_R3_VM		(29);
1157sw_r30_vm:	SWREG_TO_R3_VM		(30);
1158sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1159#endif /* CONFIG_MMU */
1160
1161/* Temporary data structures used in the handler */
1162.section .data
1163.align 4
1164ex_tmp_data_loc_0:
1165	.byte 0
1166ex_tmp_data_loc_1:
1167	.byte 0
1168ex_tmp_data_loc_2:
1169	.byte 0
1170ex_tmp_data_loc_3:
1171	.byte 0
1172ex_reg_op:
1173	.byte 0
1174