xref: /openbmc/linux/arch/microblaze/kernel/hw_exception_handler.S (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1/*
2 * Exception handling for Microblaze
3 *
4 * Rewriten interrupt handling
5 *
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
8 *
9 * uClinux customisation (C) 2005 John Williams
10 *
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 *		Initial PowerPC version.
14 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
15 *		Rewritten for PReP
16 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 *		Low-level exception handers, MMU support, and rewrite.
18 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 *		PowerPC 8xx modifications.
20 *	Copyright (C) 1998-1999 TiVo, Inc.
21 *		PowerPC 403GCX modifications.
22 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 *		PowerPC 403GCX/405GP modifications.
24 *	Copyright 2000 MontaVista Software Inc.
25 *		PPC405 modifications
26 *	PowerPC 403GCX/405GP modifications.
27 *		Author: MontaVista Software, Inc.
28 *		frank_rowand@mvista.com or source@mvista.com
29 *		debbie_chu@mvista.com
30 *
31 * Original code
32 * Copyright (C) 2004 Xilinx, Inc.
33 *
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
37 */
38
39/*
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
47 *
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
50 *   - Unalignment
51 *   - Instruction bus error
52 *   - Data bus error
53 *   - Illegal instruction opcode
54 *   - Divide-by-zero
55 *
56 *   - Privileged instruction exception (MMU)
57 *   - Data storage exception (MMU)
58 *   - Instruction storage exception (MMU)
59 *   - Data TLB miss exception (MMU)
60 *   - Instruction TLB miss exception (MMU)
61 *
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
64 * exceptions. JW
65 */
66
67#include <asm/exceptions.h>
68#include <asm/unistd.h>
69#include <asm/page.h>
70
71#include <asm/entry.h>
72#include <asm/current.h>
73#include <linux/linkage.h>
74
75#include <asm/mmu.h>
76#include <asm/pgtable.h>
77#include <asm/signal.h>
78#include <asm/asm-offsets.h>
79
80/* Helpful Macros */
81#define NUM_TO_REG(num)		r ## num
82
83#ifdef CONFIG_MMU
84	#define RESTORE_STATE			\
85		lwi	r5, r1, 0;		\
86		mts	rmsr, r5;		\
87		nop;				\
88		lwi	r3, r1, PT_R3;		\
89		lwi	r4, r1, PT_R4;		\
90		lwi	r5, r1, PT_R5;		\
91		lwi	r6, r1, PT_R6;		\
92		lwi	r11, r1, PT_R11;	\
93		lwi	r31, r1, PT_R31;	\
94		lwi	r1, r0, TOPHYS(r0_ram + 0);
95#endif /* CONFIG_MMU */
96
97#define LWREG_NOP			\
98	bri	ex_handler_unhandled;	\
99	nop;
100
101#define SWREG_NOP			\
102	bri	ex_handler_unhandled;	\
103	nop;
104
105/* FIXME this is weird - for noMMU kernel is not possible to use brid
106 * instruction which can shorten executed time
107 */
108
109/* r3 is the source */
110#define R3_TO_LWREG_V(regnum)				\
111	swi	r3, r1, 4 * regnum;				\
112	bri	ex_handler_done;
113
114/* r3 is the source */
115#define R3_TO_LWREG(regnum)				\
116	or	NUM_TO_REG (regnum), r0, r3;		\
117	bri	ex_handler_done;
118
119/* r3 is the target */
120#define SWREG_TO_R3_V(regnum)				\
121	lwi	r3, r1, 4 * regnum;				\
122	bri	ex_sw_tail;
123
124/* r3 is the target */
125#define SWREG_TO_R3(regnum)				\
126	or	r3, r0, NUM_TO_REG (regnum);		\
127	bri	ex_sw_tail;
128
129#ifdef CONFIG_MMU
130	#define R3_TO_LWREG_VM_V(regnum)		\
131		brid	ex_lw_end_vm;			\
132		swi	r3, r7, 4 * regnum;
133
134	#define R3_TO_LWREG_VM(regnum)			\
135		brid	ex_lw_end_vm;			\
136		or	NUM_TO_REG (regnum), r0, r3;
137
138	#define SWREG_TO_R3_VM_V(regnum)		\
139		brid	ex_sw_tail_vm;			\
140		lwi	r3, r7, 4 * regnum;
141
142	#define SWREG_TO_R3_VM(regnum)			\
143		brid	ex_sw_tail_vm;			\
144		or	r3, r0, NUM_TO_REG (regnum);
145
146	/* Shift right instruction depending on available configuration */
147	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
148	#define BSRLI(rD, rA, imm)	\
149		bsrli rD, rA, imm
150	#elif CONFIG_XILINX_MICROBLAZE0_USE_DIV > 0
151	#define BSRLI(rD, rA, imm)	\
152		ori rD, r0, (1 << imm);	\
153		idivu rD, rD, rA
154	#else
155	#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
156	/* Only the used shift constants defined here - add more if needed */
157	#define BSRLI2(rD, rA)				\
158		srl rD, rA;		/* << 1 */	\
159		srl rD, rD;		/* << 2 */
160	#define BSRLI10(rD, rA)				\
161		srl rD, rA;		/* << 1 */	\
162		srl rD, rD;		/* << 2 */	\
163		srl rD, rD;		/* << 3 */	\
164		srl rD, rD;		/* << 4 */	\
165		srl rD, rD;		/* << 5 */	\
166		srl rD, rD;		/* << 6 */	\
167		srl rD, rD;		/* << 7 */	\
168		srl rD, rD;		/* << 8 */	\
169		srl rD, rD;		/* << 9 */	\
170		srl rD, rD		/* << 10 */
171	#define BSRLI20(rD, rA)		\
172		BSRLI10(rD, rA);	\
173		BSRLI10(rD, rD)
174	#endif
175#endif /* CONFIG_MMU */
176
177.extern other_exception_handler /* Defined in exception.c */
178
179/*
180 * hw_exception_handler - Handler for exceptions
181 *
182 * Exception handler notes:
183 * - Handles all exceptions
184 * - Does not handle unaligned exceptions during load into r17, r1, r0.
185 * - Does not handle unaligned exceptions during store from r17 (cannot be
186 *   done) and r1 (slows down common case)
187 *
188 *  Relevant register structures
189 *
190 *  EAR - |----|----|----|----|----|----|----|----|
191 *      - <  ##   32 bit faulting address     ##  >
192 *
193 *  ESR - |----|----|----|----|----| - | - |-----|-----|
194 *      -                            W   S   REG   EXC
195 *
196 *
197 * STACK FRAME STRUCTURE (for NO_MMU)
198 * ---------------------------------
199 *
200 *      +-------------+         + 0
201 *      |     MSR     |
202 *      +-------------+         + 4
203 *      |     r1      |
204 *      |      .      |
205 *      |      .      |
206 *      |      .      |
207 *      |      .      |
208 *      |     r18     |
209 *      +-------------+         + 76
210 *      |      .      |
211 *      |      .      |
212 *
213 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
214 * which is used for storing register values - old style was, that value were
215 * stored in stack but in case of failure you lost information about register.
216 * Currently you can see register value in memory in specific place.
217 * In compare to with previous solution the speed should be the same.
218 *
219 * MMU exception handler has different handling compare to no MMU kernel.
220 * Exception handler use jump table for directing of what happen. For MMU kernel
221 * is this approach better because MMU relate exception are handled by asm code
222 * in this file. In compare to with MMU expect of unaligned exception
223 * is everything handled by C code.
224 */
225
226/*
227 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
228 * and clobbered so care should be taken to restore them if someone is going to
229 * return from exception
230 */
231
232/* wrappers to restore state before coming to entry.S */
233
234#ifdef CONFIG_MMU
235.section .rodata
236.align 4
237_MB_HW_ExceptionVectorTable:
238/*  0 - Undefined */
239	.long	TOPHYS(ex_handler_unhandled)
240/*  1 - Unaligned data access exception */
241	.long	TOPHYS(handle_unaligned_ex)
242/*  2 - Illegal op-code exception */
243	.long	TOPHYS(full_exception_trapw)
244/*  3 - Instruction bus error exception */
245	.long	TOPHYS(full_exception_trapw)
246/*  4 - Data bus error exception */
247	.long	TOPHYS(full_exception_trapw)
248/*  5 - Divide by zero exception */
249	.long	TOPHYS(full_exception_trapw)
250/*  6 - Floating point unit exception */
251	.long	TOPHYS(full_exception_trapw)
252/*  7 - Privileged instruction exception */
253	.long	TOPHYS(full_exception_trapw)
254/*  8 - 15 - Undefined */
255	.long	TOPHYS(ex_handler_unhandled)
256	.long	TOPHYS(ex_handler_unhandled)
257	.long	TOPHYS(ex_handler_unhandled)
258	.long	TOPHYS(ex_handler_unhandled)
259	.long	TOPHYS(ex_handler_unhandled)
260	.long	TOPHYS(ex_handler_unhandled)
261	.long	TOPHYS(ex_handler_unhandled)
262	.long	TOPHYS(ex_handler_unhandled)
263/* 16 - Data storage exception */
264	.long	TOPHYS(handle_data_storage_exception)
265/* 17 - Instruction storage exception */
266	.long	TOPHYS(handle_instruction_storage_exception)
267/* 18 - Data TLB miss exception */
268	.long	TOPHYS(handle_data_tlb_miss_exception)
269/* 19 - Instruction TLB miss exception */
270	.long	TOPHYS(handle_instruction_tlb_miss_exception)
271/* 20 - 31 - Undefined */
272	.long	TOPHYS(ex_handler_unhandled)
273	.long	TOPHYS(ex_handler_unhandled)
274	.long	TOPHYS(ex_handler_unhandled)
275	.long	TOPHYS(ex_handler_unhandled)
276	.long	TOPHYS(ex_handler_unhandled)
277	.long	TOPHYS(ex_handler_unhandled)
278	.long	TOPHYS(ex_handler_unhandled)
279	.long	TOPHYS(ex_handler_unhandled)
280	.long	TOPHYS(ex_handler_unhandled)
281	.long	TOPHYS(ex_handler_unhandled)
282	.long	TOPHYS(ex_handler_unhandled)
283	.long	TOPHYS(ex_handler_unhandled)
284#endif
285
286.global _hw_exception_handler
287.section .text
288.align 4
289.ent _hw_exception_handler
290_hw_exception_handler:
291#ifndef CONFIG_MMU
292	addik	r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
293#else
294	swi	r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
295	/* Save date to kernel memory. Here is the problem
296	 * when you came from user space */
297	ori	r1, r0, TOPHYS(r0_ram + 28);
298#endif
299	swi	r3, r1, PT_R3
300	swi	r4, r1, PT_R4
301	swi	r5, r1, PT_R5
302	swi	r6, r1, PT_R6
303
304#ifdef CONFIG_MMU
305	swi	r11, r1, PT_R11
306	swi	r31, r1, PT_R31
307	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
308#endif
309
310	mfs	r5, rmsr;
311	nop
312	swi	r5, r1, 0;
313	mfs	r4, resr
314	nop
315	mfs	r3, rear;
316	nop
317
318#ifndef CONFIG_MMU
319	andi	r5, r4, 0x1000;		/* Check ESR[DS] */
320	beqi	r5, not_in_delay_slot;	/* Branch if ESR[DS] not set */
321	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
322	nop
323not_in_delay_slot:
324	swi	r17, r1, PT_R17
325#endif
326
327	andi	r5, r4, 0x1F;		/* Extract ESR[EXC] */
328
329#ifdef CONFIG_MMU
330	/* Calculate exception vector offset = r5 << 2 */
331	addk	r6, r5, r5; /* << 1 */
332	addk	r6, r6, r6; /* << 2 */
333
334#ifdef DEBUG
335/* counting which exception happen */
336	lwi	r5, r0, 0x200 + TOPHYS(r0_ram)
337	addi	r5, r5, 1
338	swi	r5, r0, 0x200 + TOPHYS(r0_ram)
339	lwi	r5, r6, 0x200 + TOPHYS(r0_ram)
340	addi	r5, r5, 1
341	swi	r5, r6, 0x200 + TOPHYS(r0_ram)
342#endif
343/* end */
344	/* Load the HW Exception vector */
345	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
346	bra	r6
347
348full_exception_trapw:
349	RESTORE_STATE
350	bri	full_exception_trap
351#else
352	/* Exceptions enabled here. This will allow nested exceptions */
353	mfs	r6, rmsr;
354	nop
355	swi	r6, r1, 0; /* RMSR_OFFSET */
356	ori	r6, r6, 0x100; /* Turn ON the EE bit */
357	andi	r6, r6, ~2; /* Disable interrupts */
358	mts	rmsr, r6;
359	nop
360
361	xori	r6, r5, 1; /* 00001 = Unaligned Exception */
362	/* Jump to unalignment exception handler */
363	beqi	r6, handle_unaligned_ex;
364
365handle_other_ex: /* Handle Other exceptions here */
366	/* Save other volatiles before we make procedure calls below */
367	swi	r7, r1, PT_R7
368	swi	r8, r1, PT_R8
369	swi	r9, r1, PT_R9
370	swi	r10, r1, PT_R10
371	swi	r11, r1, PT_R11
372	swi	r12, r1, PT_R12
373	swi	r14, r1, PT_R14
374	swi	r15, r1, PT_R15
375	swi	r18, r1, PT_R18
376
377	or	r5, r1, r0
378	andi	r6, r4, 0x1F; /* Load ESR[EC] */
379	lwi	r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
380	swi	r7, r1, PT_MODE
381	mfs	r7, rfsr
382	nop
383	addk	r8, r17, r0; /* Load exception address */
384	bralid	r15, full_exception; /* Branch to the handler */
385	nop;
386	mts	rfsr, r0;	/* Clear sticky fsr */
387	nop
388
389	/*
390	 * Trigger execution of the signal handler by enabling
391	 * interrupts and calling an invalid syscall.
392	 */
393	mfs	r5, rmsr;
394	nop
395	ori	r5, r5, 2;
396	mts	rmsr, r5; /* enable interrupt */
397	nop
398	addi	r12, r0, __NR_syscalls;
399	brki	r14, 0x08;
400	mfs	r5, rmsr; /* disable interrupt */
401	nop
402	andi	r5, r5, ~2;
403	mts	rmsr, r5;
404	nop
405
406	lwi	r7, r1, PT_R7
407	lwi	r8, r1, PT_R8
408	lwi	r9, r1, PT_R9
409	lwi	r10, r1, PT_R10
410	lwi	r11, r1, PT_R11
411	lwi	r12, r1, PT_R12
412	lwi	r14, r1, PT_R14
413	lwi	r15, r1, PT_R15
414	lwi	r18, r1, PT_R18
415
416	bri	ex_handler_done; /* Complete exception handling */
417#endif
418
419/* 0x01 - Unaligned data access exception
420 * This occurs when a word access is not aligned on a word boundary,
421 * or when a 16-bit access is not aligned on a 16-bit boundary.
422 * This handler perform the access, and returns, except for MMU when
423 * the unaligned address is last on a 4k page or the physical address is
424 * not found in the page table, in which case unaligned_data_trap is called.
425 */
426handle_unaligned_ex:
427	/* Working registers already saved: R3, R4, R5, R6
428	 *  R4 = ESR
429	 *  R3 = EAR
430	 */
431#ifdef CONFIG_MMU
432	andi	r6, r4, 0x1000			/* Check ESR[DS] */
433	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
434	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
435	nop
436_no_delayslot:
437	/* jump to high level unaligned handler */
438	RESTORE_STATE;
439	bri	unaligned_data_trap
440#endif
441	andi	r6, r4, 0x3E0; /* Mask and extract the register operand */
442	srl	r6, r6; /* r6 >> 5 */
443	srl	r6, r6;
444	srl	r6, r6;
445	srl	r6, r6;
446	srl	r6, r6;
447	/* Store the register operand in a temporary location */
448	sbi	r6, r0, TOPHYS(ex_reg_op);
449
450	andi	r6, r4, 0x400; /* Extract ESR[S] */
451	bnei	r6, ex_sw;
452ex_lw:
453	andi	r6, r4, 0x800; /* Extract ESR[W] */
454	beqi	r6, ex_lhw;
455	lbui	r5, r3, 0; /* Exception address in r3 */
456	/* Load a word, byte-by-byte from destination address
457		and save it in tmp space */
458	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
459	lbui	r5, r3, 1;
460	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
461	lbui	r5, r3, 2;
462	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
463	lbui	r5, r3, 3;
464	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
465	/* Get the destination register value into r4 */
466	lwi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
467	bri	ex_lw_tail;
468ex_lhw:
469	lbui	r5, r3, 0; /* Exception address in r3 */
470	/* Load a half-word, byte-by-byte from destination
471		address and save it in tmp space */
472	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
473	lbui	r5, r3, 1;
474	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
475	/* Get the destination register value into r4 */
476	lhui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
477ex_lw_tail:
478	/* Get the destination register number into r5 */
479	lbui	r5, r0, TOPHYS(ex_reg_op);
480	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
481	la	r6, r0, TOPHYS(lw_table);
482	addk	r5, r5, r5;
483	addk	r5, r5, r5;
484	addk	r5, r5, r5;
485	addk	r5, r5, r6;
486	bra	r5;
487ex_lw_end: /* Exception handling of load word, ends */
488ex_sw:
489	/* Get the destination register number into r5 */
490	lbui	r5, r0, TOPHYS(ex_reg_op);
491	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
492	la	r6, r0, TOPHYS(sw_table);
493	add	r5, r5, r5;
494	add	r5, r5, r5;
495	add	r5, r5, r5;
496	add	r5, r5, r6;
497	bra	r5;
498ex_sw_tail:
499	mfs	r6, resr;
500	nop
501	andi	r6, r6, 0x800; /* Extract ESR[W] */
502	beqi	r6, ex_shw;
503	/* Get the word - delay slot */
504	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
505	/* Store the word, byte-by-byte into destination address */
506	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
507	sbi	r4, r3, 0;
508	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_1);
509	sbi	r4, r3, 1;
510	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
511	sbi	r4, r3, 2;
512	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
513	sbi	r4, r3, 3;
514	bri	ex_handler_done;
515
516ex_shw:
517	/* Store the lower half-word, byte-by-byte into destination address */
518	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
519	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
520	sbi	r4, r3, 0;
521	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
522	sbi	r4, r3, 1;
523ex_sw_end: /* Exception handling of store word, ends. */
524
525ex_handler_done:
526#ifndef CONFIG_MMU
527	lwi	r5, r1, 0 /* RMSR */
528	mts	rmsr, r5
529	nop
530	lwi	r3, r1, PT_R3
531	lwi	r4, r1, PT_R4
532	lwi	r5, r1, PT_R5
533	lwi	r6, r1, PT_R6
534	lwi	r17, r1, PT_R17
535
536	rted	r17, 0
537	addik	r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
538#else
539	RESTORE_STATE;
540	rted	r17, 0
541	nop
542#endif
543
544#ifdef CONFIG_MMU
545	/* Exception vector entry code. This code runs with address translation
546	 * turned off (i.e. using physical addresses). */
547
548	/* Exception vectors. */
549
550	/* 0x10 - Data Storage Exception
551	 * This happens for just a few reasons. U0 set (but we don't do that),
552	 * or zone protection fault (user violation, write to protected page).
553	 * If this is just an update of modified status, we do that quickly
554	 * and exit. Otherwise, we call heavyweight functions to do the work.
555	 */
556	handle_data_storage_exception:
557		/* Working registers already saved: R3, R4, R5, R6
558		 * R3 = ESR
559		 */
560		mfs	r11, rpid
561		nop
562		/* If we are faulting a kernel address, we have to use the
563		 * kernel page tables.
564		 */
565		ori	r5, r0, CONFIG_KERNEL_START
566		cmpu	r5, r3, r5
567		bgti	r5, ex3
568		/* First, check if it was a zone fault (which means a user
569		 * tried to access a kernel or read-protected page - always
570		 * a SEGV). All other faults here must be stores, so no
571		 * need to check ESR_S as well. */
572		andi	r4, r4, 0x800		/* ESR_Z - zone protection */
573		bnei	r4, ex2
574
575		ori	r4, r0, swapper_pg_dir
576		mts	rpid, r0		/* TLB will have 0 TID */
577		nop
578		bri	ex4
579
580		/* Get the PGD for the current thread. */
581	ex3:
582		/* First, check if it was a zone fault (which means a user
583		 * tried to access a kernel or read-protected page - always
584		 * a SEGV). All other faults here must be stores, so no
585		 * need to check ESR_S as well. */
586		andi	r4, r4, 0x800		/* ESR_Z */
587		bnei	r4, ex2
588		/* get current task address */
589		addi	r4 ,CURRENT_TASK, TOPHYS(0);
590		lwi	r4, r4, TASK_THREAD+PGDIR
591	ex4:
592		tophys(r4,r4)
593		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
594		andi	r5, r5, 0xffc
595/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
596		or	r4, r4, r5
597		lwi	r4, r4, 0		/* Get L1 entry */
598		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
599		beqi	r5, ex2			/* Bail if no table */
600
601		tophys(r5,r5)
602		BSRLI(r6,r3,10)			/* Compute PTE address */
603		andi	r6, r6, 0xffc
604		andi	r5, r5, 0xfffff003
605		or	r5, r5, r6
606		lwi	r4, r5, 0		/* Get Linux PTE */
607
608		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
609		beqi	r6, ex2			/* Bail if not */
610
611		/* Update 'changed' */
612		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
613		swi	r4, r5, 0		/* Update Linux page table */
614
615		/* Most of the Linux PTE is ready to load into the TLB LO.
616		 * We set ZSEL, where only the LS-bit determines user access.
617		 * We set execute, because we don't have the granularity to
618		 * properly set this at the page level (Linux problem).
619		 * If shared is set, we cause a zero PID->TID load.
620		 * Many of these bits are software only. Bits we don't set
621		 * here we (properly should) assume have the appropriate value.
622		 */
623		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
624		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
625
626		/* find the TLB index that caused the fault. It has to be here*/
627		mts	rtlbsx, r3
628		nop
629		mfs	r5, rtlbx		/* DEBUG: TBD */
630		nop
631		mts	rtlblo, r4		/* Load TLB LO */
632		nop
633						/* Will sync shadow TLBs */
634
635		/* Done...restore registers and get out of here. */
636		mts	rpid, r11
637		nop
638		bri 4
639
640		RESTORE_STATE;
641		rted	r17, 0
642		nop
643	ex2:
644		/* The bailout. Restore registers to pre-exception conditions
645		 * and call the heavyweights to help us out. */
646		mts	rpid, r11
647		nop
648		bri 4
649		RESTORE_STATE;
650		bri	page_fault_data_trap
651
652
653	/* 0x11 - Instruction Storage Exception
654	 * This is caused by a fetch from non-execute or guarded pages. */
655	handle_instruction_storage_exception:
656		/* Working registers already saved: R3, R4, R5, R6
657		 * R3 = ESR
658		 */
659
660		RESTORE_STATE;
661		bri	page_fault_instr_trap
662
663	/* 0x12 - Data TLB Miss Exception
664	 * As the name implies, translation is not in the MMU, so search the
665	 * page tables and fix it. The only purpose of this function is to
666	 * load TLB entries from the page table if they exist.
667	 */
668	handle_data_tlb_miss_exception:
669		/* Working registers already saved: R3, R4, R5, R6
670		 * R3 = EAR, R4 = ESR
671		 */
672		mfs	r11, rpid
673		nop
674
675		/* If we are faulting a kernel address, we have to use the
676		 * kernel page tables. */
677		ori	r6, r0, CONFIG_KERNEL_START
678		cmpu	r4, r3, r6
679		bgti	r4, ex5
680		ori	r4, r0, swapper_pg_dir
681		mts	rpid, r0		/* TLB will have 0 TID */
682		nop
683		bri	ex6
684
685		/* Get the PGD for the current thread. */
686	ex5:
687		/* get current task address */
688		addi	r4 ,CURRENT_TASK, TOPHYS(0);
689		lwi	r4, r4, TASK_THREAD+PGDIR
690	ex6:
691		tophys(r4,r4)
692		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
693		andi	r5, r5, 0xffc
694/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
695		or	r4, r4, r5
696		lwi	r4, r4, 0		/* Get L1 entry */
697		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
698		beqi	r5, ex7			/* Bail if no table */
699
700		tophys(r5,r5)
701		BSRLI(r6,r3,10)			/* Compute PTE address */
702		andi	r6, r6, 0xffc
703		andi	r5, r5, 0xfffff003
704		or	r5, r5, r6
705		lwi	r4, r5, 0		/* Get Linux PTE */
706
707		andi	r6, r4, _PAGE_PRESENT
708		beqi	r6, ex7
709
710		ori	r4, r4, _PAGE_ACCESSED
711		swi	r4, r5, 0
712
713		/* Most of the Linux PTE is ready to load into the TLB LO.
714		 * We set ZSEL, where only the LS-bit determines user access.
715		 * We set execute, because we don't have the granularity to
716		 * properly set this at the page level (Linux problem).
717		 * If shared is set, we cause a zero PID->TID load.
718		 * Many of these bits are software only. Bits we don't set
719		 * here we (properly should) assume have the appropriate value.
720		 */
721		brid	finish_tlb_load
722		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
723	ex7:
724		/* The bailout. Restore registers to pre-exception conditions
725		 * and call the heavyweights to help us out.
726		 */
727		mts	rpid, r11
728		nop
729		bri	4
730		RESTORE_STATE;
731		bri	page_fault_data_trap
732
733	/* 0x13 - Instruction TLB Miss Exception
734	 * Nearly the same as above, except we get our information from
735	 * different registers and bailout to a different point.
736	 */
737	handle_instruction_tlb_miss_exception:
738		/* Working registers already saved: R3, R4, R5, R6
739		 *  R3 = ESR
740		 */
741		mfs	r11, rpid
742		nop
743
744		/* If we are faulting a kernel address, we have to use the
745		 * kernel page tables.
746		 */
747		ori	r4, r0, CONFIG_KERNEL_START
748		cmpu	r4, r3, r4
749		bgti	r4, ex8
750		ori	r4, r0, swapper_pg_dir
751		mts	rpid, r0		/* TLB will have 0 TID */
752		nop
753		bri	ex9
754
755		/* Get the PGD for the current thread. */
756	ex8:
757		/* get current task address */
758		addi	r4 ,CURRENT_TASK, TOPHYS(0);
759		lwi	r4, r4, TASK_THREAD+PGDIR
760	ex9:
761		tophys(r4,r4)
762		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
763		andi	r5, r5, 0xffc
764/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
765		or	r4, r4, r5
766		lwi	r4, r4, 0		/* Get L1 entry */
767		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
768		beqi	r5, ex10		/* Bail if no table */
769
770		tophys(r5,r5)
771		BSRLI(r6,r3,10)			/* Compute PTE address */
772		andi	r6, r6, 0xffc
773		andi	r5, r5, 0xfffff003
774		or	r5, r5, r6
775		lwi	r4, r5, 0		/* Get Linux PTE */
776
777		andi	r6, r4, _PAGE_PRESENT
778		beqi	r6, ex10
779
780		ori	r4, r4, _PAGE_ACCESSED
781		swi	r4, r5, 0
782
783		/* Most of the Linux PTE is ready to load into the TLB LO.
784		 * We set ZSEL, where only the LS-bit determines user access.
785		 * We set execute, because we don't have the granularity to
786		 * properly set this at the page level (Linux problem).
787		 * If shared is set, we cause a zero PID->TID load.
788		 * Many of these bits are software only. Bits we don't set
789		 * here we (properly should) assume have the appropriate value.
790		 */
791		brid	finish_tlb_load
792		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
793	ex10:
794		/* The bailout. Restore registers to pre-exception conditions
795		 * and call the heavyweights to help us out.
796		 */
797		mts	rpid, r11
798		nop
799		bri 4
800		RESTORE_STATE;
801		bri	page_fault_instr_trap
802
803/* Both the instruction and data TLB miss get to this point to load the TLB.
804 *	r3 - EA of fault
805 *	r4 - TLB LO (info from Linux PTE)
806 *	r5, r6 - available to use
807 *	PID - loaded with proper value when we get here
808 *	Upon exit, we reload everything and RFI.
809 * A common place to load the TLB.
810 */
811	tlb_index:
812		.long	1 /* MS: storing last used tlb index */
813	finish_tlb_load:
814		/* MS: load the last used TLB index. */
815		lwi	r5, r0, TOPHYS(tlb_index)
816		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
817
818/* MS: FIXME this is potential fault, because this is mask not count */
819		andi	r5, r5, (MICROBLAZE_TLB_SIZE-1)
820		ori	r6, r0, 1
821		cmp	r31, r5, r6
822		blti	r31, ex12
823		addik	r5, r6, 1
824	ex12:
825		/* MS: save back current TLB index */
826		swi	r5, r0, TOPHYS(tlb_index)
827
828		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
829		mts	rtlbx, r5		/* MS: save current TLB */
830		nop
831		mts	rtlblo,	r4		/* MS: save to TLB LO */
832		nop
833
834		/* Create EPN. This is the faulting address plus a static
835		 * set of bits. These are size, valid, E, U0, and ensure
836		 * bits 20 and 21 are zero.
837		 */
838		andi	r3, r3, 0xfffff000
839		ori	r3, r3, 0x0c0
840		mts	rtlbhi,	r3		/* Load TLB HI */
841		nop
842
843		/* Done...restore registers and get out of here. */
844		mts	rpid, r11
845		nop
846		bri 4
847		RESTORE_STATE;
848		rted	r17, 0
849		nop
850
851	/* extern void giveup_fpu(struct task_struct *prev)
852	 *
853	 * The MicroBlaze processor may have an FPU, so this should not just
854	 * return: TBD.
855	 */
856	.globl giveup_fpu;
857	.align 4;
858	giveup_fpu:
859		bralid	r15,0			/* TBD */
860		nop
861
862	/* At present, this routine just hangs. - extern void abort(void) */
863	.globl abort;
864	.align 4;
865	abort:
866		br	r0
867
868	.globl set_context;
869	.align 4;
870	set_context:
871		mts	rpid, r5	/* Shadow TLBs are automatically */
872		nop
873		bri	4		/* flushed by changing PID */
874		rtsd	r15,8
875		nop
876
877#endif
878.end _hw_exception_handler
879
880#ifdef CONFIG_MMU
881/* Unaligned data access exception last on a 4k page for MMU.
882 * When this is called, we are in virtual mode with exceptions enabled
883 * and registers 1-13,15,17,18 saved.
884 *
885 * R3 = ESR
886 * R4 = EAR
887 * R7 = pointer to saved registers (struct pt_regs *regs)
888 *
889 * This handler perform the access, and returns via ret_from_exc.
890 */
891.global _unaligned_data_exception
892.ent _unaligned_data_exception
893_unaligned_data_exception:
894	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
895	BSRLI(r8,r8,2);		/* r8 >> 2 = register operand * 8 */
896	andi	r6, r3, 0x400;	/* Extract ESR[S] */
897	bneid	r6, ex_sw_vm;
898	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
899ex_lw_vm:
900	beqid	r6, ex_lhw_vm;
901load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
902/* Load a word, byte-by-byte from destination address and save it in tmp space*/
903	la	r6, r0, ex_tmp_data_loc_0;
904	sbi	r5, r6, 0;
905load2:	lbui	r5, r4, 1;
906	sbi	r5, r6, 1;
907load3:	lbui	r5, r4, 2;
908	sbi	r5, r6, 2;
909load4:	lbui	r5, r4, 3;
910	sbi	r5, r6, 3;
911	brid	ex_lw_tail_vm;
912/* Get the destination register value into r3 - delay slot */
913	lwi	r3, r6, 0;
914ex_lhw_vm:
915	/* Load a half-word, byte-by-byte from destination address and
916	 * save it in tmp space */
917	la	r6, r0, ex_tmp_data_loc_0;
918	sbi	r5, r6, 0;
919load5:	lbui	r5, r4, 1;
920	sbi	r5, r6, 1;
921	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
922ex_lw_tail_vm:
923	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
924	addik	r5, r8, lw_table_vm;
925	bra	r5;
926ex_lw_end_vm:			/* Exception handling of load word, ends */
927	brai	ret_from_exc;
928ex_sw_vm:
929/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
930	addik	r5, r8, sw_table_vm;
931	bra	r5;
932ex_sw_tail_vm:
933	la	r5, r0, ex_tmp_data_loc_0;
934	beqid	r6, ex_shw_vm;
935	swi	r3, r5, 0;	/* Get the word - delay slot */
936	/* Store the word, byte-by-byte into destination address */
937	lbui	r3, r5, 0;
938store1:	sbi	r3, r4, 0;
939	lbui	r3, r5, 1;
940store2:	sbi	r3, r4, 1;
941	lbui	r3, r5, 2;
942store3:	sbi	r3, r4, 2;
943	lbui	r3, r5, 3;
944	brid	ret_from_exc;
945store4:	sbi	r3, r4, 3;	/* Delay slot */
946ex_shw_vm:
947	/* Store the lower half-word, byte-by-byte into destination address */
948	lbui	r3, r5, 2;
949store5:	sbi	r3, r4, 0;
950	lbui	r3, r5, 3;
951	brid	ret_from_exc;
952store6:	sbi	r3, r4, 1;	/* Delay slot */
953ex_sw_end_vm:			/* Exception handling of store word, ends. */
954
955/* We have to prevent cases that get/put_user macros get unaligned pointer
956 * to bad page area. We have to find out which origin instruction caused it
957 * and called fixup for that origin instruction not instruction in unaligned
958 * handler */
959ex_unaligned_fixup:
960	ori	r5, r7, 0 /* setup pointer to pt_regs */
961	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
962	addik	r6, r6, -4 /* for finding proper fixup */
963	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
964	addik	r7, r0, SIGSEGV
965	/* call bad_page_fault for finding aligned fixup, fixup address is saved
966	 * in PT_PC which is used as return address from exception */
967	la	r15, r0, ret_from_exc-8 /* setup return address */
968	brid	bad_page_fault
969	nop
970
971/* We prevent all load/store because it could failed any attempt to access */
972.section __ex_table,"a";
973	.word	load1,ex_unaligned_fixup;
974	.word	load2,ex_unaligned_fixup;
975	.word	load3,ex_unaligned_fixup;
976	.word	load4,ex_unaligned_fixup;
977	.word	load5,ex_unaligned_fixup;
978	.word	store1,ex_unaligned_fixup;
979	.word	store2,ex_unaligned_fixup;
980	.word	store3,ex_unaligned_fixup;
981	.word	store4,ex_unaligned_fixup;
982	.word	store5,ex_unaligned_fixup;
983	.word	store6,ex_unaligned_fixup;
984.previous;
985.end _unaligned_data_exception
986#endif /* CONFIG_MMU */
987
988.global ex_handler_unhandled
989ex_handler_unhandled:
990/* FIXME add handle function for unhandled exception - dump register */
991	bri 0
992
993/*
994 * hw_exception_handler Jump Table
995 * - Contains code snippets for each register that caused the unalign exception
996 * - Hence exception handler is NOT self-modifying
997 * - Separate table for load exceptions and store exceptions.
998 * - Each table is of size: (8 * 32) = 256 bytes
999 */
1000
1001.section .text
1002.align 4
1003lw_table:
1004lw_r0:		R3_TO_LWREG	(0);
1005lw_r1:		LWREG_NOP;
1006lw_r2:		R3_TO_LWREG	(2);
1007lw_r3:		R3_TO_LWREG_V	(3);
1008lw_r4:		R3_TO_LWREG_V	(4);
1009lw_r5:		R3_TO_LWREG_V	(5);
1010lw_r6:		R3_TO_LWREG_V	(6);
1011lw_r7:		R3_TO_LWREG	(7);
1012lw_r8:		R3_TO_LWREG	(8);
1013lw_r9:		R3_TO_LWREG	(9);
1014lw_r10:		R3_TO_LWREG	(10);
1015lw_r11:		R3_TO_LWREG	(11);
1016lw_r12:		R3_TO_LWREG	(12);
1017lw_r13:		R3_TO_LWREG	(13);
1018lw_r14:		R3_TO_LWREG	(14);
1019lw_r15:		R3_TO_LWREG	(15);
1020lw_r16:		R3_TO_LWREG	(16);
1021lw_r17:		LWREG_NOP;
1022lw_r18:		R3_TO_LWREG	(18);
1023lw_r19:		R3_TO_LWREG	(19);
1024lw_r20:		R3_TO_LWREG	(20);
1025lw_r21:		R3_TO_LWREG	(21);
1026lw_r22:		R3_TO_LWREG	(22);
1027lw_r23:		R3_TO_LWREG	(23);
1028lw_r24:		R3_TO_LWREG	(24);
1029lw_r25:		R3_TO_LWREG	(25);
1030lw_r26:		R3_TO_LWREG	(26);
1031lw_r27:		R3_TO_LWREG	(27);
1032lw_r28:		R3_TO_LWREG	(28);
1033lw_r29:		R3_TO_LWREG	(29);
1034lw_r30:		R3_TO_LWREG	(30);
1035#ifdef CONFIG_MMU
1036lw_r31: 	R3_TO_LWREG_V	(31);
1037#else
1038lw_r31:		R3_TO_LWREG	(31);
1039#endif
1040
1041sw_table:
1042sw_r0:		SWREG_TO_R3	(0);
1043sw_r1:		SWREG_NOP;
1044sw_r2:		SWREG_TO_R3	(2);
1045sw_r3:		SWREG_TO_R3_V	(3);
1046sw_r4:		SWREG_TO_R3_V	(4);
1047sw_r5:		SWREG_TO_R3_V	(5);
1048sw_r6:		SWREG_TO_R3_V	(6);
1049sw_r7:		SWREG_TO_R3	(7);
1050sw_r8:		SWREG_TO_R3	(8);
1051sw_r9:		SWREG_TO_R3	(9);
1052sw_r10:		SWREG_TO_R3	(10);
1053sw_r11:		SWREG_TO_R3	(11);
1054sw_r12:		SWREG_TO_R3	(12);
1055sw_r13:		SWREG_TO_R3	(13);
1056sw_r14:		SWREG_TO_R3	(14);
1057sw_r15:		SWREG_TO_R3	(15);
1058sw_r16:		SWREG_TO_R3	(16);
1059sw_r17:		SWREG_NOP;
1060sw_r18:		SWREG_TO_R3	(18);
1061sw_r19:		SWREG_TO_R3	(19);
1062sw_r20:		SWREG_TO_R3	(20);
1063sw_r21:		SWREG_TO_R3	(21);
1064sw_r22:		SWREG_TO_R3	(22);
1065sw_r23:		SWREG_TO_R3	(23);
1066sw_r24:		SWREG_TO_R3	(24);
1067sw_r25:		SWREG_TO_R3	(25);
1068sw_r26:		SWREG_TO_R3	(26);
1069sw_r27:		SWREG_TO_R3	(27);
1070sw_r28:		SWREG_TO_R3	(28);
1071sw_r29:		SWREG_TO_R3	(29);
1072sw_r30:		SWREG_TO_R3	(30);
1073#ifdef CONFIG_MMU
1074sw_r31:		SWREG_TO_R3_V	(31);
1075#else
1076sw_r31:		SWREG_TO_R3	(31);
1077#endif
1078
1079#ifdef CONFIG_MMU
1080lw_table_vm:
1081lw_r0_vm:	R3_TO_LWREG_VM		(0);
1082lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1083lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1084lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1085lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1086lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1087lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1088lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1089lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1090lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1091lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1092lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1093lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1094lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1095lw_r14_vm:	R3_TO_LWREG_VM		(14);
1096lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1097lw_r16_vm:	R3_TO_LWREG_VM		(16);
1098lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1099lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1100lw_r19_vm:	R3_TO_LWREG_VM		(19);
1101lw_r20_vm:	R3_TO_LWREG_VM		(20);
1102lw_r21_vm:	R3_TO_LWREG_VM		(21);
1103lw_r22_vm:	R3_TO_LWREG_VM		(22);
1104lw_r23_vm:	R3_TO_LWREG_VM		(23);
1105lw_r24_vm:	R3_TO_LWREG_VM		(24);
1106lw_r25_vm:	R3_TO_LWREG_VM		(25);
1107lw_r26_vm:	R3_TO_LWREG_VM		(26);
1108lw_r27_vm:	R3_TO_LWREG_VM		(27);
1109lw_r28_vm:	R3_TO_LWREG_VM		(28);
1110lw_r29_vm:	R3_TO_LWREG_VM		(29);
1111lw_r30_vm:	R3_TO_LWREG_VM		(30);
1112lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1113
1114sw_table_vm:
1115sw_r0_vm:	SWREG_TO_R3_VM		(0);
1116sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1117sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1118sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1119sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1120sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1121sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1122sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1123sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1124sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1125sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1126sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1127sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1128sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1129sw_r14_vm:	SWREG_TO_R3_VM		(14);
1130sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1131sw_r16_vm:	SWREG_TO_R3_VM		(16);
1132sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1133sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1134sw_r19_vm:	SWREG_TO_R3_VM		(19);
1135sw_r20_vm:	SWREG_TO_R3_VM		(20);
1136sw_r21_vm:	SWREG_TO_R3_VM		(21);
1137sw_r22_vm:	SWREG_TO_R3_VM		(22);
1138sw_r23_vm:	SWREG_TO_R3_VM		(23);
1139sw_r24_vm:	SWREG_TO_R3_VM		(24);
1140sw_r25_vm:	SWREG_TO_R3_VM		(25);
1141sw_r26_vm:	SWREG_TO_R3_VM		(26);
1142sw_r27_vm:	SWREG_TO_R3_VM		(27);
1143sw_r28_vm:	SWREG_TO_R3_VM		(28);
1144sw_r29_vm:	SWREG_TO_R3_VM		(29);
1145sw_r30_vm:	SWREG_TO_R3_VM		(30);
1146sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1147#endif /* CONFIG_MMU */
1148
1149/* Temporary data structures used in the handler */
1150.section .data
1151.align 4
1152ex_tmp_data_loc_0:
1153	.byte 0
1154ex_tmp_data_loc_1:
1155	.byte 0
1156ex_tmp_data_loc_2:
1157	.byte 0
1158ex_tmp_data_loc_3:
1159	.byte 0
1160ex_reg_op:
1161	.byte 0
1162