1/*
2 * Exception handling for Microblaze
3 *
4 * Rewriten interrupt handling
5 *
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
8 *
9 * uClinux customisation (C) 2005 John Williams
10 *
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 *		Initial PowerPC version.
14 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
15 *		Rewritten for PReP
16 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 *		Low-level exception handers, MMU support, and rewrite.
18 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 *		PowerPC 8xx modifications.
20 *	Copyright (C) 1998-1999 TiVo, Inc.
21 *		PowerPC 403GCX modifications.
22 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 *		PowerPC 403GCX/405GP modifications.
24 *	Copyright 2000 MontaVista Software Inc.
25 *		PPC405 modifications
26 *	PowerPC 403GCX/405GP modifications.
27 *		Author: MontaVista Software, Inc.
28 *		frank_rowand@mvista.com or source@mvista.com
29 *		debbie_chu@mvista.com
30 *
31 * Original code
32 * Copyright (C) 2004 Xilinx, Inc.
33 *
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
37 */
38
39/*
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
47 *
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
50 *   - Unalignment
51 *   - Instruction bus error
52 *   - Data bus error
53 *   - Illegal instruction opcode
54 *   - Divide-by-zero
55 *
56 *   - Privileged instruction exception (MMU)
57 *   - Data storage exception (MMU)
58 *   - Instruction storage exception (MMU)
59 *   - Data TLB miss exception (MMU)
60 *   - Instruction TLB miss exception (MMU)
61 *
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
64 * exceptions. JW
65 */
66
67#include <asm/exceptions.h>
68#include <asm/unistd.h>
69#include <asm/page.h>
70
71#include <asm/entry.h>
72#include <asm/current.h>
73#include <linux/linkage.h>
74
75#include <asm/mmu.h>
76#include <asm/pgtable.h>
77#include <asm/signal.h>
78#include <asm/asm-offsets.h>
79
80/* Helpful Macros */
81#ifndef CONFIG_MMU
82#define EX_HANDLER_STACK_SIZ	(4*19)
83#endif
84#define NUM_TO_REG(num)		r ## num
85
86#ifdef CONFIG_MMU
87	#define RESTORE_STATE			\
88		lwi	r5, r1, 0;		\
89		mts	rmsr, r5;		\
90		nop;				\
91		lwi	r3, r1, PT_R3;		\
92		lwi	r4, r1, PT_R4;		\
93		lwi	r5, r1, PT_R5;		\
94		lwi	r6, r1, PT_R6;		\
95		lwi	r11, r1, PT_R11;	\
96		lwi	r31, r1, PT_R31;	\
97		lwi	r1, r0, TOPHYS(r0_ram + 0);
98#endif /* CONFIG_MMU */
99
100#define LWREG_NOP			\
101	bri	ex_handler_unhandled;	\
102	nop;
103
104#define SWREG_NOP			\
105	bri	ex_handler_unhandled;	\
106	nop;
107
108/* FIXME this is weird - for noMMU kernel is not possible to use brid
109 * instruction which can shorten executed time
110 */
111
112/* r3 is the source */
113#define R3_TO_LWREG_V(regnum)				\
114	swi	r3, r1, 4 * regnum;				\
115	bri	ex_handler_done;
116
117/* r3 is the source */
118#define R3_TO_LWREG(regnum)				\
119	or	NUM_TO_REG (regnum), r0, r3;		\
120	bri	ex_handler_done;
121
122/* r3 is the target */
123#define SWREG_TO_R3_V(regnum)				\
124	lwi	r3, r1, 4 * regnum;				\
125	bri	ex_sw_tail;
126
127/* r3 is the target */
128#define SWREG_TO_R3(regnum)				\
129	or	r3, r0, NUM_TO_REG (regnum);		\
130	bri	ex_sw_tail;
131
132#ifdef CONFIG_MMU
133	#define R3_TO_LWREG_VM_V(regnum)		\
134		brid	ex_lw_end_vm;			\
135		swi	r3, r7, 4 * regnum;
136
137	#define R3_TO_LWREG_VM(regnum)			\
138		brid	ex_lw_end_vm;			\
139		or	NUM_TO_REG (regnum), r0, r3;
140
141	#define SWREG_TO_R3_VM_V(regnum)		\
142		brid	ex_sw_tail_vm;			\
143		lwi	r3, r7, 4 * regnum;
144
145	#define SWREG_TO_R3_VM(regnum)			\
146		brid	ex_sw_tail_vm;			\
147		or	r3, r0, NUM_TO_REG (regnum);
148
149	/* Shift right instruction depending on available configuration */
150	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
151	#define BSRLI(rD, rA, imm)	\
152		bsrli rD, rA, imm
153	#elif CONFIG_XILINX_MICROBLAZE0_USE_DIV > 0
154	#define BSRLI(rD, rA, imm)	\
155		ori rD, r0, (1 << imm);	\
156		idivu rD, rD, rA
157	#else
158	#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
159	/* Only the used shift constants defined here - add more if needed */
160	#define BSRLI2(rD, rA)				\
161		srl rD, rA;		/* << 1 */	\
162		srl rD, rD;		/* << 2 */
163	#define BSRLI10(rD, rA)				\
164		srl rD, rA;		/* << 1 */	\
165		srl rD, rD;		/* << 2 */	\
166		srl rD, rD;		/* << 3 */	\
167		srl rD, rD;		/* << 4 */	\
168		srl rD, rD;		/* << 5 */	\
169		srl rD, rD;		/* << 6 */	\
170		srl rD, rD;		/* << 7 */	\
171		srl rD, rD;		/* << 8 */	\
172		srl rD, rD;		/* << 9 */	\
173		srl rD, rD		/* << 10 */
174	#define BSRLI20(rD, rA)		\
175		BSRLI10(rD, rA);	\
176		BSRLI10(rD, rD)
177	#endif
178#endif /* CONFIG_MMU */
179
180.extern other_exception_handler /* Defined in exception.c */
181
182/*
183 * hw_exception_handler - Handler for exceptions
184 *
185 * Exception handler notes:
186 * - Handles all exceptions
187 * - Does not handle unaligned exceptions during load into r17, r1, r0.
188 * - Does not handle unaligned exceptions during store from r17 (cannot be
189 *   done) and r1 (slows down common case)
190 *
191 *  Relevant register structures
192 *
193 *  EAR - |----|----|----|----|----|----|----|----|
194 *      - <  ##   32 bit faulting address     ##  >
195 *
196 *  ESR - |----|----|----|----|----| - | - |-----|-----|
197 *      -                            W   S   REG   EXC
198 *
199 *
200 * STACK FRAME STRUCTURE (for NO_MMU)
201 * ---------------------------------
202 *
203 *      +-------------+         + 0
204 *      |     MSR     |
205 *      +-------------+         + 4
206 *      |     r1      |
207 *      |      .      |
208 *      |      .      |
209 *      |      .      |
210 *      |      .      |
211 *      |     r18     |
212 *      +-------------+         + 76
213 *      |      .      |
214 *      |      .      |
215 *
216 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
217 * which is used for storing register values - old style was, that value were
218 * stored in stack but in case of failure you lost information about register.
219 * Currently you can see register value in memory in specific place.
220 * In compare to with previous solution the speed should be the same.
221 *
222 * MMU exception handler has different handling compare to no MMU kernel.
223 * Exception handler use jump table for directing of what happen. For MMU kernel
224 * is this approach better because MMU relate exception are handled by asm code
225 * in this file. In compare to with MMU expect of unaligned exception
226 * is everything handled by C code.
227 */
228
229/*
230 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
231 * and clobbered so care should be taken to restore them if someone is going to
232 * return from exception
233 */
234
235/* wrappers to restore state before coming to entry.S */
236
237#ifdef CONFIG_MMU
238.section .rodata
239.align 4
240_MB_HW_ExceptionVectorTable:
241/*  0 - Undefined */
242	.long	TOPHYS(ex_handler_unhandled)
243/*  1 - Unaligned data access exception */
244	.long	TOPHYS(handle_unaligned_ex)
245/*  2 - Illegal op-code exception */
246	.long	TOPHYS(full_exception_trapw)
247/*  3 - Instruction bus error exception */
248	.long	TOPHYS(full_exception_trapw)
249/*  4 - Data bus error exception */
250	.long	TOPHYS(full_exception_trapw)
251/*  5 - Divide by zero exception */
252	.long	TOPHYS(full_exception_trapw)
253/*  6 - Floating point unit exception */
254	.long	TOPHYS(full_exception_trapw)
255/*  7 - Privileged instruction exception */
256	.long	TOPHYS(full_exception_trapw)
257/*  8 - 15 - Undefined */
258	.long	TOPHYS(ex_handler_unhandled)
259	.long	TOPHYS(ex_handler_unhandled)
260	.long	TOPHYS(ex_handler_unhandled)
261	.long	TOPHYS(ex_handler_unhandled)
262	.long	TOPHYS(ex_handler_unhandled)
263	.long	TOPHYS(ex_handler_unhandled)
264	.long	TOPHYS(ex_handler_unhandled)
265	.long	TOPHYS(ex_handler_unhandled)
266/* 16 - Data storage exception */
267	.long	TOPHYS(handle_data_storage_exception)
268/* 17 - Instruction storage exception */
269	.long	TOPHYS(handle_instruction_storage_exception)
270/* 18 - Data TLB miss exception */
271	.long	TOPHYS(handle_data_tlb_miss_exception)
272/* 19 - Instruction TLB miss exception */
273	.long	TOPHYS(handle_instruction_tlb_miss_exception)
274/* 20 - 31 - Undefined */
275	.long	TOPHYS(ex_handler_unhandled)
276	.long	TOPHYS(ex_handler_unhandled)
277	.long	TOPHYS(ex_handler_unhandled)
278	.long	TOPHYS(ex_handler_unhandled)
279	.long	TOPHYS(ex_handler_unhandled)
280	.long	TOPHYS(ex_handler_unhandled)
281	.long	TOPHYS(ex_handler_unhandled)
282	.long	TOPHYS(ex_handler_unhandled)
283	.long	TOPHYS(ex_handler_unhandled)
284	.long	TOPHYS(ex_handler_unhandled)
285	.long	TOPHYS(ex_handler_unhandled)
286	.long	TOPHYS(ex_handler_unhandled)
287#endif
288
289.global _hw_exception_handler
290.section .text
291.align 4
292.ent _hw_exception_handler
293_hw_exception_handler:
294#ifndef CONFIG_MMU
295	addik	r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
296#else
297	swi	r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
298	/* Save date to kernel memory. Here is the problem
299	 * when you came from user space */
300	ori	r1, r0, TOPHYS(r0_ram + 28);
301#endif
302	swi	r3, r1, PT_R3
303	swi	r4, r1, PT_R4
304	swi	r5, r1, PT_R5
305	swi	r6, r1, PT_R6
306
307#ifdef CONFIG_MMU
308	swi	r11, r1, PT_R11
309	swi	r31, r1, PT_R31
310	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
311#endif
312
313	mfs	r5, rmsr;
314	nop
315	swi	r5, r1, 0;
316	mfs	r3, resr
317	nop
318	mfs	r4, rear;
319	nop
320
321#ifndef CONFIG_MMU
322	andi	r5, r3, 0x1000;		/* Check ESR[DS] */
323	beqi	r5, not_in_delay_slot;	/* Branch if ESR[DS] not set */
324	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
325	nop
326not_in_delay_slot:
327	swi	r17, r1, PT_R17
328#endif
329
330	andi	r5, r3, 0x1F;		/* Extract ESR[EXC] */
331
332#ifdef CONFIG_MMU
333	/* Calculate exception vector offset = r5 << 2 */
334	addk	r6, r5, r5; /* << 1 */
335	addk	r6, r6, r6; /* << 2 */
336
337/* counting which exception happen */
338	lwi	r5, r0, 0x200 + TOPHYS(r0_ram)
339	addi	r5, r5, 1
340	swi	r5, r0, 0x200 + TOPHYS(r0_ram)
341	lwi	r5, r6, 0x200 + TOPHYS(r0_ram)
342	addi	r5, r5, 1
343	swi	r5, r6, 0x200 + TOPHYS(r0_ram)
344/* end */
345	/* Load the HW Exception vector */
346	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
347	bra	r6
348
349full_exception_trapw:
350	RESTORE_STATE
351	bri	full_exception_trap
352#else
353	/* Exceptions enabled here. This will allow nested exceptions */
354	mfs	r6, rmsr;
355	nop
356	swi	r6, r1, 0; /* RMSR_OFFSET */
357	ori	r6, r6, 0x100; /* Turn ON the EE bit */
358	andi	r6, r6, ~2; /* Disable interrupts */
359	mts	rmsr, r6;
360	nop
361
362	xori	r6, r5, 1; /* 00001 = Unaligned Exception */
363	/* Jump to unalignment exception handler */
364	beqi	r6, handle_unaligned_ex;
365
366handle_other_ex: /* Handle Other exceptions here */
367	/* Save other volatiles before we make procedure calls below */
368	swi	r7, r1, PT_R7
369	swi	r8, r1, PT_R8
370	swi	r9, r1, PT_R9
371	swi	r10, r1, PT_R10
372	swi	r11, r1, PT_R11
373	swi	r12, r1, PT_R12
374	swi	r14, r1, PT_R14
375	swi	r15, r1, PT_R15
376	swi	r18, r1, PT_R18
377
378	or	r5, r1, r0
379	andi	r6, r3, 0x1F; /* Load ESR[EC] */
380	lwi	r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
381	swi	r7, r1, PT_MODE
382	mfs	r7, rfsr
383	nop
384	addk	r8, r17, r0; /* Load exception address */
385	bralid	r15, full_exception; /* Branch to the handler */
386	nop;
387	mts	rfsr, r0;	/* Clear sticky fsr */
388	nop
389
390	/*
391	 * Trigger execution of the signal handler by enabling
392	 * interrupts and calling an invalid syscall.
393	 */
394	mfs	r5, rmsr;
395	nop
396	ori	r5, r5, 2;
397	mts	rmsr, r5; /* enable interrupt */
398	nop
399	addi	r12, r0, __NR_syscalls;
400	brki	r14, 0x08;
401	mfs	r5, rmsr; /* disable interrupt */
402	nop
403	andi	r5, r5, ~2;
404	mts	rmsr, r5;
405	nop
406
407	lwi	r7, r1, PT_R7
408	lwi	r8, r1, PT_R8
409	lwi	r9, r1, PT_R9
410	lwi	r10, r1, PT_R10
411	lwi	r11, r1, PT_R11
412	lwi	r12, r1, PT_R12
413	lwi	r14, r1, PT_R14
414	lwi	r15, r1, PT_R15
415	lwi	r18, r1, PT_R18
416
417	bri	ex_handler_done; /* Complete exception handling */
418#endif
419
420/* 0x01 - Unaligned data access exception
421 * This occurs when a word access is not aligned on a word boundary,
422 * or when a 16-bit access is not aligned on a 16-bit boundary.
423 * This handler perform the access, and returns, except for MMU when
424 * the unaligned address is last on a 4k page or the physical address is
425 * not found in the page table, in which case unaligned_data_trap is called.
426 */
427handle_unaligned_ex:
428	/* Working registers already saved: R3, R4, R5, R6
429	 *  R3 = ESR
430	 *  R4 = EAR
431	 */
432#ifdef CONFIG_MMU
433	andi	r6, r3, 0x1000			/* Check ESR[DS] */
434	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
435	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
436	nop
437_no_delayslot:
438	/* jump to high level unaligned handler */
439	RESTORE_STATE;
440	bri	unaligned_data_trap
441#endif
442	andi	r6, r3, 0x3E0; /* Mask and extract the register operand */
443	srl	r6, r6; /* r6 >> 5 */
444	srl	r6, r6;
445	srl	r6, r6;
446	srl	r6, r6;
447	srl	r6, r6;
448	/* Store the register operand in a temporary location */
449	sbi	r6, r0, TOPHYS(ex_reg_op);
450
451	andi	r6, r3, 0x400; /* Extract ESR[S] */
452	bnei	r6, ex_sw;
453ex_lw:
454	andi	r6, r3, 0x800; /* Extract ESR[W] */
455	beqi	r6, ex_lhw;
456	lbui	r5, r4, 0; /* Exception address in r4 */
457	/* Load a word, byte-by-byte from destination address
458		and save it in tmp space */
459	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
460	lbui	r5, r4, 1;
461	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
462	lbui	r5, r4, 2;
463	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
464	lbui	r5, r4, 3;
465	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
466	/* Get the destination register value into r3 */
467	lwi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
468	bri	ex_lw_tail;
469ex_lhw:
470	lbui	r5, r4, 0; /* Exception address in r4 */
471	/* Load a half-word, byte-by-byte from destination
472		address and save it in tmp space */
473	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
474	lbui	r5, r4, 1;
475	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
476	/* Get the destination register value into r3 */
477	lhui	r3, r0, TOPHYS(ex_tmp_data_loc_0);
478ex_lw_tail:
479	/* Get the destination register number into r5 */
480	lbui	r5, r0, TOPHYS(ex_reg_op);
481	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
482	la	r6, r0, TOPHYS(lw_table);
483	addk	r5, r5, r5;
484	addk	r5, r5, r5;
485	addk	r5, r5, r5;
486	addk	r5, r5, r6;
487	bra	r5;
488ex_lw_end: /* Exception handling of load word, ends */
489ex_sw:
490	/* Get the destination register number into r5 */
491	lbui	r5, r0, TOPHYS(ex_reg_op);
492	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
493	la	r6, r0, TOPHYS(sw_table);
494	add	r5, r5, r5;
495	add	r5, r5, r5;
496	add	r5, r5, r5;
497	add	r5, r5, r6;
498	bra	r5;
499ex_sw_tail:
500	mfs	r6, resr;
501	nop
502	andi	r6, r6, 0x800; /* Extract ESR[W] */
503	beqi	r6, ex_shw;
504	/* Get the word - delay slot */
505	swi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
506	/* Store the word, byte-by-byte into destination address */
507	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_0);
508	sbi	r3, r4, 0;
509	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_1);
510	sbi	r3, r4, 1;
511	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_2);
512	sbi	r3, r4, 2;
513	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_3);
514	sbi	r3, r4, 3;
515	bri	ex_handler_done;
516
517ex_shw:
518	/* Store the lower half-word, byte-by-byte into destination address */
519	swi	r3, r0, TOPHYS(ex_tmp_data_loc_0);
520	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_2);
521	sbi	r3, r4, 0;
522	lbui	r3, r0, TOPHYS(ex_tmp_data_loc_3);
523	sbi	r3, r4, 1;
524ex_sw_end: /* Exception handling of store word, ends. */
525
526ex_handler_done:
527#ifndef CONFIG_MMU
528	lwi	r5, r1, 0 /* RMSR */
529	mts	rmsr, r5
530	nop
531	lwi	r3, r1, PT_R3
532	lwi	r4, r1, PT_R4
533	lwi	r5, r1, PT_R5
534	lwi	r6, r1, PT_R6
535	lwi	r17, r1, PT_R17
536
537	rted	r17, 0
538	addik	r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
539#else
540	RESTORE_STATE;
541	rted	r17, 0
542	nop
543#endif
544
545#ifdef CONFIG_MMU
546	/* Exception vector entry code. This code runs with address translation
547	 * turned off (i.e. using physical addresses). */
548
549	/* Exception vectors. */
550
551	/* 0x10 - Data Storage Exception
552	 * This happens for just a few reasons. U0 set (but we don't do that),
553	 * or zone protection fault (user violation, write to protected page).
554	 * If this is just an update of modified status, we do that quickly
555	 * and exit. Otherwise, we call heavyweight functions to do the work.
556	 */
557	handle_data_storage_exception:
558		/* Working registers already saved: R3, R4, R5, R6
559		 * R3 = ESR
560		 */
561		mfs	r11, rpid
562		nop
563		bri	4
564		mfs	r3, rear		/* Get faulting address */
565		nop
566		/* If we are faulting a kernel address, we have to use the
567		 * kernel page tables.
568		 */
569		ori	r4, r0, CONFIG_KERNEL_START
570		cmpu	r4, r3, r4
571		bgti	r4, ex3
572		/* First, check if it was a zone fault (which means a user
573		 * tried to access a kernel or read-protected page - always
574		 * a SEGV). All other faults here must be stores, so no
575		 * need to check ESR_S as well. */
576		mfs	r4, resr
577		nop
578		andi	r4, r4, 0x800		/* ESR_Z - zone protection */
579		bnei	r4, ex2
580
581		ori	r4, r0, swapper_pg_dir
582		mts	rpid, r0		/* TLB will have 0 TID */
583		nop
584		bri	ex4
585
586		/* Get the PGD for the current thread. */
587	ex3:
588		/* First, check if it was a zone fault (which means a user
589		 * tried to access a kernel or read-protected page - always
590		 * a SEGV). All other faults here must be stores, so no
591		 * need to check ESR_S as well. */
592		mfs	r4, resr
593		nop
594		andi	r4, r4, 0x800		/* ESR_Z */
595		bnei	r4, ex2
596		/* get current task address */
597		addi	r4 ,CURRENT_TASK, TOPHYS(0);
598		lwi	r4, r4, TASK_THREAD+PGDIR
599	ex4:
600		tophys(r4,r4)
601		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
602		andi	r5, r5, 0xffc
603/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
604		or	r4, r4, r5
605		lwi	r4, r4, 0		/* Get L1 entry */
606		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
607		beqi	r5, ex2			/* Bail if no table */
608
609		tophys(r5,r5)
610		BSRLI(r6,r3,10)			/* Compute PTE address */
611		andi	r6, r6, 0xffc
612		andi	r5, r5, 0xfffff003
613		or	r5, r5, r6
614		lwi	r4, r5, 0		/* Get Linux PTE */
615
616		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
617		beqi	r6, ex2			/* Bail if not */
618
619		/* Update 'changed' */
620		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
621		swi	r4, r5, 0		/* Update Linux page table */
622
623		/* Most of the Linux PTE is ready to load into the TLB LO.
624		 * We set ZSEL, where only the LS-bit determines user access.
625		 * We set execute, because we don't have the granularity to
626		 * properly set this at the page level (Linux problem).
627		 * If shared is set, we cause a zero PID->TID load.
628		 * Many of these bits are software only. Bits we don't set
629		 * here we (properly should) assume have the appropriate value.
630		 */
631		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
632		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
633
634		/* find the TLB index that caused the fault. It has to be here*/
635		mts	rtlbsx, r3
636		nop
637		mfs	r5, rtlbx		/* DEBUG: TBD */
638		nop
639		mts	rtlblo, r4		/* Load TLB LO */
640		nop
641						/* Will sync shadow TLBs */
642
643		/* Done...restore registers and get out of here. */
644		mts	rpid, r11
645		nop
646		bri 4
647
648		RESTORE_STATE;
649		rted	r17, 0
650		nop
651	ex2:
652		/* The bailout. Restore registers to pre-exception conditions
653		 * and call the heavyweights to help us out. */
654		mts	rpid, r11
655		nop
656		bri 4
657		RESTORE_STATE;
658		bri	page_fault_data_trap
659
660
661	/* 0x11 - Instruction Storage Exception
662	 * This is caused by a fetch from non-execute or guarded pages. */
663	handle_instruction_storage_exception:
664		/* Working registers already saved: R3, R4, R5, R6
665		 * R3 = ESR
666		 */
667
668		mfs	r3, rear		/* Get faulting address */
669		nop
670		RESTORE_STATE;
671		bri	page_fault_instr_trap
672
673	/* 0x12 - Data TLB Miss Exception
674	 * As the name implies, translation is not in the MMU, so search the
675	 * page tables and fix it. The only purpose of this function is to
676	 * load TLB entries from the page table if they exist.
677	 */
678	handle_data_tlb_miss_exception:
679		/* Working registers already saved: R3, R4, R5, R6
680		 * R3 = ESR
681		 */
682		mfs	r11, rpid
683		nop
684		bri	4
685		mfs	r3, rear		/* Get faulting address */
686		nop
687
688		/* If we are faulting a kernel address, we have to use the
689		 * kernel page tables. */
690		ori	r4, r0, CONFIG_KERNEL_START
691		cmpu	r4, r3, r4
692		bgti	r4, ex5
693		ori	r4, r0, swapper_pg_dir
694		mts	rpid, r0		/* TLB will have 0 TID */
695		nop
696		bri	ex6
697
698		/* Get the PGD for the current thread. */
699	ex5:
700		/* get current task address */
701		addi	r4 ,CURRENT_TASK, TOPHYS(0);
702		lwi	r4, r4, TASK_THREAD+PGDIR
703	ex6:
704		tophys(r4,r4)
705		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
706		andi	r5, r5, 0xffc
707/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
708		or	r4, r4, r5
709		lwi	r4, r4, 0		/* Get L1 entry */
710		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
711		beqi	r5, ex7			/* Bail if no table */
712
713		tophys(r5,r5)
714		BSRLI(r6,r3,10)			/* Compute PTE address */
715		andi	r6, r6, 0xffc
716		andi	r5, r5, 0xfffff003
717		or	r5, r5, r6
718		lwi	r4, r5, 0		/* Get Linux PTE */
719
720		andi	r6, r4, _PAGE_PRESENT
721		beqi	r6, ex7
722
723		ori	r4, r4, _PAGE_ACCESSED
724		swi	r4, r5, 0
725
726		/* Most of the Linux PTE is ready to load into the TLB LO.
727		 * We set ZSEL, where only the LS-bit determines user access.
728		 * We set execute, because we don't have the granularity to
729		 * properly set this at the page level (Linux problem).
730		 * If shared is set, we cause a zero PID->TID load.
731		 * Many of these bits are software only. Bits we don't set
732		 * here we (properly should) assume have the appropriate value.
733		 */
734		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
735
736		bri	finish_tlb_load
737	ex7:
738		/* The bailout. Restore registers to pre-exception conditions
739		 * and call the heavyweights to help us out.
740		 */
741		mts	rpid, r11
742		nop
743		bri	4
744		RESTORE_STATE;
745		bri	page_fault_data_trap
746
747	/* 0x13 - Instruction TLB Miss Exception
748	 * Nearly the same as above, except we get our information from
749	 * different registers and bailout to a different point.
750	 */
751	handle_instruction_tlb_miss_exception:
752		/* Working registers already saved: R3, R4, R5, R6
753		 *  R3 = ESR
754		 */
755		mfs	r11, rpid
756		nop
757		bri	4
758		mfs	r3, rear		/* Get faulting address */
759		nop
760
761		/* If we are faulting a kernel address, we have to use the
762		 * kernel page tables.
763		 */
764		ori	r4, r0, CONFIG_KERNEL_START
765		cmpu	r4, r3, r4
766		bgti	r4, ex8
767		ori	r4, r0, swapper_pg_dir
768		mts	rpid, r0		/* TLB will have 0 TID */
769		nop
770		bri	ex9
771
772		/* Get the PGD for the current thread. */
773	ex8:
774		/* get current task address */
775		addi	r4 ,CURRENT_TASK, TOPHYS(0);
776		lwi	r4, r4, TASK_THREAD+PGDIR
777	ex9:
778		tophys(r4,r4)
779		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
780		andi	r5, r5, 0xffc
781/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
782		or	r4, r4, r5
783		lwi	r4, r4, 0		/* Get L1 entry */
784		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
785		beqi	r5, ex10		/* Bail if no table */
786
787		tophys(r5,r5)
788		BSRLI(r6,r3,10)			/* Compute PTE address */
789		andi	r6, r6, 0xffc
790		andi	r5, r5, 0xfffff003
791		or	r5, r5, r6
792		lwi	r4, r5, 0		/* Get Linux PTE */
793
794		andi	r6, r4, _PAGE_PRESENT
795		beqi	r6, ex7
796
797		ori	r4, r4, _PAGE_ACCESSED
798		swi	r4, r5, 0
799
800		/* Most of the Linux PTE is ready to load into the TLB LO.
801		 * We set ZSEL, where only the LS-bit determines user access.
802		 * We set execute, because we don't have the granularity to
803		 * properly set this at the page level (Linux problem).
804		 * If shared is set, we cause a zero PID->TID load.
805		 * Many of these bits are software only. Bits we don't set
806		 * here we (properly should) assume have the appropriate value.
807		 */
808		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
809
810		bri	finish_tlb_load
811	ex10:
812		/* The bailout. Restore registers to pre-exception conditions
813		 * and call the heavyweights to help us out.
814		 */
815		mts	rpid, r11
816		nop
817		bri 4
818		RESTORE_STATE;
819		bri	page_fault_instr_trap
820
821/* Both the instruction and data TLB miss get to this point to load the TLB.
822 *	r3 - EA of fault
823 *	r4 - TLB LO (info from Linux PTE)
824 *	r5, r6 - available to use
825 *	PID - loaded with proper value when we get here
826 *	Upon exit, we reload everything and RFI.
827 * A common place to load the TLB.
828 */
829	tlb_index:
830		.long	1 /* MS: storing last used tlb index */
831	finish_tlb_load:
832		/* MS: load the last used TLB index. */
833		lwi	r5, r0, TOPHYS(tlb_index)
834		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
835
836/* MS: FIXME this is potential fault, because this is mask not count */
837		andi	r5, r5, (MICROBLAZE_TLB_SIZE-1)
838		ori	r6, r0, 1
839		cmp	r31, r5, r6
840		blti	r31, sem
841		addik	r5, r6, 1
842	sem:
843		/* MS: save back current TLB index */
844		swi	r5, r0, TOPHYS(tlb_index)
845
846		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
847		mts	rtlbx, r5		/* MS: save current TLB */
848		nop
849		mts	rtlblo,	r4		/* MS: save to TLB LO */
850		nop
851
852		/* Create EPN. This is the faulting address plus a static
853		 * set of bits. These are size, valid, E, U0, and ensure
854		 * bits 20 and 21 are zero.
855		 */
856		andi	r3, r3, 0xfffff000
857		ori	r3, r3, 0x0c0
858		mts	rtlbhi,	r3		/* Load TLB HI */
859		nop
860
861		/* Done...restore registers and get out of here. */
862	ex12:
863		mts	rpid, r11
864		nop
865		bri 4
866		RESTORE_STATE;
867		rted	r17, 0
868		nop
869
870	/* extern void giveup_fpu(struct task_struct *prev)
871	 *
872	 * The MicroBlaze processor may have an FPU, so this should not just
873	 * return: TBD.
874	 */
875	.globl giveup_fpu;
876	.align 4;
877	giveup_fpu:
878		bralid	r15,0			/* TBD */
879		nop
880
881	/* At present, this routine just hangs. - extern void abort(void) */
882	.globl abort;
883	.align 4;
884	abort:
885		br	r0
886
887	.globl set_context;
888	.align 4;
889	set_context:
890		mts	rpid, r5	/* Shadow TLBs are automatically */
891		nop
892		bri	4		/* flushed by changing PID */
893		rtsd	r15,8
894		nop
895
896#endif
897.end _hw_exception_handler
898
899#ifdef CONFIG_MMU
900/* Unaligned data access exception last on a 4k page for MMU.
901 * When this is called, we are in virtual mode with exceptions enabled
902 * and registers 1-13,15,17,18 saved.
903 *
904 * R3 = ESR
905 * R4 = EAR
906 * R7 = pointer to saved registers (struct pt_regs *regs)
907 *
908 * This handler perform the access, and returns via ret_from_exc.
909 */
910.global _unaligned_data_exception
911.ent _unaligned_data_exception
912_unaligned_data_exception:
913	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
914	BSRLI(r8,r8,2);		/* r8 >> 2 = register operand * 8 */
915	andi	r6, r3, 0x400;	/* Extract ESR[S] */
916	bneid	r6, ex_sw_vm;
917	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
918ex_lw_vm:
919	beqid	r6, ex_lhw_vm;
920load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
921/* Load a word, byte-by-byte from destination address and save it in tmp space*/
922	la	r6, r0, ex_tmp_data_loc_0;
923	sbi	r5, r6, 0;
924load2:	lbui	r5, r4, 1;
925	sbi	r5, r6, 1;
926load3:	lbui	r5, r4, 2;
927	sbi	r5, r6, 2;
928load4:	lbui	r5, r4, 3;
929	sbi	r5, r6, 3;
930	brid	ex_lw_tail_vm;
931/* Get the destination register value into r3 - delay slot */
932	lwi	r3, r6, 0;
933ex_lhw_vm:
934	/* Load a half-word, byte-by-byte from destination address and
935	 * save it in tmp space */
936	la	r6, r0, ex_tmp_data_loc_0;
937	sbi	r5, r6, 0;
938load5:	lbui	r5, r4, 1;
939	sbi	r5, r6, 1;
940	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
941ex_lw_tail_vm:
942	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
943	addik	r5, r8, lw_table_vm;
944	bra	r5;
945ex_lw_end_vm:			/* Exception handling of load word, ends */
946	brai	ret_from_exc;
947ex_sw_vm:
948/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
949	addik	r5, r8, sw_table_vm;
950	bra	r5;
951ex_sw_tail_vm:
952	la	r5, r0, ex_tmp_data_loc_0;
953	beqid	r6, ex_shw_vm;
954	swi	r3, r5, 0;	/* Get the word - delay slot */
955	/* Store the word, byte-by-byte into destination address */
956	lbui	r3, r5, 0;
957store1:	sbi	r3, r4, 0;
958	lbui	r3, r5, 1;
959store2:	sbi	r3, r4, 1;
960	lbui	r3, r5, 2;
961store3:	sbi	r3, r4, 2;
962	lbui	r3, r5, 3;
963	brid	ret_from_exc;
964store4:	sbi	r3, r4, 3;	/* Delay slot */
965ex_shw_vm:
966	/* Store the lower half-word, byte-by-byte into destination address */
967	lbui	r3, r5, 2;
968store5:	sbi	r3, r4, 0;
969	lbui	r3, r5, 3;
970	brid	ret_from_exc;
971store6:	sbi	r3, r4, 1;	/* Delay slot */
972ex_sw_end_vm:			/* Exception handling of store word, ends. */
973
974/* We have to prevent cases that get/put_user macros get unaligned pointer
975 * to bad page area. We have to find out which origin instruction caused it
976 * and called fixup for that origin instruction not instruction in unaligned
977 * handler */
978ex_unaligned_fixup:
979	ori	r5, r7, 0 /* setup pointer to pt_regs */
980	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
981	addik	r6, r6, -4 /* for finding proper fixup */
982	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
983	addik	r7, r0, SIGSEGV
984	/* call bad_page_fault for finding aligned fixup, fixup address is saved
985	 * in PT_PC which is used as return address from exception */
986	la	r15, r0, ret_from_exc-8 /* setup return address */
987	brid	bad_page_fault
988	nop
989
990/* We prevent all load/store because it could failed any attempt to access */
991.section __ex_table,"a";
992	.word	load1,ex_unaligned_fixup;
993	.word	load2,ex_unaligned_fixup;
994	.word	load3,ex_unaligned_fixup;
995	.word	load4,ex_unaligned_fixup;
996	.word	load5,ex_unaligned_fixup;
997	.word	store1,ex_unaligned_fixup;
998	.word	store2,ex_unaligned_fixup;
999	.word	store3,ex_unaligned_fixup;
1000	.word	store4,ex_unaligned_fixup;
1001	.word	store5,ex_unaligned_fixup;
1002	.word	store6,ex_unaligned_fixup;
1003.previous;
1004.end _unaligned_data_exception
1005#endif /* CONFIG_MMU */
1006
1007ex_handler_unhandled:
1008/* FIXME add handle function for unhandled exception - dump register */
1009	bri 0
1010
1011/*
1012 * hw_exception_handler Jump Table
1013 * - Contains code snippets for each register that caused the unalign exception
1014 * - Hence exception handler is NOT self-modifying
1015 * - Separate table for load exceptions and store exceptions.
1016 * - Each table is of size: (8 * 32) = 256 bytes
1017 */
1018
1019.section .text
1020.align 4
1021lw_table:
1022lw_r0:		R3_TO_LWREG	(0);
1023lw_r1:		LWREG_NOP;
1024lw_r2:		R3_TO_LWREG	(2);
1025lw_r3:		R3_TO_LWREG_V	(3);
1026lw_r4:		R3_TO_LWREG_V	(4);
1027lw_r5:		R3_TO_LWREG_V	(5);
1028lw_r6:		R3_TO_LWREG_V	(6);
1029lw_r7:		R3_TO_LWREG	(7);
1030lw_r8:		R3_TO_LWREG	(8);
1031lw_r9:		R3_TO_LWREG	(9);
1032lw_r10:		R3_TO_LWREG	(10);
1033lw_r11:		R3_TO_LWREG	(11);
1034lw_r12:		R3_TO_LWREG	(12);
1035lw_r13:		R3_TO_LWREG	(13);
1036lw_r14:		R3_TO_LWREG	(14);
1037lw_r15:		R3_TO_LWREG	(15);
1038lw_r16:		R3_TO_LWREG	(16);
1039lw_r17:		LWREG_NOP;
1040lw_r18:		R3_TO_LWREG	(18);
1041lw_r19:		R3_TO_LWREG	(19);
1042lw_r20:		R3_TO_LWREG	(20);
1043lw_r21:		R3_TO_LWREG	(21);
1044lw_r22:		R3_TO_LWREG	(22);
1045lw_r23:		R3_TO_LWREG	(23);
1046lw_r24:		R3_TO_LWREG	(24);
1047lw_r25:		R3_TO_LWREG	(25);
1048lw_r26:		R3_TO_LWREG	(26);
1049lw_r27:		R3_TO_LWREG	(27);
1050lw_r28:		R3_TO_LWREG	(28);
1051lw_r29:		R3_TO_LWREG	(29);
1052lw_r30:		R3_TO_LWREG	(30);
1053#ifdef CONFIG_MMU
1054lw_r31: 	R3_TO_LWREG_V	(31);
1055#else
1056lw_r31:		R3_TO_LWREG	(31);
1057#endif
1058
1059sw_table:
1060sw_r0:		SWREG_TO_R3	(0);
1061sw_r1:		SWREG_NOP;
1062sw_r2:		SWREG_TO_R3	(2);
1063sw_r3:		SWREG_TO_R3_V	(3);
1064sw_r4:		SWREG_TO_R3_V	(4);
1065sw_r5:		SWREG_TO_R3_V	(5);
1066sw_r6:		SWREG_TO_R3_V	(6);
1067sw_r7:		SWREG_TO_R3	(7);
1068sw_r8:		SWREG_TO_R3	(8);
1069sw_r9:		SWREG_TO_R3	(9);
1070sw_r10:		SWREG_TO_R3	(10);
1071sw_r11:		SWREG_TO_R3	(11);
1072sw_r12:		SWREG_TO_R3	(12);
1073sw_r13:		SWREG_TO_R3	(13);
1074sw_r14:		SWREG_TO_R3	(14);
1075sw_r15:		SWREG_TO_R3	(15);
1076sw_r16:		SWREG_TO_R3	(16);
1077sw_r17:		SWREG_NOP;
1078sw_r18:		SWREG_TO_R3	(18);
1079sw_r19:		SWREG_TO_R3	(19);
1080sw_r20:		SWREG_TO_R3	(20);
1081sw_r21:		SWREG_TO_R3	(21);
1082sw_r22:		SWREG_TO_R3	(22);
1083sw_r23:		SWREG_TO_R3	(23);
1084sw_r24:		SWREG_TO_R3	(24);
1085sw_r25:		SWREG_TO_R3	(25);
1086sw_r26:		SWREG_TO_R3	(26);
1087sw_r27:		SWREG_TO_R3	(27);
1088sw_r28:		SWREG_TO_R3	(28);
1089sw_r29:		SWREG_TO_R3	(29);
1090sw_r30:		SWREG_TO_R3	(30);
1091#ifdef CONFIG_MMU
1092sw_r31:		SWREG_TO_R3_V	(31);
1093#else
1094sw_r31:		SWREG_TO_R3	(31);
1095#endif
1096
1097#ifdef CONFIG_MMU
1098lw_table_vm:
1099lw_r0_vm:	R3_TO_LWREG_VM		(0);
1100lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1101lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1102lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1103lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1104lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1105lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1106lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1107lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1108lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1109lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1110lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1111lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1112lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1113lw_r14_vm:	R3_TO_LWREG_VM		(14);
1114lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1115lw_r16_vm:	R3_TO_LWREG_VM		(16);
1116lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1117lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1118lw_r19_vm:	R3_TO_LWREG_VM		(19);
1119lw_r20_vm:	R3_TO_LWREG_VM		(20);
1120lw_r21_vm:	R3_TO_LWREG_VM		(21);
1121lw_r22_vm:	R3_TO_LWREG_VM		(22);
1122lw_r23_vm:	R3_TO_LWREG_VM		(23);
1123lw_r24_vm:	R3_TO_LWREG_VM		(24);
1124lw_r25_vm:	R3_TO_LWREG_VM		(25);
1125lw_r26_vm:	R3_TO_LWREG_VM		(26);
1126lw_r27_vm:	R3_TO_LWREG_VM		(27);
1127lw_r28_vm:	R3_TO_LWREG_VM		(28);
1128lw_r29_vm:	R3_TO_LWREG_VM		(29);
1129lw_r30_vm:	R3_TO_LWREG_VM		(30);
1130lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1131
1132sw_table_vm:
1133sw_r0_vm:	SWREG_TO_R3_VM		(0);
1134sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1135sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1136sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1137sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1138sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1139sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1140sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1141sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1142sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1143sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1144sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1145sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1146sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1147sw_r14_vm:	SWREG_TO_R3_VM		(14);
1148sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1149sw_r16_vm:	SWREG_TO_R3_VM		(16);
1150sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1151sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1152sw_r19_vm:	SWREG_TO_R3_VM		(19);
1153sw_r20_vm:	SWREG_TO_R3_VM		(20);
1154sw_r21_vm:	SWREG_TO_R3_VM		(21);
1155sw_r22_vm:	SWREG_TO_R3_VM		(22);
1156sw_r23_vm:	SWREG_TO_R3_VM		(23);
1157sw_r24_vm:	SWREG_TO_R3_VM		(24);
1158sw_r25_vm:	SWREG_TO_R3_VM		(25);
1159sw_r26_vm:	SWREG_TO_R3_VM		(26);
1160sw_r27_vm:	SWREG_TO_R3_VM		(27);
1161sw_r28_vm:	SWREG_TO_R3_VM		(28);
1162sw_r29_vm:	SWREG_TO_R3_VM		(29);
1163sw_r30_vm:	SWREG_TO_R3_VM		(30);
1164sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1165#endif /* CONFIG_MMU */
1166
1167/* Temporary data structures used in the handler */
1168.section .data
1169.align 4
1170ex_tmp_data_loc_0:
1171	.byte 0
1172ex_tmp_data_loc_1:
1173	.byte 0
1174ex_tmp_data_loc_2:
1175	.byte 0
1176ex_tmp_data_loc_3:
1177	.byte 0
1178ex_reg_op:
1179	.byte 0
1180