1/* 2 * Exception handling for Microblaze 3 * 4 * Rewriten interrupt handling 5 * 6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 7 * Copyright (C) 2008-2009 PetaLogix 8 * 9 * uClinux customisation (C) 2005 John Williams 10 * 11 * MMU code derived from arch/ppc/kernel/head_4xx.S: 12 * Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org> 13 * Initial PowerPC version. 14 * Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu> 15 * Rewritten for PReP 16 * Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au> 17 * Low-level exception handers, MMU support, and rewrite. 18 * Copyright (C) 1997 Dan Malek <dmalek@jlc.net> 19 * PowerPC 8xx modifications. 20 * Copyright (C) 1998-1999 TiVo, Inc. 21 * PowerPC 403GCX modifications. 22 * Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu> 23 * PowerPC 403GCX/405GP modifications. 24 * Copyright 2000 MontaVista Software Inc. 25 * PPC405 modifications 26 * PowerPC 403GCX/405GP modifications. 27 * Author: MontaVista Software, Inc. 28 * frank_rowand@mvista.com or source@mvista.com 29 * debbie_chu@mvista.com 30 * 31 * Original code 32 * Copyright (C) 2004 Xilinx, Inc. 33 * 34 * This program is free software; you can redistribute it and/or modify it 35 * under the terms of the GNU General Public License version 2 as published 36 * by the Free Software Foundation. 37 */ 38 39/* 40 * Here are the handlers which don't require enabling translation 41 * and calling other kernel code thus we can keep their design very simple 42 * and do all processing in real mode. All what they need is a valid current 43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case) 44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore 45 * these registers are saved/restored 46 * The handlers which require translation are in entry.S --KAA 47 * 48 * Microblaze HW Exception Handler 49 * - Non self-modifying exception handler for the following exception conditions 50 * - Unalignment 51 * - Instruction bus error 52 * - Data bus error 53 * - Illegal instruction opcode 54 * - Divide-by-zero 55 * 56 * - Privileged instruction exception (MMU) 57 * - Data storage exception (MMU) 58 * - Instruction storage exception (MMU) 59 * - Data TLB miss exception (MMU) 60 * - Instruction TLB miss exception (MMU) 61 * 62 * Note we disable interrupts during exception handling, otherwise we will 63 * possibly get multiple re-entrancy if interrupt handles themselves cause 64 * exceptions. JW 65 */ 66 67#include <asm/exceptions.h> 68#include <asm/unistd.h> 69#include <asm/page.h> 70 71#include <asm/entry.h> 72#include <asm/current.h> 73#include <linux/linkage.h> 74 75#include <asm/mmu.h> 76#include <asm/pgtable.h> 77#include <asm/signal.h> 78#include <asm/asm-offsets.h> 79 80#undef DEBUG 81 82/* Helpful Macros */ 83#define NUM_TO_REG(num) r ## num 84 85#ifdef CONFIG_MMU 86 #define RESTORE_STATE \ 87 lwi r5, r1, 0; \ 88 mts rmsr, r5; \ 89 nop; \ 90 lwi r3, r1, PT_R3; \ 91 lwi r4, r1, PT_R4; \ 92 lwi r5, r1, PT_R5; \ 93 lwi r6, r1, PT_R6; \ 94 lwi r11, r1, PT_R11; \ 95 lwi r31, r1, PT_R31; \ 96 lwi r1, r1, PT_R1; 97#endif /* CONFIG_MMU */ 98 99#define LWREG_NOP \ 100 bri ex_handler_unhandled; \ 101 nop; 102 103#define SWREG_NOP \ 104 bri ex_handler_unhandled; \ 105 nop; 106 107/* FIXME this is weird - for noMMU kernel is not possible to use brid 108 * instruction which can shorten executed time 109 */ 110 111/* r3 is the source */ 112#define R3_TO_LWREG_V(regnum) \ 113 swi r3, r1, 4 * regnum; \ 114 bri ex_handler_done; 115 116/* r3 is the source */ 117#define R3_TO_LWREG(regnum) \ 118 or NUM_TO_REG (regnum), r0, r3; \ 119 bri ex_handler_done; 120 121/* r3 is the target */ 122#define SWREG_TO_R3_V(regnum) \ 123 lwi r3, r1, 4 * regnum; \ 124 bri ex_sw_tail; 125 126/* r3 is the target */ 127#define SWREG_TO_R3(regnum) \ 128 or r3, r0, NUM_TO_REG (regnum); \ 129 bri ex_sw_tail; 130 131#ifdef CONFIG_MMU 132 #define R3_TO_LWREG_VM_V(regnum) \ 133 brid ex_lw_end_vm; \ 134 swi r3, r7, 4 * regnum; 135 136 #define R3_TO_LWREG_VM(regnum) \ 137 brid ex_lw_end_vm; \ 138 or NUM_TO_REG (regnum), r0, r3; 139 140 #define SWREG_TO_R3_VM_V(regnum) \ 141 brid ex_sw_tail_vm; \ 142 lwi r3, r7, 4 * regnum; 143 144 #define SWREG_TO_R3_VM(regnum) \ 145 brid ex_sw_tail_vm; \ 146 or r3, r0, NUM_TO_REG (regnum); 147 148 /* Shift right instruction depending on available configuration */ 149 #if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0 150 #define BSRLI(rD, rA, imm) \ 151 bsrli rD, rA, imm 152 #else 153 #define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA) 154 /* Only the used shift constants defined here - add more if needed */ 155 #define BSRLI2(rD, rA) \ 156 srl rD, rA; /* << 1 */ \ 157 srl rD, rD; /* << 2 */ 158 #define BSRLI10(rD, rA) \ 159 srl rD, rA; /* << 1 */ \ 160 srl rD, rD; /* << 2 */ \ 161 srl rD, rD; /* << 3 */ \ 162 srl rD, rD; /* << 4 */ \ 163 srl rD, rD; /* << 5 */ \ 164 srl rD, rD; /* << 6 */ \ 165 srl rD, rD; /* << 7 */ \ 166 srl rD, rD; /* << 8 */ \ 167 srl rD, rD; /* << 9 */ \ 168 srl rD, rD /* << 10 */ 169 #define BSRLI20(rD, rA) \ 170 BSRLI10(rD, rA); \ 171 BSRLI10(rD, rD) 172 #endif 173#endif /* CONFIG_MMU */ 174 175.extern other_exception_handler /* Defined in exception.c */ 176 177/* 178 * hw_exception_handler - Handler for exceptions 179 * 180 * Exception handler notes: 181 * - Handles all exceptions 182 * - Does not handle unaligned exceptions during load into r17, r1, r0. 183 * - Does not handle unaligned exceptions during store from r17 (cannot be 184 * done) and r1 (slows down common case) 185 * 186 * Relevant register structures 187 * 188 * EAR - |----|----|----|----|----|----|----|----| 189 * - < ## 32 bit faulting address ## > 190 * 191 * ESR - |----|----|----|----|----| - | - |-----|-----| 192 * - W S REG EXC 193 * 194 * 195 * STACK FRAME STRUCTURE (for NO_MMU) 196 * --------------------------------- 197 * 198 * +-------------+ + 0 199 * | MSR | 200 * +-------------+ + 4 201 * | r1 | 202 * | . | 203 * | . | 204 * | . | 205 * | . | 206 * | r18 | 207 * +-------------+ + 76 208 * | . | 209 * | . | 210 * 211 * MMU kernel uses the same 'pt_pool_space' pointed space 212 * which is used for storing register values - noMMu style was, that values were 213 * stored in stack but in case of failure you lost information about register. 214 * Currently you can see register value in memory in specific place. 215 * In compare to with previous solution the speed should be the same. 216 * 217 * MMU exception handler has different handling compare to no MMU kernel. 218 * Exception handler use jump table for directing of what happen. For MMU kernel 219 * is this approach better because MMU relate exception are handled by asm code 220 * in this file. In compare to with MMU expect of unaligned exception 221 * is everything handled by C code. 222 */ 223 224/* 225 * every of these handlers is entered having R3/4/5/6/11/current saved on stack 226 * and clobbered so care should be taken to restore them if someone is going to 227 * return from exception 228 */ 229 230/* wrappers to restore state before coming to entry.S */ 231#ifdef CONFIG_MMU 232.section .data 233.align 4 234pt_pool_space: 235 .space PT_SIZE 236 237#ifdef DEBUG 238/* Create space for exception counting. */ 239.section .data 240.global exception_debug_table 241.align 4 242exception_debug_table: 243 /* Look at exception vector table. There is 32 exceptions * word size */ 244 .space (32 * 4) 245#endif /* DEBUG */ 246 247.section .rodata 248.align 4 249_MB_HW_ExceptionVectorTable: 250/* 0 - Undefined */ 251 .long TOPHYS(ex_handler_unhandled) 252/* 1 - Unaligned data access exception */ 253 .long TOPHYS(handle_unaligned_ex) 254/* 2 - Illegal op-code exception */ 255 .long TOPHYS(full_exception_trapw) 256/* 3 - Instruction bus error exception */ 257 .long TOPHYS(full_exception_trapw) 258/* 4 - Data bus error exception */ 259 .long TOPHYS(full_exception_trapw) 260/* 5 - Divide by zero exception */ 261 .long TOPHYS(full_exception_trapw) 262/* 6 - Floating point unit exception */ 263 .long TOPHYS(full_exception_trapw) 264/* 7 - Privileged instruction exception */ 265 .long TOPHYS(full_exception_trapw) 266/* 8 - 15 - Undefined */ 267 .long TOPHYS(ex_handler_unhandled) 268 .long TOPHYS(ex_handler_unhandled) 269 .long TOPHYS(ex_handler_unhandled) 270 .long TOPHYS(ex_handler_unhandled) 271 .long TOPHYS(ex_handler_unhandled) 272 .long TOPHYS(ex_handler_unhandled) 273 .long TOPHYS(ex_handler_unhandled) 274 .long TOPHYS(ex_handler_unhandled) 275/* 16 - Data storage exception */ 276 .long TOPHYS(handle_data_storage_exception) 277/* 17 - Instruction storage exception */ 278 .long TOPHYS(handle_instruction_storage_exception) 279/* 18 - Data TLB miss exception */ 280 .long TOPHYS(handle_data_tlb_miss_exception) 281/* 19 - Instruction TLB miss exception */ 282 .long TOPHYS(handle_instruction_tlb_miss_exception) 283/* 20 - 31 - Undefined */ 284 .long TOPHYS(ex_handler_unhandled) 285 .long TOPHYS(ex_handler_unhandled) 286 .long TOPHYS(ex_handler_unhandled) 287 .long TOPHYS(ex_handler_unhandled) 288 .long TOPHYS(ex_handler_unhandled) 289 .long TOPHYS(ex_handler_unhandled) 290 .long TOPHYS(ex_handler_unhandled) 291 .long TOPHYS(ex_handler_unhandled) 292 .long TOPHYS(ex_handler_unhandled) 293 .long TOPHYS(ex_handler_unhandled) 294 .long TOPHYS(ex_handler_unhandled) 295 .long TOPHYS(ex_handler_unhandled) 296#endif 297 298.global _hw_exception_handler 299.section .text 300.align 4 301.ent _hw_exception_handler 302_hw_exception_handler: 303#ifndef CONFIG_MMU 304 addik r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */ 305#else 306 swi r1, r0, TOPHYS(pt_pool_space + PT_R1); /* GET_SP */ 307 /* Save date to kernel memory. Here is the problem 308 * when you came from user space */ 309 ori r1, r0, TOPHYS(pt_pool_space); 310#endif 311 swi r3, r1, PT_R3 312 swi r4, r1, PT_R4 313 swi r5, r1, PT_R5 314 swi r6, r1, PT_R6 315 316#ifdef CONFIG_MMU 317 swi r11, r1, PT_R11 318 swi r31, r1, PT_R31 319 lwi r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */ 320#endif 321 322 mfs r5, rmsr; 323 nop 324 swi r5, r1, 0; 325 mfs r4, resr 326 nop 327 mfs r3, rear; 328 nop 329 330#ifndef CONFIG_MMU 331 andi r5, r4, 0x1000; /* Check ESR[DS] */ 332 beqi r5, not_in_delay_slot; /* Branch if ESR[DS] not set */ 333 mfs r17, rbtr; /* ESR[DS] set - return address in BTR */ 334 nop 335not_in_delay_slot: 336 swi r17, r1, PT_R17 337#endif 338 339 andi r5, r4, 0x1F; /* Extract ESR[EXC] */ 340 341#ifdef CONFIG_MMU 342 /* Calculate exception vector offset = r5 << 2 */ 343 addk r6, r5, r5; /* << 1 */ 344 addk r6, r6, r6; /* << 2 */ 345 346#ifdef DEBUG 347/* counting which exception happen */ 348 lwi r5, r0, TOPHYS(exception_debug_table) 349 addi r5, r5, 1 350 swi r5, r0, TOPHYS(exception_debug_table) 351 lwi r5, r6, TOPHYS(exception_debug_table) 352 addi r5, r5, 1 353 swi r5, r6, TOPHYS(exception_debug_table) 354#endif 355/* end */ 356 /* Load the HW Exception vector */ 357 lwi r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable) 358 bra r6 359 360full_exception_trapw: 361 RESTORE_STATE 362 bri full_exception_trap 363#else 364 /* Exceptions enabled here. This will allow nested exceptions */ 365 mfs r6, rmsr; 366 nop 367 swi r6, r1, 0; /* RMSR_OFFSET */ 368 ori r6, r6, 0x100; /* Turn ON the EE bit */ 369 andi r6, r6, ~2; /* Disable interrupts */ 370 mts rmsr, r6; 371 nop 372 373 xori r6, r5, 1; /* 00001 = Unaligned Exception */ 374 /* Jump to unalignment exception handler */ 375 beqi r6, handle_unaligned_ex; 376 377handle_other_ex: /* Handle Other exceptions here */ 378 /* Save other volatiles before we make procedure calls below */ 379 swi r7, r1, PT_R7 380 swi r8, r1, PT_R8 381 swi r9, r1, PT_R9 382 swi r10, r1, PT_R10 383 swi r11, r1, PT_R11 384 swi r12, r1, PT_R12 385 swi r14, r1, PT_R14 386 swi r15, r1, PT_R15 387 swi r18, r1, PT_R18 388 389 or r5, r1, r0 390 andi r6, r4, 0x1F; /* Load ESR[EC] */ 391 lwi r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */ 392 swi r7, r1, PT_MODE 393 mfs r7, rfsr 394 nop 395 addk r8, r17, r0; /* Load exception address */ 396 bralid r15, full_exception; /* Branch to the handler */ 397 nop; 398 mts rfsr, r0; /* Clear sticky fsr */ 399 nop 400 401 /* 402 * Trigger execution of the signal handler by enabling 403 * interrupts and calling an invalid syscall. 404 */ 405 mfs r5, rmsr; 406 nop 407 ori r5, r5, 2; 408 mts rmsr, r5; /* enable interrupt */ 409 nop 410 addi r12, r0, __NR_syscalls; 411 brki r14, 0x08; 412 mfs r5, rmsr; /* disable interrupt */ 413 nop 414 andi r5, r5, ~2; 415 mts rmsr, r5; 416 nop 417 418 lwi r7, r1, PT_R7 419 lwi r8, r1, PT_R8 420 lwi r9, r1, PT_R9 421 lwi r10, r1, PT_R10 422 lwi r11, r1, PT_R11 423 lwi r12, r1, PT_R12 424 lwi r14, r1, PT_R14 425 lwi r15, r1, PT_R15 426 lwi r18, r1, PT_R18 427 428 bri ex_handler_done; /* Complete exception handling */ 429#endif 430 431/* 0x01 - Unaligned data access exception 432 * This occurs when a word access is not aligned on a word boundary, 433 * or when a 16-bit access is not aligned on a 16-bit boundary. 434 * This handler perform the access, and returns, except for MMU when 435 * the unaligned address is last on a 4k page or the physical address is 436 * not found in the page table, in which case unaligned_data_trap is called. 437 */ 438handle_unaligned_ex: 439 /* Working registers already saved: R3, R4, R5, R6 440 * R4 = ESR 441 * R3 = EAR 442 */ 443#ifdef CONFIG_MMU 444 andi r6, r4, 0x1000 /* Check ESR[DS] */ 445 beqi r6, _no_delayslot /* Branch if ESR[DS] not set */ 446 mfs r17, rbtr; /* ESR[DS] set - return address in BTR */ 447 nop 448_no_delayslot: 449 /* jump to high level unaligned handler */ 450 RESTORE_STATE; 451 bri unaligned_data_trap 452#endif 453 andi r6, r4, 0x3E0; /* Mask and extract the register operand */ 454 srl r6, r6; /* r6 >> 5 */ 455 srl r6, r6; 456 srl r6, r6; 457 srl r6, r6; 458 srl r6, r6; 459 /* Store the register operand in a temporary location */ 460 sbi r6, r0, TOPHYS(ex_reg_op); 461 462 andi r6, r4, 0x400; /* Extract ESR[S] */ 463 bnei r6, ex_sw; 464ex_lw: 465 andi r6, r4, 0x800; /* Extract ESR[W] */ 466 beqi r6, ex_lhw; 467 lbui r5, r3, 0; /* Exception address in r3 */ 468 /* Load a word, byte-by-byte from destination address 469 and save it in tmp space */ 470 sbi r5, r0, TOPHYS(ex_tmp_data_loc_0); 471 lbui r5, r3, 1; 472 sbi r5, r0, TOPHYS(ex_tmp_data_loc_1); 473 lbui r5, r3, 2; 474 sbi r5, r0, TOPHYS(ex_tmp_data_loc_2); 475 lbui r5, r3, 3; 476 sbi r5, r0, TOPHYS(ex_tmp_data_loc_3); 477 /* Get the destination register value into r4 */ 478 lwi r4, r0, TOPHYS(ex_tmp_data_loc_0); 479 bri ex_lw_tail; 480ex_lhw: 481 lbui r5, r3, 0; /* Exception address in r3 */ 482 /* Load a half-word, byte-by-byte from destination 483 address and save it in tmp space */ 484 sbi r5, r0, TOPHYS(ex_tmp_data_loc_0); 485 lbui r5, r3, 1; 486 sbi r5, r0, TOPHYS(ex_tmp_data_loc_1); 487 /* Get the destination register value into r4 */ 488 lhui r4, r0, TOPHYS(ex_tmp_data_loc_0); 489ex_lw_tail: 490 /* Get the destination register number into r5 */ 491 lbui r5, r0, TOPHYS(ex_reg_op); 492 /* Form load_word jump table offset (lw_table + (8 * regnum)) */ 493 addik r6, r0, TOPHYS(lw_table); 494 addk r5, r5, r5; 495 addk r5, r5, r5; 496 addk r5, r5, r5; 497 addk r5, r5, r6; 498 bra r5; 499ex_lw_end: /* Exception handling of load word, ends */ 500ex_sw: 501 /* Get the destination register number into r5 */ 502 lbui r5, r0, TOPHYS(ex_reg_op); 503 /* Form store_word jump table offset (sw_table + (8 * regnum)) */ 504 addik r6, r0, TOPHYS(sw_table); 505 add r5, r5, r5; 506 add r5, r5, r5; 507 add r5, r5, r5; 508 add r5, r5, r6; 509 bra r5; 510ex_sw_tail: 511 mfs r6, resr; 512 nop 513 andi r6, r6, 0x800; /* Extract ESR[W] */ 514 beqi r6, ex_shw; 515 /* Get the word - delay slot */ 516 swi r4, r0, TOPHYS(ex_tmp_data_loc_0); 517 /* Store the word, byte-by-byte into destination address */ 518 lbui r4, r0, TOPHYS(ex_tmp_data_loc_0); 519 sbi r4, r3, 0; 520 lbui r4, r0, TOPHYS(ex_tmp_data_loc_1); 521 sbi r4, r3, 1; 522 lbui r4, r0, TOPHYS(ex_tmp_data_loc_2); 523 sbi r4, r3, 2; 524 lbui r4, r0, TOPHYS(ex_tmp_data_loc_3); 525 sbi r4, r3, 3; 526 bri ex_handler_done; 527 528ex_shw: 529 /* Store the lower half-word, byte-by-byte into destination address */ 530 swi r4, r0, TOPHYS(ex_tmp_data_loc_0); 531 lbui r4, r0, TOPHYS(ex_tmp_data_loc_2); 532 sbi r4, r3, 0; 533 lbui r4, r0, TOPHYS(ex_tmp_data_loc_3); 534 sbi r4, r3, 1; 535ex_sw_end: /* Exception handling of store word, ends. */ 536 537ex_handler_done: 538#ifndef CONFIG_MMU 539 lwi r5, r1, 0 /* RMSR */ 540 mts rmsr, r5 541 nop 542 lwi r3, r1, PT_R3 543 lwi r4, r1, PT_R4 544 lwi r5, r1, PT_R5 545 lwi r6, r1, PT_R6 546 lwi r17, r1, PT_R17 547 548 rted r17, 0 549 addik r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */ 550#else 551 RESTORE_STATE; 552 rted r17, 0 553 nop 554#endif 555 556#ifdef CONFIG_MMU 557 /* Exception vector entry code. This code runs with address translation 558 * turned off (i.e. using physical addresses). */ 559 560 /* Exception vectors. */ 561 562 /* 0x10 - Data Storage Exception 563 * This happens for just a few reasons. U0 set (but we don't do that), 564 * or zone protection fault (user violation, write to protected page). 565 * If this is just an update of modified status, we do that quickly 566 * and exit. Otherwise, we call heavyweight functions to do the work. 567 */ 568 handle_data_storage_exception: 569 /* Working registers already saved: R3, R4, R5, R6 570 * R3 = ESR 571 */ 572 mfs r11, rpid 573 nop 574 /* If we are faulting a kernel address, we have to use the 575 * kernel page tables. 576 */ 577 ori r5, r0, CONFIG_KERNEL_START 578 cmpu r5, r3, r5 579 bgti r5, ex3 580 /* First, check if it was a zone fault (which means a user 581 * tried to access a kernel or read-protected page - always 582 * a SEGV). All other faults here must be stores, so no 583 * need to check ESR_S as well. */ 584 andi r4, r4, 0x800 /* ESR_Z - zone protection */ 585 bnei r4, ex2 586 587 ori r4, r0, swapper_pg_dir 588 mts rpid, r0 /* TLB will have 0 TID */ 589 nop 590 bri ex4 591 592 /* Get the PGD for the current thread. */ 593 ex3: 594 /* First, check if it was a zone fault (which means a user 595 * tried to access a kernel or read-protected page - always 596 * a SEGV). All other faults here must be stores, so no 597 * need to check ESR_S as well. */ 598 andi r4, r4, 0x800 /* ESR_Z */ 599 bnei r4, ex2 600 /* get current task address */ 601 addi r4 ,CURRENT_TASK, TOPHYS(0); 602 lwi r4, r4, TASK_THREAD+PGDIR 603 ex4: 604 tophys(r4,r4) 605 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */ 606 andi r5, r5, 0xffc 607/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */ 608 or r4, r4, r5 609 lwi r4, r4, 0 /* Get L1 entry */ 610 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */ 611 beqi r5, ex2 /* Bail if no table */ 612 613 tophys(r5,r5) 614 BSRLI(r6,r3,10) /* Compute PTE address */ 615 andi r6, r6, 0xffc 616 andi r5, r5, 0xfffff003 617 or r5, r5, r6 618 lwi r4, r5, 0 /* Get Linux PTE */ 619 620 andi r6, r4, _PAGE_RW /* Is it writeable? */ 621 beqi r6, ex2 /* Bail if not */ 622 623 /* Update 'changed' */ 624 ori r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE 625 swi r4, r5, 0 /* Update Linux page table */ 626 627 /* Most of the Linux PTE is ready to load into the TLB LO. 628 * We set ZSEL, where only the LS-bit determines user access. 629 * We set execute, because we don't have the granularity to 630 * properly set this at the page level (Linux problem). 631 * If shared is set, we cause a zero PID->TID load. 632 * Many of these bits are software only. Bits we don't set 633 * here we (properly should) assume have the appropriate value. 634 */ 635 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */ 636 ori r4, r4, _PAGE_HWEXEC /* make it executable */ 637 638 /* find the TLB index that caused the fault. It has to be here*/ 639 mts rtlbsx, r3 640 nop 641 mfs r5, rtlbx /* DEBUG: TBD */ 642 nop 643 mts rtlblo, r4 /* Load TLB LO */ 644 nop 645 /* Will sync shadow TLBs */ 646 647 /* Done...restore registers and get out of here. */ 648 mts rpid, r11 649 nop 650 bri 4 651 652 RESTORE_STATE; 653 rted r17, 0 654 nop 655 ex2: 656 /* The bailout. Restore registers to pre-exception conditions 657 * and call the heavyweights to help us out. */ 658 mts rpid, r11 659 nop 660 bri 4 661 RESTORE_STATE; 662 bri page_fault_data_trap 663 664 665 /* 0x11 - Instruction Storage Exception 666 * This is caused by a fetch from non-execute or guarded pages. */ 667 handle_instruction_storage_exception: 668 /* Working registers already saved: R3, R4, R5, R6 669 * R3 = ESR 670 */ 671 672 RESTORE_STATE; 673 bri page_fault_instr_trap 674 675 /* 0x12 - Data TLB Miss Exception 676 * As the name implies, translation is not in the MMU, so search the 677 * page tables and fix it. The only purpose of this function is to 678 * load TLB entries from the page table if they exist. 679 */ 680 handle_data_tlb_miss_exception: 681 /* Working registers already saved: R3, R4, R5, R6 682 * R3 = EAR, R4 = ESR 683 */ 684 mfs r11, rpid 685 nop 686 687 /* If we are faulting a kernel address, we have to use the 688 * kernel page tables. */ 689 ori r6, r0, CONFIG_KERNEL_START 690 cmpu r4, r3, r6 691 bgti r4, ex5 692 ori r4, r0, swapper_pg_dir 693 mts rpid, r0 /* TLB will have 0 TID */ 694 nop 695 bri ex6 696 697 /* Get the PGD for the current thread. */ 698 ex5: 699 /* get current task address */ 700 addi r4 ,CURRENT_TASK, TOPHYS(0); 701 lwi r4, r4, TASK_THREAD+PGDIR 702 ex6: 703 tophys(r4,r4) 704 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */ 705 andi r5, r5, 0xffc 706/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */ 707 or r4, r4, r5 708 lwi r4, r4, 0 /* Get L1 entry */ 709 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */ 710 beqi r5, ex7 /* Bail if no table */ 711 712 tophys(r5,r5) 713 BSRLI(r6,r3,10) /* Compute PTE address */ 714 andi r6, r6, 0xffc 715 andi r5, r5, 0xfffff003 716 or r5, r5, r6 717 lwi r4, r5, 0 /* Get Linux PTE */ 718 719 andi r6, r4, _PAGE_PRESENT 720 beqi r6, ex7 721 722 ori r4, r4, _PAGE_ACCESSED 723 swi r4, r5, 0 724 725 /* Most of the Linux PTE is ready to load into the TLB LO. 726 * We set ZSEL, where only the LS-bit determines user access. 727 * We set execute, because we don't have the granularity to 728 * properly set this at the page level (Linux problem). 729 * If shared is set, we cause a zero PID->TID load. 730 * Many of these bits are software only. Bits we don't set 731 * here we (properly should) assume have the appropriate value. 732 */ 733 brid finish_tlb_load 734 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */ 735 ex7: 736 /* The bailout. Restore registers to pre-exception conditions 737 * and call the heavyweights to help us out. 738 */ 739 mts rpid, r11 740 nop 741 bri 4 742 RESTORE_STATE; 743 bri page_fault_data_trap 744 745 /* 0x13 - Instruction TLB Miss Exception 746 * Nearly the same as above, except we get our information from 747 * different registers and bailout to a different point. 748 */ 749 handle_instruction_tlb_miss_exception: 750 /* Working registers already saved: R3, R4, R5, R6 751 * R3 = ESR 752 */ 753 mfs r11, rpid 754 nop 755 756 /* If we are faulting a kernel address, we have to use the 757 * kernel page tables. 758 */ 759 ori r4, r0, CONFIG_KERNEL_START 760 cmpu r4, r3, r4 761 bgti r4, ex8 762 ori r4, r0, swapper_pg_dir 763 mts rpid, r0 /* TLB will have 0 TID */ 764 nop 765 bri ex9 766 767 /* Get the PGD for the current thread. */ 768 ex8: 769 /* get current task address */ 770 addi r4 ,CURRENT_TASK, TOPHYS(0); 771 lwi r4, r4, TASK_THREAD+PGDIR 772 ex9: 773 tophys(r4,r4) 774 BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */ 775 andi r5, r5, 0xffc 776/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */ 777 or r4, r4, r5 778 lwi r4, r4, 0 /* Get L1 entry */ 779 andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */ 780 beqi r5, ex10 /* Bail if no table */ 781 782 tophys(r5,r5) 783 BSRLI(r6,r3,10) /* Compute PTE address */ 784 andi r6, r6, 0xffc 785 andi r5, r5, 0xfffff003 786 or r5, r5, r6 787 lwi r4, r5, 0 /* Get Linux PTE */ 788 789 andi r6, r4, _PAGE_PRESENT 790 beqi r6, ex10 791 792 ori r4, r4, _PAGE_ACCESSED 793 swi r4, r5, 0 794 795 /* Most of the Linux PTE is ready to load into the TLB LO. 796 * We set ZSEL, where only the LS-bit determines user access. 797 * We set execute, because we don't have the granularity to 798 * properly set this at the page level (Linux problem). 799 * If shared is set, we cause a zero PID->TID load. 800 * Many of these bits are software only. Bits we don't set 801 * here we (properly should) assume have the appropriate value. 802 */ 803 brid finish_tlb_load 804 andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */ 805 ex10: 806 /* The bailout. Restore registers to pre-exception conditions 807 * and call the heavyweights to help us out. 808 */ 809 mts rpid, r11 810 nop 811 bri 4 812 RESTORE_STATE; 813 bri page_fault_instr_trap 814 815/* Both the instruction and data TLB miss get to this point to load the TLB. 816 * r3 - EA of fault 817 * r4 - TLB LO (info from Linux PTE) 818 * r5, r6 - available to use 819 * PID - loaded with proper value when we get here 820 * Upon exit, we reload everything and RFI. 821 * A common place to load the TLB. 822 */ 823 tlb_index: 824 .long 1 /* MS: storing last used tlb index */ 825 finish_tlb_load: 826 /* MS: load the last used TLB index. */ 827 lwi r5, r0, TOPHYS(tlb_index) 828 addik r5, r5, 1 /* MS: inc tlb_index -> use next one */ 829 830/* MS: FIXME this is potential fault, because this is mask not count */ 831 andi r5, r5, (MICROBLAZE_TLB_SIZE-1) 832 ori r6, r0, 1 833 cmp r31, r5, r6 834 blti r31, ex12 835 addik r5, r6, 1 836 ex12: 837 /* MS: save back current TLB index */ 838 swi r5, r0, TOPHYS(tlb_index) 839 840 ori r4, r4, _PAGE_HWEXEC /* make it executable */ 841 mts rtlbx, r5 /* MS: save current TLB */ 842 nop 843 mts rtlblo, r4 /* MS: save to TLB LO */ 844 nop 845 846 /* Create EPN. This is the faulting address plus a static 847 * set of bits. These are size, valid, E, U0, and ensure 848 * bits 20 and 21 are zero. 849 */ 850 andi r3, r3, 0xfffff000 851 ori r3, r3, 0x0c0 852 mts rtlbhi, r3 /* Load TLB HI */ 853 nop 854 855 /* Done...restore registers and get out of here. */ 856 mts rpid, r11 857 nop 858 bri 4 859 RESTORE_STATE; 860 rted r17, 0 861 nop 862 863 /* extern void giveup_fpu(struct task_struct *prev) 864 * 865 * The MicroBlaze processor may have an FPU, so this should not just 866 * return: TBD. 867 */ 868 .globl giveup_fpu; 869 .align 4; 870 giveup_fpu: 871 bralid r15,0 /* TBD */ 872 nop 873 874 /* At present, this routine just hangs. - extern void abort(void) */ 875 .globl abort; 876 .align 4; 877 abort: 878 br r0 879 880 .globl set_context; 881 .align 4; 882 set_context: 883 mts rpid, r5 /* Shadow TLBs are automatically */ 884 nop 885 bri 4 /* flushed by changing PID */ 886 rtsd r15,8 887 nop 888 889#endif 890.end _hw_exception_handler 891 892#ifdef CONFIG_MMU 893/* Unaligned data access exception last on a 4k page for MMU. 894 * When this is called, we are in virtual mode with exceptions enabled 895 * and registers 1-13,15,17,18 saved. 896 * 897 * R3 = ESR 898 * R4 = EAR 899 * R7 = pointer to saved registers (struct pt_regs *regs) 900 * 901 * This handler perform the access, and returns via ret_from_exc. 902 */ 903.global _unaligned_data_exception 904.ent _unaligned_data_exception 905_unaligned_data_exception: 906 andi r8, r3, 0x3E0; /* Mask and extract the register operand */ 907 BSRLI(r8,r8,2); /* r8 >> 2 = register operand * 8 */ 908 andi r6, r3, 0x400; /* Extract ESR[S] */ 909 bneid r6, ex_sw_vm; 910 andi r6, r3, 0x800; /* Extract ESR[W] - delay slot */ 911ex_lw_vm: 912 beqid r6, ex_lhw_vm; 913load1: lbui r5, r4, 0; /* Exception address in r4 - delay slot */ 914/* Load a word, byte-by-byte from destination address and save it in tmp space*/ 915 addik r6, r0, ex_tmp_data_loc_0; 916 sbi r5, r6, 0; 917load2: lbui r5, r4, 1; 918 sbi r5, r6, 1; 919load3: lbui r5, r4, 2; 920 sbi r5, r6, 2; 921load4: lbui r5, r4, 3; 922 sbi r5, r6, 3; 923 brid ex_lw_tail_vm; 924/* Get the destination register value into r3 - delay slot */ 925 lwi r3, r6, 0; 926ex_lhw_vm: 927 /* Load a half-word, byte-by-byte from destination address and 928 * save it in tmp space */ 929 addik r6, r0, ex_tmp_data_loc_0; 930 sbi r5, r6, 0; 931load5: lbui r5, r4, 1; 932 sbi r5, r6, 1; 933 lhui r3, r6, 0; /* Get the destination register value into r3 */ 934ex_lw_tail_vm: 935 /* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */ 936 addik r5, r8, lw_table_vm; 937 bra r5; 938ex_lw_end_vm: /* Exception handling of load word, ends */ 939 brai ret_from_exc; 940ex_sw_vm: 941/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */ 942 addik r5, r8, sw_table_vm; 943 bra r5; 944ex_sw_tail_vm: 945 addik r5, r0, ex_tmp_data_loc_0; 946 beqid r6, ex_shw_vm; 947 swi r3, r5, 0; /* Get the word - delay slot */ 948 /* Store the word, byte-by-byte into destination address */ 949 lbui r3, r5, 0; 950store1: sbi r3, r4, 0; 951 lbui r3, r5, 1; 952store2: sbi r3, r4, 1; 953 lbui r3, r5, 2; 954store3: sbi r3, r4, 2; 955 lbui r3, r5, 3; 956 brid ret_from_exc; 957store4: sbi r3, r4, 3; /* Delay slot */ 958ex_shw_vm: 959 /* Store the lower half-word, byte-by-byte into destination address */ 960#ifdef __MICROBLAZEEL__ 961 lbui r3, r5, 0; 962store5: sbi r3, r4, 0; 963 lbui r3, r5, 1; 964 brid ret_from_exc; 965store6: sbi r3, r4, 1; /* Delay slot */ 966#else 967 lbui r3, r5, 2; 968store5: sbi r3, r4, 0; 969 lbui r3, r5, 3; 970 brid ret_from_exc; 971store6: sbi r3, r4, 1; /* Delay slot */ 972#endif 973 974ex_sw_end_vm: /* Exception handling of store word, ends. */ 975 976/* We have to prevent cases that get/put_user macros get unaligned pointer 977 * to bad page area. We have to find out which origin instruction caused it 978 * and called fixup for that origin instruction not instruction in unaligned 979 * handler */ 980ex_unaligned_fixup: 981 ori r5, r7, 0 /* setup pointer to pt_regs */ 982 lwi r6, r7, PT_PC; /* faulting address is one instruction above */ 983 addik r6, r6, -4 /* for finding proper fixup */ 984 swi r6, r7, PT_PC; /* a save back it to PT_PC */ 985 addik r7, r0, SIGSEGV 986 /* call bad_page_fault for finding aligned fixup, fixup address is saved 987 * in PT_PC which is used as return address from exception */ 988 addik r15, r0, ret_from_exc-8 /* setup return address */ 989 brid bad_page_fault 990 nop 991 992/* We prevent all load/store because it could failed any attempt to access */ 993.section __ex_table,"a"; 994 .word load1,ex_unaligned_fixup; 995 .word load2,ex_unaligned_fixup; 996 .word load3,ex_unaligned_fixup; 997 .word load4,ex_unaligned_fixup; 998 .word load5,ex_unaligned_fixup; 999 .word store1,ex_unaligned_fixup; 1000 .word store2,ex_unaligned_fixup; 1001 .word store3,ex_unaligned_fixup; 1002 .word store4,ex_unaligned_fixup; 1003 .word store5,ex_unaligned_fixup; 1004 .word store6,ex_unaligned_fixup; 1005.previous; 1006.end _unaligned_data_exception 1007#endif /* CONFIG_MMU */ 1008 1009.global ex_handler_unhandled 1010ex_handler_unhandled: 1011/* FIXME add handle function for unhandled exception - dump register */ 1012 bri 0 1013 1014/* 1015 * hw_exception_handler Jump Table 1016 * - Contains code snippets for each register that caused the unalign exception 1017 * - Hence exception handler is NOT self-modifying 1018 * - Separate table for load exceptions and store exceptions. 1019 * - Each table is of size: (8 * 32) = 256 bytes 1020 */ 1021 1022.section .text 1023.align 4 1024lw_table: 1025lw_r0: R3_TO_LWREG (0); 1026lw_r1: LWREG_NOP; 1027lw_r2: R3_TO_LWREG (2); 1028lw_r3: R3_TO_LWREG_V (3); 1029lw_r4: R3_TO_LWREG_V (4); 1030lw_r5: R3_TO_LWREG_V (5); 1031lw_r6: R3_TO_LWREG_V (6); 1032lw_r7: R3_TO_LWREG (7); 1033lw_r8: R3_TO_LWREG (8); 1034lw_r9: R3_TO_LWREG (9); 1035lw_r10: R3_TO_LWREG (10); 1036lw_r11: R3_TO_LWREG (11); 1037lw_r12: R3_TO_LWREG (12); 1038lw_r13: R3_TO_LWREG (13); 1039lw_r14: R3_TO_LWREG (14); 1040lw_r15: R3_TO_LWREG (15); 1041lw_r16: R3_TO_LWREG (16); 1042lw_r17: LWREG_NOP; 1043lw_r18: R3_TO_LWREG (18); 1044lw_r19: R3_TO_LWREG (19); 1045lw_r20: R3_TO_LWREG (20); 1046lw_r21: R3_TO_LWREG (21); 1047lw_r22: R3_TO_LWREG (22); 1048lw_r23: R3_TO_LWREG (23); 1049lw_r24: R3_TO_LWREG (24); 1050lw_r25: R3_TO_LWREG (25); 1051lw_r26: R3_TO_LWREG (26); 1052lw_r27: R3_TO_LWREG (27); 1053lw_r28: R3_TO_LWREG (28); 1054lw_r29: R3_TO_LWREG (29); 1055lw_r30: R3_TO_LWREG (30); 1056#ifdef CONFIG_MMU 1057lw_r31: R3_TO_LWREG_V (31); 1058#else 1059lw_r31: R3_TO_LWREG (31); 1060#endif 1061 1062sw_table: 1063sw_r0: SWREG_TO_R3 (0); 1064sw_r1: SWREG_NOP; 1065sw_r2: SWREG_TO_R3 (2); 1066sw_r3: SWREG_TO_R3_V (3); 1067sw_r4: SWREG_TO_R3_V (4); 1068sw_r5: SWREG_TO_R3_V (5); 1069sw_r6: SWREG_TO_R3_V (6); 1070sw_r7: SWREG_TO_R3 (7); 1071sw_r8: SWREG_TO_R3 (8); 1072sw_r9: SWREG_TO_R3 (9); 1073sw_r10: SWREG_TO_R3 (10); 1074sw_r11: SWREG_TO_R3 (11); 1075sw_r12: SWREG_TO_R3 (12); 1076sw_r13: SWREG_TO_R3 (13); 1077sw_r14: SWREG_TO_R3 (14); 1078sw_r15: SWREG_TO_R3 (15); 1079sw_r16: SWREG_TO_R3 (16); 1080sw_r17: SWREG_NOP; 1081sw_r18: SWREG_TO_R3 (18); 1082sw_r19: SWREG_TO_R3 (19); 1083sw_r20: SWREG_TO_R3 (20); 1084sw_r21: SWREG_TO_R3 (21); 1085sw_r22: SWREG_TO_R3 (22); 1086sw_r23: SWREG_TO_R3 (23); 1087sw_r24: SWREG_TO_R3 (24); 1088sw_r25: SWREG_TO_R3 (25); 1089sw_r26: SWREG_TO_R3 (26); 1090sw_r27: SWREG_TO_R3 (27); 1091sw_r28: SWREG_TO_R3 (28); 1092sw_r29: SWREG_TO_R3 (29); 1093sw_r30: SWREG_TO_R3 (30); 1094#ifdef CONFIG_MMU 1095sw_r31: SWREG_TO_R3_V (31); 1096#else 1097sw_r31: SWREG_TO_R3 (31); 1098#endif 1099 1100#ifdef CONFIG_MMU 1101lw_table_vm: 1102lw_r0_vm: R3_TO_LWREG_VM (0); 1103lw_r1_vm: R3_TO_LWREG_VM_V (1); 1104lw_r2_vm: R3_TO_LWREG_VM_V (2); 1105lw_r3_vm: R3_TO_LWREG_VM_V (3); 1106lw_r4_vm: R3_TO_LWREG_VM_V (4); 1107lw_r5_vm: R3_TO_LWREG_VM_V (5); 1108lw_r6_vm: R3_TO_LWREG_VM_V (6); 1109lw_r7_vm: R3_TO_LWREG_VM_V (7); 1110lw_r8_vm: R3_TO_LWREG_VM_V (8); 1111lw_r9_vm: R3_TO_LWREG_VM_V (9); 1112lw_r10_vm: R3_TO_LWREG_VM_V (10); 1113lw_r11_vm: R3_TO_LWREG_VM_V (11); 1114lw_r12_vm: R3_TO_LWREG_VM_V (12); 1115lw_r13_vm: R3_TO_LWREG_VM_V (13); 1116lw_r14_vm: R3_TO_LWREG_VM (14); 1117lw_r15_vm: R3_TO_LWREG_VM_V (15); 1118lw_r16_vm: R3_TO_LWREG_VM (16); 1119lw_r17_vm: R3_TO_LWREG_VM_V (17); 1120lw_r18_vm: R3_TO_LWREG_VM_V (18); 1121lw_r19_vm: R3_TO_LWREG_VM (19); 1122lw_r20_vm: R3_TO_LWREG_VM (20); 1123lw_r21_vm: R3_TO_LWREG_VM (21); 1124lw_r22_vm: R3_TO_LWREG_VM (22); 1125lw_r23_vm: R3_TO_LWREG_VM (23); 1126lw_r24_vm: R3_TO_LWREG_VM (24); 1127lw_r25_vm: R3_TO_LWREG_VM (25); 1128lw_r26_vm: R3_TO_LWREG_VM (26); 1129lw_r27_vm: R3_TO_LWREG_VM (27); 1130lw_r28_vm: R3_TO_LWREG_VM (28); 1131lw_r29_vm: R3_TO_LWREG_VM (29); 1132lw_r30_vm: R3_TO_LWREG_VM (30); 1133lw_r31_vm: R3_TO_LWREG_VM_V (31); 1134 1135sw_table_vm: 1136sw_r0_vm: SWREG_TO_R3_VM (0); 1137sw_r1_vm: SWREG_TO_R3_VM_V (1); 1138sw_r2_vm: SWREG_TO_R3_VM_V (2); 1139sw_r3_vm: SWREG_TO_R3_VM_V (3); 1140sw_r4_vm: SWREG_TO_R3_VM_V (4); 1141sw_r5_vm: SWREG_TO_R3_VM_V (5); 1142sw_r6_vm: SWREG_TO_R3_VM_V (6); 1143sw_r7_vm: SWREG_TO_R3_VM_V (7); 1144sw_r8_vm: SWREG_TO_R3_VM_V (8); 1145sw_r9_vm: SWREG_TO_R3_VM_V (9); 1146sw_r10_vm: SWREG_TO_R3_VM_V (10); 1147sw_r11_vm: SWREG_TO_R3_VM_V (11); 1148sw_r12_vm: SWREG_TO_R3_VM_V (12); 1149sw_r13_vm: SWREG_TO_R3_VM_V (13); 1150sw_r14_vm: SWREG_TO_R3_VM (14); 1151sw_r15_vm: SWREG_TO_R3_VM_V (15); 1152sw_r16_vm: SWREG_TO_R3_VM (16); 1153sw_r17_vm: SWREG_TO_R3_VM_V (17); 1154sw_r18_vm: SWREG_TO_R3_VM_V (18); 1155sw_r19_vm: SWREG_TO_R3_VM (19); 1156sw_r20_vm: SWREG_TO_R3_VM (20); 1157sw_r21_vm: SWREG_TO_R3_VM (21); 1158sw_r22_vm: SWREG_TO_R3_VM (22); 1159sw_r23_vm: SWREG_TO_R3_VM (23); 1160sw_r24_vm: SWREG_TO_R3_VM (24); 1161sw_r25_vm: SWREG_TO_R3_VM (25); 1162sw_r26_vm: SWREG_TO_R3_VM (26); 1163sw_r27_vm: SWREG_TO_R3_VM (27); 1164sw_r28_vm: SWREG_TO_R3_VM (28); 1165sw_r29_vm: SWREG_TO_R3_VM (29); 1166sw_r30_vm: SWREG_TO_R3_VM (30); 1167sw_r31_vm: SWREG_TO_R3_VM_V (31); 1168#endif /* CONFIG_MMU */ 1169 1170/* Temporary data structures used in the handler */ 1171.section .data 1172.align 4 1173ex_tmp_data_loc_0: 1174 .byte 0 1175ex_tmp_data_loc_1: 1176 .byte 0 1177ex_tmp_data_loc_2: 1178 .byte 0 1179ex_tmp_data_loc_3: 1180 .byte 0 1181ex_reg_op: 1182 .byte 0 1183