1/*
2 * Exception handling for Microblaze
3 *
4 * Rewriten interrupt handling
5 *
6 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
7 * Copyright (C) 2008-2009 PetaLogix
8 *
9 * uClinux customisation (C) 2005 John Williams
10 *
11 * MMU code derived from arch/ppc/kernel/head_4xx.S:
12 *	Copyright (C) 1995-1996 Gary Thomas <gdt@linuxppc.org>
13 *		Initial PowerPC version.
14 *	Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
15 *		Rewritten for PReP
16 *	Copyright (C) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
17 *		Low-level exception handers, MMU support, and rewrite.
18 *	Copyright (C) 1997 Dan Malek <dmalek@jlc.net>
19 *		PowerPC 8xx modifications.
20 *	Copyright (C) 1998-1999 TiVo, Inc.
21 *		PowerPC 403GCX modifications.
22 *	Copyright (C) 1999 Grant Erickson <grant@lcse.umn.edu>
23 *		PowerPC 403GCX/405GP modifications.
24 *	Copyright 2000 MontaVista Software Inc.
25 *		PPC405 modifications
26 *	PowerPC 403GCX/405GP modifications.
27 *		Author: MontaVista Software, Inc.
28 *		frank_rowand@mvista.com or source@mvista.com
29 *		debbie_chu@mvista.com
30 *
31 * Original code
32 * Copyright (C) 2004 Xilinx, Inc.
33 *
34 * This program is free software; you can redistribute it and/or modify it
35 * under the terms of the GNU General Public License version 2 as published
36 * by the Free Software Foundation.
37 */
38
39/*
40 * Here are the handlers which don't require enabling translation
41 * and calling other kernel code thus we can keep their design very simple
42 * and do all processing in real mode. All what they need is a valid current
43 * (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44 * This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45 * these registers are saved/restored
46 * The handlers which require translation are in entry.S --KAA
47 *
48 * Microblaze HW Exception Handler
49 * - Non self-modifying exception handler for the following exception conditions
50 *   - Unalignment
51 *   - Instruction bus error
52 *   - Data bus error
53 *   - Illegal instruction opcode
54 *   - Divide-by-zero
55 *
56 *   - Privileged instruction exception (MMU)
57 *   - Data storage exception (MMU)
58 *   - Instruction storage exception (MMU)
59 *   - Data TLB miss exception (MMU)
60 *   - Instruction TLB miss exception (MMU)
61 *
62 * Note we disable interrupts during exception handling, otherwise we will
63 * possibly get multiple re-entrancy if interrupt handles themselves cause
64 * exceptions. JW
65 */
66
67#include <asm/exceptions.h>
68#include <asm/unistd.h>
69#include <asm/page.h>
70
71#include <asm/entry.h>
72#include <asm/current.h>
73#include <linux/linkage.h>
74
75#include <asm/mmu.h>
76#include <asm/pgtable.h>
77#include <asm/signal.h>
78#include <asm/asm-offsets.h>
79
80/* Helpful Macros */
81#define NUM_TO_REG(num)		r ## num
82
83#ifdef CONFIG_MMU
84	#define RESTORE_STATE			\
85		lwi	r5, r1, 0;		\
86		mts	rmsr, r5;		\
87		nop;				\
88		lwi	r3, r1, PT_R3;		\
89		lwi	r4, r1, PT_R4;		\
90		lwi	r5, r1, PT_R5;		\
91		lwi	r6, r1, PT_R6;		\
92		lwi	r11, r1, PT_R11;	\
93		lwi	r31, r1, PT_R31;	\
94		lwi	r1, r0, TOPHYS(r0_ram + 0);
95#endif /* CONFIG_MMU */
96
97#define LWREG_NOP			\
98	bri	ex_handler_unhandled;	\
99	nop;
100
101#define SWREG_NOP			\
102	bri	ex_handler_unhandled;	\
103	nop;
104
105/* FIXME this is weird - for noMMU kernel is not possible to use brid
106 * instruction which can shorten executed time
107 */
108
109/* r3 is the source */
110#define R3_TO_LWREG_V(regnum)				\
111	swi	r3, r1, 4 * regnum;				\
112	bri	ex_handler_done;
113
114/* r3 is the source */
115#define R3_TO_LWREG(regnum)				\
116	or	NUM_TO_REG (regnum), r0, r3;		\
117	bri	ex_handler_done;
118
119/* r3 is the target */
120#define SWREG_TO_R3_V(regnum)				\
121	lwi	r3, r1, 4 * regnum;				\
122	bri	ex_sw_tail;
123
124/* r3 is the target */
125#define SWREG_TO_R3(regnum)				\
126	or	r3, r0, NUM_TO_REG (regnum);		\
127	bri	ex_sw_tail;
128
129#ifdef CONFIG_MMU
130	#define R3_TO_LWREG_VM_V(regnum)		\
131		brid	ex_lw_end_vm;			\
132		swi	r3, r7, 4 * regnum;
133
134	#define R3_TO_LWREG_VM(regnum)			\
135		brid	ex_lw_end_vm;			\
136		or	NUM_TO_REG (regnum), r0, r3;
137
138	#define SWREG_TO_R3_VM_V(regnum)		\
139		brid	ex_sw_tail_vm;			\
140		lwi	r3, r7, 4 * regnum;
141
142	#define SWREG_TO_R3_VM(regnum)			\
143		brid	ex_sw_tail_vm;			\
144		or	r3, r0, NUM_TO_REG (regnum);
145
146	/* Shift right instruction depending on available configuration */
147	#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
148	#define BSRLI(rD, rA, imm)	\
149		bsrli rD, rA, imm
150	#else
151	#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
152	/* Only the used shift constants defined here - add more if needed */
153	#define BSRLI2(rD, rA)				\
154		srl rD, rA;		/* << 1 */	\
155		srl rD, rD;		/* << 2 */
156	#define BSRLI10(rD, rA)				\
157		srl rD, rA;		/* << 1 */	\
158		srl rD, rD;		/* << 2 */	\
159		srl rD, rD;		/* << 3 */	\
160		srl rD, rD;		/* << 4 */	\
161		srl rD, rD;		/* << 5 */	\
162		srl rD, rD;		/* << 6 */	\
163		srl rD, rD;		/* << 7 */	\
164		srl rD, rD;		/* << 8 */	\
165		srl rD, rD;		/* << 9 */	\
166		srl rD, rD		/* << 10 */
167	#define BSRLI20(rD, rA)		\
168		BSRLI10(rD, rA);	\
169		BSRLI10(rD, rD)
170	#endif
171#endif /* CONFIG_MMU */
172
173.extern other_exception_handler /* Defined in exception.c */
174
175/*
176 * hw_exception_handler - Handler for exceptions
177 *
178 * Exception handler notes:
179 * - Handles all exceptions
180 * - Does not handle unaligned exceptions during load into r17, r1, r0.
181 * - Does not handle unaligned exceptions during store from r17 (cannot be
182 *   done) and r1 (slows down common case)
183 *
184 *  Relevant register structures
185 *
186 *  EAR - |----|----|----|----|----|----|----|----|
187 *      - <  ##   32 bit faulting address     ##  >
188 *
189 *  ESR - |----|----|----|----|----| - | - |-----|-----|
190 *      -                            W   S   REG   EXC
191 *
192 *
193 * STACK FRAME STRUCTURE (for NO_MMU)
194 * ---------------------------------
195 *
196 *      +-------------+         + 0
197 *      |     MSR     |
198 *      +-------------+         + 4
199 *      |     r1      |
200 *      |      .      |
201 *      |      .      |
202 *      |      .      |
203 *      |      .      |
204 *      |     r18     |
205 *      +-------------+         + 76
206 *      |      .      |
207 *      |      .      |
208 *
209 * NO_MMU kernel use the same r0_ram pointed space - look to vmlinux.lds.S
210 * which is used for storing register values - old style was, that value were
211 * stored in stack but in case of failure you lost information about register.
212 * Currently you can see register value in memory in specific place.
213 * In compare to with previous solution the speed should be the same.
214 *
215 * MMU exception handler has different handling compare to no MMU kernel.
216 * Exception handler use jump table for directing of what happen. For MMU kernel
217 * is this approach better because MMU relate exception are handled by asm code
218 * in this file. In compare to with MMU expect of unaligned exception
219 * is everything handled by C code.
220 */
221
222/*
223 * every of these handlers is entered having R3/4/5/6/11/current saved on stack
224 * and clobbered so care should be taken to restore them if someone is going to
225 * return from exception
226 */
227
228/* wrappers to restore state before coming to entry.S */
229
230#ifdef CONFIG_MMU
231.section .rodata
232.align 4
233_MB_HW_ExceptionVectorTable:
234/*  0 - Undefined */
235	.long	TOPHYS(ex_handler_unhandled)
236/*  1 - Unaligned data access exception */
237	.long	TOPHYS(handle_unaligned_ex)
238/*  2 - Illegal op-code exception */
239	.long	TOPHYS(full_exception_trapw)
240/*  3 - Instruction bus error exception */
241	.long	TOPHYS(full_exception_trapw)
242/*  4 - Data bus error exception */
243	.long	TOPHYS(full_exception_trapw)
244/*  5 - Divide by zero exception */
245	.long	TOPHYS(full_exception_trapw)
246/*  6 - Floating point unit exception */
247	.long	TOPHYS(full_exception_trapw)
248/*  7 - Privileged instruction exception */
249	.long	TOPHYS(full_exception_trapw)
250/*  8 - 15 - Undefined */
251	.long	TOPHYS(ex_handler_unhandled)
252	.long	TOPHYS(ex_handler_unhandled)
253	.long	TOPHYS(ex_handler_unhandled)
254	.long	TOPHYS(ex_handler_unhandled)
255	.long	TOPHYS(ex_handler_unhandled)
256	.long	TOPHYS(ex_handler_unhandled)
257	.long	TOPHYS(ex_handler_unhandled)
258	.long	TOPHYS(ex_handler_unhandled)
259/* 16 - Data storage exception */
260	.long	TOPHYS(handle_data_storage_exception)
261/* 17 - Instruction storage exception */
262	.long	TOPHYS(handle_instruction_storage_exception)
263/* 18 - Data TLB miss exception */
264	.long	TOPHYS(handle_data_tlb_miss_exception)
265/* 19 - Instruction TLB miss exception */
266	.long	TOPHYS(handle_instruction_tlb_miss_exception)
267/* 20 - 31 - Undefined */
268	.long	TOPHYS(ex_handler_unhandled)
269	.long	TOPHYS(ex_handler_unhandled)
270	.long	TOPHYS(ex_handler_unhandled)
271	.long	TOPHYS(ex_handler_unhandled)
272	.long	TOPHYS(ex_handler_unhandled)
273	.long	TOPHYS(ex_handler_unhandled)
274	.long	TOPHYS(ex_handler_unhandled)
275	.long	TOPHYS(ex_handler_unhandled)
276	.long	TOPHYS(ex_handler_unhandled)
277	.long	TOPHYS(ex_handler_unhandled)
278	.long	TOPHYS(ex_handler_unhandled)
279	.long	TOPHYS(ex_handler_unhandled)
280#endif
281
282.global _hw_exception_handler
283.section .text
284.align 4
285.ent _hw_exception_handler
286_hw_exception_handler:
287#ifndef CONFIG_MMU
288	addik	r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
289#else
290	swi	r1, r0, TOPHYS(r0_ram + 0); /* GET_SP */
291	/* Save date to kernel memory. Here is the problem
292	 * when you came from user space */
293	ori	r1, r0, TOPHYS(r0_ram + 28);
294#endif
295	swi	r3, r1, PT_R3
296	swi	r4, r1, PT_R4
297	swi	r5, r1, PT_R5
298	swi	r6, r1, PT_R6
299
300#ifdef CONFIG_MMU
301	swi	r11, r1, PT_R11
302	swi	r31, r1, PT_R31
303	lwi	r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
304#endif
305
306	mfs	r5, rmsr;
307	nop
308	swi	r5, r1, 0;
309	mfs	r4, resr
310	nop
311	mfs	r3, rear;
312	nop
313
314#ifndef CONFIG_MMU
315	andi	r5, r4, 0x1000;		/* Check ESR[DS] */
316	beqi	r5, not_in_delay_slot;	/* Branch if ESR[DS] not set */
317	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
318	nop
319not_in_delay_slot:
320	swi	r17, r1, PT_R17
321#endif
322
323	andi	r5, r4, 0x1F;		/* Extract ESR[EXC] */
324
325#ifdef CONFIG_MMU
326	/* Calculate exception vector offset = r5 << 2 */
327	addk	r6, r5, r5; /* << 1 */
328	addk	r6, r6, r6; /* << 2 */
329
330#ifdef DEBUG
331/* counting which exception happen */
332	lwi	r5, r0, 0x200 + TOPHYS(r0_ram)
333	addi	r5, r5, 1
334	swi	r5, r0, 0x200 + TOPHYS(r0_ram)
335	lwi	r5, r6, 0x200 + TOPHYS(r0_ram)
336	addi	r5, r5, 1
337	swi	r5, r6, 0x200 + TOPHYS(r0_ram)
338#endif
339/* end */
340	/* Load the HW Exception vector */
341	lwi	r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
342	bra	r6
343
344full_exception_trapw:
345	RESTORE_STATE
346	bri	full_exception_trap
347#else
348	/* Exceptions enabled here. This will allow nested exceptions */
349	mfs	r6, rmsr;
350	nop
351	swi	r6, r1, 0; /* RMSR_OFFSET */
352	ori	r6, r6, 0x100; /* Turn ON the EE bit */
353	andi	r6, r6, ~2; /* Disable interrupts */
354	mts	rmsr, r6;
355	nop
356
357	xori	r6, r5, 1; /* 00001 = Unaligned Exception */
358	/* Jump to unalignment exception handler */
359	beqi	r6, handle_unaligned_ex;
360
361handle_other_ex: /* Handle Other exceptions here */
362	/* Save other volatiles before we make procedure calls below */
363	swi	r7, r1, PT_R7
364	swi	r8, r1, PT_R8
365	swi	r9, r1, PT_R9
366	swi	r10, r1, PT_R10
367	swi	r11, r1, PT_R11
368	swi	r12, r1, PT_R12
369	swi	r14, r1, PT_R14
370	swi	r15, r1, PT_R15
371	swi	r18, r1, PT_R18
372
373	or	r5, r1, r0
374	andi	r6, r4, 0x1F; /* Load ESR[EC] */
375	lwi	r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
376	swi	r7, r1, PT_MODE
377	mfs	r7, rfsr
378	nop
379	addk	r8, r17, r0; /* Load exception address */
380	bralid	r15, full_exception; /* Branch to the handler */
381	nop;
382	mts	rfsr, r0;	/* Clear sticky fsr */
383	nop
384
385	/*
386	 * Trigger execution of the signal handler by enabling
387	 * interrupts and calling an invalid syscall.
388	 */
389	mfs	r5, rmsr;
390	nop
391	ori	r5, r5, 2;
392	mts	rmsr, r5; /* enable interrupt */
393	nop
394	addi	r12, r0, __NR_syscalls;
395	brki	r14, 0x08;
396	mfs	r5, rmsr; /* disable interrupt */
397	nop
398	andi	r5, r5, ~2;
399	mts	rmsr, r5;
400	nop
401
402	lwi	r7, r1, PT_R7
403	lwi	r8, r1, PT_R8
404	lwi	r9, r1, PT_R9
405	lwi	r10, r1, PT_R10
406	lwi	r11, r1, PT_R11
407	lwi	r12, r1, PT_R12
408	lwi	r14, r1, PT_R14
409	lwi	r15, r1, PT_R15
410	lwi	r18, r1, PT_R18
411
412	bri	ex_handler_done; /* Complete exception handling */
413#endif
414
415/* 0x01 - Unaligned data access exception
416 * This occurs when a word access is not aligned on a word boundary,
417 * or when a 16-bit access is not aligned on a 16-bit boundary.
418 * This handler perform the access, and returns, except for MMU when
419 * the unaligned address is last on a 4k page or the physical address is
420 * not found in the page table, in which case unaligned_data_trap is called.
421 */
422handle_unaligned_ex:
423	/* Working registers already saved: R3, R4, R5, R6
424	 *  R4 = ESR
425	 *  R3 = EAR
426	 */
427#ifdef CONFIG_MMU
428	andi	r6, r4, 0x1000			/* Check ESR[DS] */
429	beqi	r6, _no_delayslot		/* Branch if ESR[DS] not set */
430	mfs	r17, rbtr;	/* ESR[DS] set - return address in BTR */
431	nop
432_no_delayslot:
433	/* jump to high level unaligned handler */
434	RESTORE_STATE;
435	bri	unaligned_data_trap
436#endif
437	andi	r6, r4, 0x3E0; /* Mask and extract the register operand */
438	srl	r6, r6; /* r6 >> 5 */
439	srl	r6, r6;
440	srl	r6, r6;
441	srl	r6, r6;
442	srl	r6, r6;
443	/* Store the register operand in a temporary location */
444	sbi	r6, r0, TOPHYS(ex_reg_op);
445
446	andi	r6, r4, 0x400; /* Extract ESR[S] */
447	bnei	r6, ex_sw;
448ex_lw:
449	andi	r6, r4, 0x800; /* Extract ESR[W] */
450	beqi	r6, ex_lhw;
451	lbui	r5, r3, 0; /* Exception address in r3 */
452	/* Load a word, byte-by-byte from destination address
453		and save it in tmp space */
454	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
455	lbui	r5, r3, 1;
456	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
457	lbui	r5, r3, 2;
458	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_2);
459	lbui	r5, r3, 3;
460	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_3);
461	/* Get the destination register value into r4 */
462	lwi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
463	bri	ex_lw_tail;
464ex_lhw:
465	lbui	r5, r3, 0; /* Exception address in r3 */
466	/* Load a half-word, byte-by-byte from destination
467		address and save it in tmp space */
468	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_0);
469	lbui	r5, r3, 1;
470	sbi	r5, r0, TOPHYS(ex_tmp_data_loc_1);
471	/* Get the destination register value into r4 */
472	lhui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
473ex_lw_tail:
474	/* Get the destination register number into r5 */
475	lbui	r5, r0, TOPHYS(ex_reg_op);
476	/* Form load_word jump table offset (lw_table + (8 * regnum)) */
477	la	r6, r0, TOPHYS(lw_table);
478	addk	r5, r5, r5;
479	addk	r5, r5, r5;
480	addk	r5, r5, r5;
481	addk	r5, r5, r6;
482	bra	r5;
483ex_lw_end: /* Exception handling of load word, ends */
484ex_sw:
485	/* Get the destination register number into r5 */
486	lbui	r5, r0, TOPHYS(ex_reg_op);
487	/* Form store_word jump table offset (sw_table + (8 * regnum)) */
488	la	r6, r0, TOPHYS(sw_table);
489	add	r5, r5, r5;
490	add	r5, r5, r5;
491	add	r5, r5, r5;
492	add	r5, r5, r6;
493	bra	r5;
494ex_sw_tail:
495	mfs	r6, resr;
496	nop
497	andi	r6, r6, 0x800; /* Extract ESR[W] */
498	beqi	r6, ex_shw;
499	/* Get the word - delay slot */
500	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
501	/* Store the word, byte-by-byte into destination address */
502	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_0);
503	sbi	r4, r3, 0;
504	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_1);
505	sbi	r4, r3, 1;
506	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
507	sbi	r4, r3, 2;
508	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
509	sbi	r4, r3, 3;
510	bri	ex_handler_done;
511
512ex_shw:
513	/* Store the lower half-word, byte-by-byte into destination address */
514	swi	r4, r0, TOPHYS(ex_tmp_data_loc_0);
515	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_2);
516	sbi	r4, r3, 0;
517	lbui	r4, r0, TOPHYS(ex_tmp_data_loc_3);
518	sbi	r4, r3, 1;
519ex_sw_end: /* Exception handling of store word, ends. */
520
521ex_handler_done:
522#ifndef CONFIG_MMU
523	lwi	r5, r1, 0 /* RMSR */
524	mts	rmsr, r5
525	nop
526	lwi	r3, r1, PT_R3
527	lwi	r4, r1, PT_R4
528	lwi	r5, r1, PT_R5
529	lwi	r6, r1, PT_R6
530	lwi	r17, r1, PT_R17
531
532	rted	r17, 0
533	addik	r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
534#else
535	RESTORE_STATE;
536	rted	r17, 0
537	nop
538#endif
539
540#ifdef CONFIG_MMU
541	/* Exception vector entry code. This code runs with address translation
542	 * turned off (i.e. using physical addresses). */
543
544	/* Exception vectors. */
545
546	/* 0x10 - Data Storage Exception
547	 * This happens for just a few reasons. U0 set (but we don't do that),
548	 * or zone protection fault (user violation, write to protected page).
549	 * If this is just an update of modified status, we do that quickly
550	 * and exit. Otherwise, we call heavyweight functions to do the work.
551	 */
552	handle_data_storage_exception:
553		/* Working registers already saved: R3, R4, R5, R6
554		 * R3 = ESR
555		 */
556		mfs	r11, rpid
557		nop
558		/* If we are faulting a kernel address, we have to use the
559		 * kernel page tables.
560		 */
561		ori	r5, r0, CONFIG_KERNEL_START
562		cmpu	r5, r3, r5
563		bgti	r5, ex3
564		/* First, check if it was a zone fault (which means a user
565		 * tried to access a kernel or read-protected page - always
566		 * a SEGV). All other faults here must be stores, so no
567		 * need to check ESR_S as well. */
568		andi	r4, r4, 0x800		/* ESR_Z - zone protection */
569		bnei	r4, ex2
570
571		ori	r4, r0, swapper_pg_dir
572		mts	rpid, r0		/* TLB will have 0 TID */
573		nop
574		bri	ex4
575
576		/* Get the PGD for the current thread. */
577	ex3:
578		/* First, check if it was a zone fault (which means a user
579		 * tried to access a kernel or read-protected page - always
580		 * a SEGV). All other faults here must be stores, so no
581		 * need to check ESR_S as well. */
582		andi	r4, r4, 0x800		/* ESR_Z */
583		bnei	r4, ex2
584		/* get current task address */
585		addi	r4 ,CURRENT_TASK, TOPHYS(0);
586		lwi	r4, r4, TASK_THREAD+PGDIR
587	ex4:
588		tophys(r4,r4)
589		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
590		andi	r5, r5, 0xffc
591/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
592		or	r4, r4, r5
593		lwi	r4, r4, 0		/* Get L1 entry */
594		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
595		beqi	r5, ex2			/* Bail if no table */
596
597		tophys(r5,r5)
598		BSRLI(r6,r3,10)			/* Compute PTE address */
599		andi	r6, r6, 0xffc
600		andi	r5, r5, 0xfffff003
601		or	r5, r5, r6
602		lwi	r4, r5, 0		/* Get Linux PTE */
603
604		andi	r6, r4, _PAGE_RW	/* Is it writeable? */
605		beqi	r6, ex2			/* Bail if not */
606
607		/* Update 'changed' */
608		ori	r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
609		swi	r4, r5, 0		/* Update Linux page table */
610
611		/* Most of the Linux PTE is ready to load into the TLB LO.
612		 * We set ZSEL, where only the LS-bit determines user access.
613		 * We set execute, because we don't have the granularity to
614		 * properly set this at the page level (Linux problem).
615		 * If shared is set, we cause a zero PID->TID load.
616		 * Many of these bits are software only. Bits we don't set
617		 * here we (properly should) assume have the appropriate value.
618		 */
619		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
620		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
621
622		/* find the TLB index that caused the fault. It has to be here*/
623		mts	rtlbsx, r3
624		nop
625		mfs	r5, rtlbx		/* DEBUG: TBD */
626		nop
627		mts	rtlblo, r4		/* Load TLB LO */
628		nop
629						/* Will sync shadow TLBs */
630
631		/* Done...restore registers and get out of here. */
632		mts	rpid, r11
633		nop
634		bri 4
635
636		RESTORE_STATE;
637		rted	r17, 0
638		nop
639	ex2:
640		/* The bailout. Restore registers to pre-exception conditions
641		 * and call the heavyweights to help us out. */
642		mts	rpid, r11
643		nop
644		bri 4
645		RESTORE_STATE;
646		bri	page_fault_data_trap
647
648
649	/* 0x11 - Instruction Storage Exception
650	 * This is caused by a fetch from non-execute or guarded pages. */
651	handle_instruction_storage_exception:
652		/* Working registers already saved: R3, R4, R5, R6
653		 * R3 = ESR
654		 */
655
656		RESTORE_STATE;
657		bri	page_fault_instr_trap
658
659	/* 0x12 - Data TLB Miss Exception
660	 * As the name implies, translation is not in the MMU, so search the
661	 * page tables and fix it. The only purpose of this function is to
662	 * load TLB entries from the page table if they exist.
663	 */
664	handle_data_tlb_miss_exception:
665		/* Working registers already saved: R3, R4, R5, R6
666		 * R3 = EAR, R4 = ESR
667		 */
668		mfs	r11, rpid
669		nop
670
671		/* If we are faulting a kernel address, we have to use the
672		 * kernel page tables. */
673		ori	r6, r0, CONFIG_KERNEL_START
674		cmpu	r4, r3, r6
675		bgti	r4, ex5
676		ori	r4, r0, swapper_pg_dir
677		mts	rpid, r0		/* TLB will have 0 TID */
678		nop
679		bri	ex6
680
681		/* Get the PGD for the current thread. */
682	ex5:
683		/* get current task address */
684		addi	r4 ,CURRENT_TASK, TOPHYS(0);
685		lwi	r4, r4, TASK_THREAD+PGDIR
686	ex6:
687		tophys(r4,r4)
688		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
689		andi	r5, r5, 0xffc
690/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
691		or	r4, r4, r5
692		lwi	r4, r4, 0		/* Get L1 entry */
693		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
694		beqi	r5, ex7			/* Bail if no table */
695
696		tophys(r5,r5)
697		BSRLI(r6,r3,10)			/* Compute PTE address */
698		andi	r6, r6, 0xffc
699		andi	r5, r5, 0xfffff003
700		or	r5, r5, r6
701		lwi	r4, r5, 0		/* Get Linux PTE */
702
703		andi	r6, r4, _PAGE_PRESENT
704		beqi	r6, ex7
705
706		ori	r4, r4, _PAGE_ACCESSED
707		swi	r4, r5, 0
708
709		/* Most of the Linux PTE is ready to load into the TLB LO.
710		 * We set ZSEL, where only the LS-bit determines user access.
711		 * We set execute, because we don't have the granularity to
712		 * properly set this at the page level (Linux problem).
713		 * If shared is set, we cause a zero PID->TID load.
714		 * Many of these bits are software only. Bits we don't set
715		 * here we (properly should) assume have the appropriate value.
716		 */
717		brid	finish_tlb_load
718		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
719	ex7:
720		/* The bailout. Restore registers to pre-exception conditions
721		 * and call the heavyweights to help us out.
722		 */
723		mts	rpid, r11
724		nop
725		bri	4
726		RESTORE_STATE;
727		bri	page_fault_data_trap
728
729	/* 0x13 - Instruction TLB Miss Exception
730	 * Nearly the same as above, except we get our information from
731	 * different registers and bailout to a different point.
732	 */
733	handle_instruction_tlb_miss_exception:
734		/* Working registers already saved: R3, R4, R5, R6
735		 *  R3 = ESR
736		 */
737		mfs	r11, rpid
738		nop
739
740		/* If we are faulting a kernel address, we have to use the
741		 * kernel page tables.
742		 */
743		ori	r4, r0, CONFIG_KERNEL_START
744		cmpu	r4, r3, r4
745		bgti	r4, ex8
746		ori	r4, r0, swapper_pg_dir
747		mts	rpid, r0		/* TLB will have 0 TID */
748		nop
749		bri	ex9
750
751		/* Get the PGD for the current thread. */
752	ex8:
753		/* get current task address */
754		addi	r4 ,CURRENT_TASK, TOPHYS(0);
755		lwi	r4, r4, TASK_THREAD+PGDIR
756	ex9:
757		tophys(r4,r4)
758		BSRLI(r5,r3,20)		/* Create L1 (pgdir/pmd) address */
759		andi	r5, r5, 0xffc
760/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
761		or	r4, r4, r5
762		lwi	r4, r4, 0		/* Get L1 entry */
763		andi	r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
764		beqi	r5, ex10		/* Bail if no table */
765
766		tophys(r5,r5)
767		BSRLI(r6,r3,10)			/* Compute PTE address */
768		andi	r6, r6, 0xffc
769		andi	r5, r5, 0xfffff003
770		or	r5, r5, r6
771		lwi	r4, r5, 0		/* Get Linux PTE */
772
773		andi	r6, r4, _PAGE_PRESENT
774		beqi	r6, ex10
775
776		ori	r4, r4, _PAGE_ACCESSED
777		swi	r4, r5, 0
778
779		/* Most of the Linux PTE is ready to load into the TLB LO.
780		 * We set ZSEL, where only the LS-bit determines user access.
781		 * We set execute, because we don't have the granularity to
782		 * properly set this at the page level (Linux problem).
783		 * If shared is set, we cause a zero PID->TID load.
784		 * Many of these bits are software only. Bits we don't set
785		 * here we (properly should) assume have the appropriate value.
786		 */
787		brid	finish_tlb_load
788		andni	r4, r4, 0x0ce2		/* Make sure 20, 21 are zero */
789	ex10:
790		/* The bailout. Restore registers to pre-exception conditions
791		 * and call the heavyweights to help us out.
792		 */
793		mts	rpid, r11
794		nop
795		bri 4
796		RESTORE_STATE;
797		bri	page_fault_instr_trap
798
799/* Both the instruction and data TLB miss get to this point to load the TLB.
800 *	r3 - EA of fault
801 *	r4 - TLB LO (info from Linux PTE)
802 *	r5, r6 - available to use
803 *	PID - loaded with proper value when we get here
804 *	Upon exit, we reload everything and RFI.
805 * A common place to load the TLB.
806 */
807	tlb_index:
808		.long	1 /* MS: storing last used tlb index */
809	finish_tlb_load:
810		/* MS: load the last used TLB index. */
811		lwi	r5, r0, TOPHYS(tlb_index)
812		addik	r5, r5, 1 /* MS: inc tlb_index -> use next one */
813
814/* MS: FIXME this is potential fault, because this is mask not count */
815		andi	r5, r5, (MICROBLAZE_TLB_SIZE-1)
816		ori	r6, r0, 1
817		cmp	r31, r5, r6
818		blti	r31, ex12
819		addik	r5, r6, 1
820	ex12:
821		/* MS: save back current TLB index */
822		swi	r5, r0, TOPHYS(tlb_index)
823
824		ori	r4, r4, _PAGE_HWEXEC	/* make it executable */
825		mts	rtlbx, r5		/* MS: save current TLB */
826		nop
827		mts	rtlblo,	r4		/* MS: save to TLB LO */
828		nop
829
830		/* Create EPN. This is the faulting address plus a static
831		 * set of bits. These are size, valid, E, U0, and ensure
832		 * bits 20 and 21 are zero.
833		 */
834		andi	r3, r3, 0xfffff000
835		ori	r3, r3, 0x0c0
836		mts	rtlbhi,	r3		/* Load TLB HI */
837		nop
838
839		/* Done...restore registers and get out of here. */
840		mts	rpid, r11
841		nop
842		bri 4
843		RESTORE_STATE;
844		rted	r17, 0
845		nop
846
847	/* extern void giveup_fpu(struct task_struct *prev)
848	 *
849	 * The MicroBlaze processor may have an FPU, so this should not just
850	 * return: TBD.
851	 */
852	.globl giveup_fpu;
853	.align 4;
854	giveup_fpu:
855		bralid	r15,0			/* TBD */
856		nop
857
858	/* At present, this routine just hangs. - extern void abort(void) */
859	.globl abort;
860	.align 4;
861	abort:
862		br	r0
863
864	.globl set_context;
865	.align 4;
866	set_context:
867		mts	rpid, r5	/* Shadow TLBs are automatically */
868		nop
869		bri	4		/* flushed by changing PID */
870		rtsd	r15,8
871		nop
872
873#endif
874.end _hw_exception_handler
875
876#ifdef CONFIG_MMU
877/* Unaligned data access exception last on a 4k page for MMU.
878 * When this is called, we are in virtual mode with exceptions enabled
879 * and registers 1-13,15,17,18 saved.
880 *
881 * R3 = ESR
882 * R4 = EAR
883 * R7 = pointer to saved registers (struct pt_regs *regs)
884 *
885 * This handler perform the access, and returns via ret_from_exc.
886 */
887.global _unaligned_data_exception
888.ent _unaligned_data_exception
889_unaligned_data_exception:
890	andi	r8, r3, 0x3E0;	/* Mask and extract the register operand */
891	BSRLI(r8,r8,2);		/* r8 >> 2 = register operand * 8 */
892	andi	r6, r3, 0x400;	/* Extract ESR[S] */
893	bneid	r6, ex_sw_vm;
894	andi	r6, r3, 0x800;	/* Extract ESR[W] - delay slot */
895ex_lw_vm:
896	beqid	r6, ex_lhw_vm;
897load1:	lbui	r5, r4, 0;	/* Exception address in r4 - delay slot */
898/* Load a word, byte-by-byte from destination address and save it in tmp space*/
899	la	r6, r0, ex_tmp_data_loc_0;
900	sbi	r5, r6, 0;
901load2:	lbui	r5, r4, 1;
902	sbi	r5, r6, 1;
903load3:	lbui	r5, r4, 2;
904	sbi	r5, r6, 2;
905load4:	lbui	r5, r4, 3;
906	sbi	r5, r6, 3;
907	brid	ex_lw_tail_vm;
908/* Get the destination register value into r3 - delay slot */
909	lwi	r3, r6, 0;
910ex_lhw_vm:
911	/* Load a half-word, byte-by-byte from destination address and
912	 * save it in tmp space */
913	la	r6, r0, ex_tmp_data_loc_0;
914	sbi	r5, r6, 0;
915load5:	lbui	r5, r4, 1;
916	sbi	r5, r6, 1;
917	lhui	r3, r6, 0;	/* Get the destination register value into r3 */
918ex_lw_tail_vm:
919	/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
920	addik	r5, r8, lw_table_vm;
921	bra	r5;
922ex_lw_end_vm:			/* Exception handling of load word, ends */
923	brai	ret_from_exc;
924ex_sw_vm:
925/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
926	addik	r5, r8, sw_table_vm;
927	bra	r5;
928ex_sw_tail_vm:
929	la	r5, r0, ex_tmp_data_loc_0;
930	beqid	r6, ex_shw_vm;
931	swi	r3, r5, 0;	/* Get the word - delay slot */
932	/* Store the word, byte-by-byte into destination address */
933	lbui	r3, r5, 0;
934store1:	sbi	r3, r4, 0;
935	lbui	r3, r5, 1;
936store2:	sbi	r3, r4, 1;
937	lbui	r3, r5, 2;
938store3:	sbi	r3, r4, 2;
939	lbui	r3, r5, 3;
940	brid	ret_from_exc;
941store4:	sbi	r3, r4, 3;	/* Delay slot */
942ex_shw_vm:
943	/* Store the lower half-word, byte-by-byte into destination address */
944#ifdef __MICROBLAZEEL__
945	lbui	r3, r5, 0;
946store5:	sbi	r3, r4, 0;
947	lbui	r3, r5, 1;
948	brid	ret_from_exc;
949store6:	sbi	r3, r4, 1;	/* Delay slot */
950#else
951	lbui	r3, r5, 2;
952store5:	sbi	r3, r4, 0;
953	lbui	r3, r5, 3;
954	brid	ret_from_exc;
955store6:	sbi	r3, r4, 1;	/* Delay slot */
956#endif
957
958ex_sw_end_vm:			/* Exception handling of store word, ends. */
959
960/* We have to prevent cases that get/put_user macros get unaligned pointer
961 * to bad page area. We have to find out which origin instruction caused it
962 * and called fixup for that origin instruction not instruction in unaligned
963 * handler */
964ex_unaligned_fixup:
965	ori	r5, r7, 0 /* setup pointer to pt_regs */
966	lwi	r6, r7, PT_PC; /* faulting address is one instruction above */
967	addik	r6, r6, -4 /* for finding proper fixup */
968	swi	r6, r7, PT_PC; /* a save back it to PT_PC */
969	addik	r7, r0, SIGSEGV
970	/* call bad_page_fault for finding aligned fixup, fixup address is saved
971	 * in PT_PC which is used as return address from exception */
972	la	r15, r0, ret_from_exc-8 /* setup return address */
973	brid	bad_page_fault
974	nop
975
976/* We prevent all load/store because it could failed any attempt to access */
977.section __ex_table,"a";
978	.word	load1,ex_unaligned_fixup;
979	.word	load2,ex_unaligned_fixup;
980	.word	load3,ex_unaligned_fixup;
981	.word	load4,ex_unaligned_fixup;
982	.word	load5,ex_unaligned_fixup;
983	.word	store1,ex_unaligned_fixup;
984	.word	store2,ex_unaligned_fixup;
985	.word	store3,ex_unaligned_fixup;
986	.word	store4,ex_unaligned_fixup;
987	.word	store5,ex_unaligned_fixup;
988	.word	store6,ex_unaligned_fixup;
989.previous;
990.end _unaligned_data_exception
991#endif /* CONFIG_MMU */
992
993.global ex_handler_unhandled
994ex_handler_unhandled:
995/* FIXME add handle function for unhandled exception - dump register */
996	bri 0
997
998/*
999 * hw_exception_handler Jump Table
1000 * - Contains code snippets for each register that caused the unalign exception
1001 * - Hence exception handler is NOT self-modifying
1002 * - Separate table for load exceptions and store exceptions.
1003 * - Each table is of size: (8 * 32) = 256 bytes
1004 */
1005
1006.section .text
1007.align 4
1008lw_table:
1009lw_r0:		R3_TO_LWREG	(0);
1010lw_r1:		LWREG_NOP;
1011lw_r2:		R3_TO_LWREG	(2);
1012lw_r3:		R3_TO_LWREG_V	(3);
1013lw_r4:		R3_TO_LWREG_V	(4);
1014lw_r5:		R3_TO_LWREG_V	(5);
1015lw_r6:		R3_TO_LWREG_V	(6);
1016lw_r7:		R3_TO_LWREG	(7);
1017lw_r8:		R3_TO_LWREG	(8);
1018lw_r9:		R3_TO_LWREG	(9);
1019lw_r10:		R3_TO_LWREG	(10);
1020lw_r11:		R3_TO_LWREG	(11);
1021lw_r12:		R3_TO_LWREG	(12);
1022lw_r13:		R3_TO_LWREG	(13);
1023lw_r14:		R3_TO_LWREG	(14);
1024lw_r15:		R3_TO_LWREG	(15);
1025lw_r16:		R3_TO_LWREG	(16);
1026lw_r17:		LWREG_NOP;
1027lw_r18:		R3_TO_LWREG	(18);
1028lw_r19:		R3_TO_LWREG	(19);
1029lw_r20:		R3_TO_LWREG	(20);
1030lw_r21:		R3_TO_LWREG	(21);
1031lw_r22:		R3_TO_LWREG	(22);
1032lw_r23:		R3_TO_LWREG	(23);
1033lw_r24:		R3_TO_LWREG	(24);
1034lw_r25:		R3_TO_LWREG	(25);
1035lw_r26:		R3_TO_LWREG	(26);
1036lw_r27:		R3_TO_LWREG	(27);
1037lw_r28:		R3_TO_LWREG	(28);
1038lw_r29:		R3_TO_LWREG	(29);
1039lw_r30:		R3_TO_LWREG	(30);
1040#ifdef CONFIG_MMU
1041lw_r31: 	R3_TO_LWREG_V	(31);
1042#else
1043lw_r31:		R3_TO_LWREG	(31);
1044#endif
1045
1046sw_table:
1047sw_r0:		SWREG_TO_R3	(0);
1048sw_r1:		SWREG_NOP;
1049sw_r2:		SWREG_TO_R3	(2);
1050sw_r3:		SWREG_TO_R3_V	(3);
1051sw_r4:		SWREG_TO_R3_V	(4);
1052sw_r5:		SWREG_TO_R3_V	(5);
1053sw_r6:		SWREG_TO_R3_V	(6);
1054sw_r7:		SWREG_TO_R3	(7);
1055sw_r8:		SWREG_TO_R3	(8);
1056sw_r9:		SWREG_TO_R3	(9);
1057sw_r10:		SWREG_TO_R3	(10);
1058sw_r11:		SWREG_TO_R3	(11);
1059sw_r12:		SWREG_TO_R3	(12);
1060sw_r13:		SWREG_TO_R3	(13);
1061sw_r14:		SWREG_TO_R3	(14);
1062sw_r15:		SWREG_TO_R3	(15);
1063sw_r16:		SWREG_TO_R3	(16);
1064sw_r17:		SWREG_NOP;
1065sw_r18:		SWREG_TO_R3	(18);
1066sw_r19:		SWREG_TO_R3	(19);
1067sw_r20:		SWREG_TO_R3	(20);
1068sw_r21:		SWREG_TO_R3	(21);
1069sw_r22:		SWREG_TO_R3	(22);
1070sw_r23:		SWREG_TO_R3	(23);
1071sw_r24:		SWREG_TO_R3	(24);
1072sw_r25:		SWREG_TO_R3	(25);
1073sw_r26:		SWREG_TO_R3	(26);
1074sw_r27:		SWREG_TO_R3	(27);
1075sw_r28:		SWREG_TO_R3	(28);
1076sw_r29:		SWREG_TO_R3	(29);
1077sw_r30:		SWREG_TO_R3	(30);
1078#ifdef CONFIG_MMU
1079sw_r31:		SWREG_TO_R3_V	(31);
1080#else
1081sw_r31:		SWREG_TO_R3	(31);
1082#endif
1083
1084#ifdef CONFIG_MMU
1085lw_table_vm:
1086lw_r0_vm:	R3_TO_LWREG_VM		(0);
1087lw_r1_vm:	R3_TO_LWREG_VM_V	(1);
1088lw_r2_vm:	R3_TO_LWREG_VM_V	(2);
1089lw_r3_vm:	R3_TO_LWREG_VM_V	(3);
1090lw_r4_vm:	R3_TO_LWREG_VM_V	(4);
1091lw_r5_vm:	R3_TO_LWREG_VM_V	(5);
1092lw_r6_vm:	R3_TO_LWREG_VM_V	(6);
1093lw_r7_vm:	R3_TO_LWREG_VM_V	(7);
1094lw_r8_vm:	R3_TO_LWREG_VM_V	(8);
1095lw_r9_vm:	R3_TO_LWREG_VM_V	(9);
1096lw_r10_vm:	R3_TO_LWREG_VM_V	(10);
1097lw_r11_vm:	R3_TO_LWREG_VM_V	(11);
1098lw_r12_vm:	R3_TO_LWREG_VM_V	(12);
1099lw_r13_vm:	R3_TO_LWREG_VM_V	(13);
1100lw_r14_vm:	R3_TO_LWREG_VM		(14);
1101lw_r15_vm:	R3_TO_LWREG_VM_V	(15);
1102lw_r16_vm:	R3_TO_LWREG_VM		(16);
1103lw_r17_vm:	R3_TO_LWREG_VM_V	(17);
1104lw_r18_vm:	R3_TO_LWREG_VM_V	(18);
1105lw_r19_vm:	R3_TO_LWREG_VM		(19);
1106lw_r20_vm:	R3_TO_LWREG_VM		(20);
1107lw_r21_vm:	R3_TO_LWREG_VM		(21);
1108lw_r22_vm:	R3_TO_LWREG_VM		(22);
1109lw_r23_vm:	R3_TO_LWREG_VM		(23);
1110lw_r24_vm:	R3_TO_LWREG_VM		(24);
1111lw_r25_vm:	R3_TO_LWREG_VM		(25);
1112lw_r26_vm:	R3_TO_LWREG_VM		(26);
1113lw_r27_vm:	R3_TO_LWREG_VM		(27);
1114lw_r28_vm:	R3_TO_LWREG_VM		(28);
1115lw_r29_vm:	R3_TO_LWREG_VM		(29);
1116lw_r30_vm:	R3_TO_LWREG_VM		(30);
1117lw_r31_vm:	R3_TO_LWREG_VM_V	(31);
1118
1119sw_table_vm:
1120sw_r0_vm:	SWREG_TO_R3_VM		(0);
1121sw_r1_vm:	SWREG_TO_R3_VM_V	(1);
1122sw_r2_vm:	SWREG_TO_R3_VM_V	(2);
1123sw_r3_vm:	SWREG_TO_R3_VM_V	(3);
1124sw_r4_vm:	SWREG_TO_R3_VM_V	(4);
1125sw_r5_vm:	SWREG_TO_R3_VM_V	(5);
1126sw_r6_vm:	SWREG_TO_R3_VM_V	(6);
1127sw_r7_vm:	SWREG_TO_R3_VM_V	(7);
1128sw_r8_vm:	SWREG_TO_R3_VM_V	(8);
1129sw_r9_vm:	SWREG_TO_R3_VM_V	(9);
1130sw_r10_vm:	SWREG_TO_R3_VM_V	(10);
1131sw_r11_vm:	SWREG_TO_R3_VM_V	(11);
1132sw_r12_vm:	SWREG_TO_R3_VM_V	(12);
1133sw_r13_vm:	SWREG_TO_R3_VM_V	(13);
1134sw_r14_vm:	SWREG_TO_R3_VM		(14);
1135sw_r15_vm:	SWREG_TO_R3_VM_V	(15);
1136sw_r16_vm:	SWREG_TO_R3_VM		(16);
1137sw_r17_vm:	SWREG_TO_R3_VM_V	(17);
1138sw_r18_vm:	SWREG_TO_R3_VM_V	(18);
1139sw_r19_vm:	SWREG_TO_R3_VM		(19);
1140sw_r20_vm:	SWREG_TO_R3_VM		(20);
1141sw_r21_vm:	SWREG_TO_R3_VM		(21);
1142sw_r22_vm:	SWREG_TO_R3_VM		(22);
1143sw_r23_vm:	SWREG_TO_R3_VM		(23);
1144sw_r24_vm:	SWREG_TO_R3_VM		(24);
1145sw_r25_vm:	SWREG_TO_R3_VM		(25);
1146sw_r26_vm:	SWREG_TO_R3_VM		(26);
1147sw_r27_vm:	SWREG_TO_R3_VM		(27);
1148sw_r28_vm:	SWREG_TO_R3_VM		(28);
1149sw_r29_vm:	SWREG_TO_R3_VM		(29);
1150sw_r30_vm:	SWREG_TO_R3_VM		(30);
1151sw_r31_vm:	SWREG_TO_R3_VM_V	(31);
1152#endif /* CONFIG_MMU */
1153
1154/* Temporary data structures used in the handler */
1155.section .data
1156.align 4
1157ex_tmp_data_loc_0:
1158	.byte 0
1159ex_tmp_data_loc_1:
1160	.byte 0
1161ex_tmp_data_loc_2:
1162	.byte 0
1163ex_tmp_data_loc_3:
1164	.byte 0
1165ex_reg_op:
1166	.byte 0
1167