xref: /openbmc/linux/arch/m68k/mm/motorola.c (revision ef97e774)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/arch/m68k/mm/motorola.c
4  *
5  * Routines specific to the Motorola MMU, originally from:
6  * linux/arch/m68k/init.c
7  * which are Copyright (C) 1995 Hamish Macdonald
8  *
9  * Moved 8/20/1999 Sam Creasey
10  */
11 
12 #include <linux/module.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/types.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/gfp.h>
23 
24 #include <asm/setup.h>
25 #include <linux/uaccess.h>
26 #include <asm/page.h>
27 #include <asm/pgalloc.h>
28 #include <asm/machdep.h>
29 #include <asm/io.h>
30 #ifdef CONFIG_ATARI
31 #include <asm/atari_stram.h>
32 #endif
33 #include <asm/sections.h>
34 
35 #undef DEBUG
36 
37 #ifndef mm_cachebits
38 /*
39  * Bits to add to page descriptors for "normal" caching mode.
40  * For 68020/030 this is 0.
41  * For 68040, this is _PAGE_CACHE040 (cachable, copyback)
42  */
43 unsigned long mm_cachebits;
44 EXPORT_SYMBOL(mm_cachebits);
45 #endif
46 
47 /* Prior to calling these routines, the page should have been flushed
48  * from both the cache and ATC, or the CPU might not notice that the
49  * cache setting for the page has been changed. -jskov
50  */
51 static inline void nocache_page(void *vaddr)
52 {
53 	unsigned long addr = (unsigned long)vaddr;
54 
55 	if (CPU_IS_040_OR_060) {
56 		pte_t *ptep = virt_to_kpte(addr);
57 
58 		*ptep = pte_mknocache(*ptep);
59 	}
60 }
61 
62 static inline void cache_page(void *vaddr)
63 {
64 	unsigned long addr = (unsigned long)vaddr;
65 
66 	if (CPU_IS_040_OR_060) {
67 		pte_t *ptep = virt_to_kpte(addr);
68 
69 		*ptep = pte_mkcache(*ptep);
70 	}
71 }
72 
73 /*
74  * Motorola 680x0 user's manual recommends using uncached memory for address
75  * translation tables.
76  *
77  * Seeing how the MMU can be external on (some of) these chips, that seems like
78  * a very important recommendation to follow. Provide some helpers to combat
79  * 'variation' amongst the users of this.
80  */
81 
82 void mmu_page_ctor(void *page)
83 {
84 	__flush_page_to_ram(page);
85 	flush_tlb_kernel_page(page);
86 	nocache_page(page);
87 }
88 
89 void mmu_page_dtor(void *page)
90 {
91 	cache_page(page);
92 }
93 
94 /* ++andreas: {get,free}_pointer_table rewritten to use unused fields from
95    struct page instead of separately kmalloced struct.  Stolen from
96    arch/sparc/mm/srmmu.c ... */
97 
98 typedef struct list_head ptable_desc;
99 
100 static struct list_head ptable_list[2] = {
101 	LIST_HEAD_INIT(ptable_list[0]),
102 	LIST_HEAD_INIT(ptable_list[1]),
103 };
104 
105 #define PD_PTABLE(page) ((ptable_desc *)&(virt_to_page(page)->lru))
106 #define PD_PAGE(ptable) (list_entry(ptable, struct page, lru))
107 #define PD_MARKBITS(dp) (*(unsigned int *)&PD_PAGE(dp)->index)
108 
109 static const int ptable_shift[2] = {
110 	7+2, /* PGD, PMD */
111 	6+2, /* PTE */
112 };
113 
114 #define ptable_size(type) (1U << ptable_shift[type])
115 #define ptable_mask(type) ((1U << (PAGE_SIZE / ptable_size(type))) - 1)
116 
117 void __init init_pointer_table(void *table, int type)
118 {
119 	ptable_desc *dp;
120 	unsigned long ptable = (unsigned long)table;
121 	unsigned long page = ptable & PAGE_MASK;
122 	unsigned int mask = 1U << ((ptable - page)/ptable_size(type));
123 
124 	dp = PD_PTABLE(page);
125 	if (!(PD_MARKBITS(dp) & mask)) {
126 		PD_MARKBITS(dp) = ptable_mask(type);
127 		list_add(dp, &ptable_list[type]);
128 	}
129 
130 	PD_MARKBITS(dp) &= ~mask;
131 	pr_debug("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp));
132 
133 	/* unreserve the page so it's possible to free that page */
134 	__ClearPageReserved(PD_PAGE(dp));
135 	init_page_count(PD_PAGE(dp));
136 
137 	return;
138 }
139 
140 void *get_pointer_table(int type)
141 {
142 	ptable_desc *dp = ptable_list[type].next;
143 	unsigned int mask = list_empty(&ptable_list[type]) ? 0 : PD_MARKBITS(dp);
144 	unsigned int tmp, off;
145 
146 	/*
147 	 * For a pointer table for a user process address space, a
148 	 * table is taken from a page allocated for the purpose.  Each
149 	 * page can hold 8 pointer tables.  The page is remapped in
150 	 * virtual address space to be noncacheable.
151 	 */
152 	if (mask == 0) {
153 		void *page;
154 		ptable_desc *new;
155 
156 		if (!(page = (void *)get_zeroed_page(GFP_KERNEL)))
157 			return NULL;
158 
159 		if (type == TABLE_PTE) {
160 			/*
161 			 * m68k doesn't have SPLIT_PTE_PTLOCKS for not having
162 			 * SMP.
163 			 */
164 			pgtable_pte_page_ctor(virt_to_page(page));
165 		}
166 
167 		mmu_page_ctor(page);
168 
169 		new = PD_PTABLE(page);
170 		PD_MARKBITS(new) = ptable_mask(type) - 1;
171 		list_add_tail(new, dp);
172 
173 		return (pmd_t *)page;
174 	}
175 
176 	for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += ptable_size(type))
177 		;
178 	PD_MARKBITS(dp) = mask & ~tmp;
179 	if (!PD_MARKBITS(dp)) {
180 		/* move to end of list */
181 		list_move_tail(dp, &ptable_list[type]);
182 	}
183 	return page_address(PD_PAGE(dp)) + off;
184 }
185 
186 int free_pointer_table(void *table, int type)
187 {
188 	ptable_desc *dp;
189 	unsigned long ptable = (unsigned long)table;
190 	unsigned long page = ptable & PAGE_MASK;
191 	unsigned int mask = 1U << ((ptable - page)/ptable_size(type));
192 
193 	dp = PD_PTABLE(page);
194 	if (PD_MARKBITS (dp) & mask)
195 		panic ("table already free!");
196 
197 	PD_MARKBITS (dp) |= mask;
198 
199 	if (PD_MARKBITS(dp) == ptable_mask(type)) {
200 		/* all tables in page are free, free page */
201 		list_del(dp);
202 		mmu_page_dtor((void *)page);
203 		if (type == TABLE_PTE)
204 			pgtable_pte_page_dtor(virt_to_page(page));
205 		free_page (page);
206 		return 1;
207 	} else if (ptable_list[type].next != dp) {
208 		/*
209 		 * move this descriptor to the front of the list, since
210 		 * it has one or more free tables.
211 		 */
212 		list_move(dp, &ptable_list[type]);
213 	}
214 	return 0;
215 }
216 
217 /* size of memory already mapped in head.S */
218 extern __initdata unsigned long m68k_init_mapped_size;
219 
220 extern unsigned long availmem;
221 
222 static pte_t *last_pte_table __initdata = NULL;
223 
224 static pte_t * __init kernel_page_table(void)
225 {
226 	pte_t *pte_table = last_pte_table;
227 
228 	if (PAGE_ALIGNED(last_pte_table)) {
229 		pte_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
230 		if (!pte_table) {
231 			panic("%s: Failed to allocate %lu bytes align=%lx\n",
232 					__func__, PAGE_SIZE, PAGE_SIZE);
233 		}
234 
235 		clear_page(pte_table);
236 		mmu_page_ctor(pte_table);
237 
238 		last_pte_table = pte_table;
239 	}
240 
241 	last_pte_table += PTRS_PER_PTE;
242 
243 	return pte_table;
244 }
245 
246 static pmd_t *last_pmd_table __initdata = NULL;
247 
248 static pmd_t * __init kernel_ptr_table(void)
249 {
250 	if (!last_pmd_table) {
251 		unsigned long pmd, last;
252 		int i;
253 
254 		/* Find the last ptr table that was used in head.S and
255 		 * reuse the remaining space in that page for further
256 		 * ptr tables.
257 		 */
258 		last = (unsigned long)kernel_pg_dir;
259 		for (i = 0; i < PTRS_PER_PGD; i++) {
260 			pud_t *pud = (pud_t *)(&kernel_pg_dir[i]);
261 
262 			if (!pud_present(*pud))
263 				continue;
264 			pmd = pgd_page_vaddr(kernel_pg_dir[i]);
265 			if (pmd > last)
266 				last = pmd;
267 		}
268 
269 		last_pmd_table = (pmd_t *)last;
270 #ifdef DEBUG
271 		printk("kernel_ptr_init: %p\n", last_pmd_table);
272 #endif
273 	}
274 
275 	last_pmd_table += PTRS_PER_PMD;
276 	if (PAGE_ALIGNED(last_pmd_table)) {
277 		last_pmd_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
278 		if (!last_pmd_table)
279 			panic("%s: Failed to allocate %lu bytes align=%lx\n",
280 			      __func__, PAGE_SIZE, PAGE_SIZE);
281 
282 		clear_page(last_pmd_table);
283 		mmu_page_ctor(last_pmd_table);
284 	}
285 
286 	return last_pmd_table;
287 }
288 
289 static void __init map_node(int node)
290 {
291 	unsigned long physaddr, virtaddr, size;
292 	pgd_t *pgd_dir;
293 	p4d_t *p4d_dir;
294 	pud_t *pud_dir;
295 	pmd_t *pmd_dir;
296 	pte_t *pte_dir;
297 
298 	size = m68k_memory[node].size;
299 	physaddr = m68k_memory[node].addr;
300 	virtaddr = (unsigned long)phys_to_virt(physaddr);
301 	physaddr |= m68k_supervisor_cachemode |
302 		    _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY;
303 	if (CPU_IS_040_OR_060)
304 		physaddr |= _PAGE_GLOBAL040;
305 
306 	while (size > 0) {
307 #ifdef DEBUG
308 		if (!(virtaddr & (PMD_SIZE-1)))
309 			printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK,
310 				virtaddr);
311 #endif
312 		pgd_dir = pgd_offset_k(virtaddr);
313 		if (virtaddr && CPU_IS_020_OR_030) {
314 			if (!(virtaddr & (PGDIR_SIZE-1)) &&
315 			    size >= PGDIR_SIZE) {
316 #ifdef DEBUG
317 				printk ("[very early term]");
318 #endif
319 				pgd_val(*pgd_dir) = physaddr;
320 				size -= PGDIR_SIZE;
321 				virtaddr += PGDIR_SIZE;
322 				physaddr += PGDIR_SIZE;
323 				continue;
324 			}
325 		}
326 		p4d_dir = p4d_offset(pgd_dir, virtaddr);
327 		pud_dir = pud_offset(p4d_dir, virtaddr);
328 		if (!pud_present(*pud_dir)) {
329 			pmd_dir = kernel_ptr_table();
330 #ifdef DEBUG
331 			printk ("[new pointer %p]", pmd_dir);
332 #endif
333 			pud_set(pud_dir, pmd_dir);
334 		} else
335 			pmd_dir = pmd_offset(pud_dir, virtaddr);
336 
337 		if (CPU_IS_020_OR_030) {
338 			if (virtaddr) {
339 #ifdef DEBUG
340 				printk ("[early term]");
341 #endif
342 				pmd_val(*pmd_dir) = physaddr;
343 				physaddr += PMD_SIZE;
344 			} else {
345 				int i;
346 #ifdef DEBUG
347 				printk ("[zero map]");
348 #endif
349 				pte_dir = kernel_page_table();
350 				pmd_set(pmd_dir, pte_dir);
351 
352 				pte_val(*pte_dir++) = 0;
353 				physaddr += PAGE_SIZE;
354 				for (i = 1; i < PTRS_PER_PTE; physaddr += PAGE_SIZE, i++)
355 					pte_val(*pte_dir++) = physaddr;
356 			}
357 			size -= PMD_SIZE;
358 			virtaddr += PMD_SIZE;
359 		} else {
360 			if (!pmd_present(*pmd_dir)) {
361 #ifdef DEBUG
362 				printk ("[new table]");
363 #endif
364 				pte_dir = kernel_page_table();
365 				pmd_set(pmd_dir, pte_dir);
366 			}
367 			pte_dir = pte_offset_kernel(pmd_dir, virtaddr);
368 
369 			if (virtaddr) {
370 				if (!pte_present(*pte_dir))
371 					pte_val(*pte_dir) = physaddr;
372 			} else
373 				pte_val(*pte_dir) = 0;
374 			size -= PAGE_SIZE;
375 			virtaddr += PAGE_SIZE;
376 			physaddr += PAGE_SIZE;
377 		}
378 
379 	}
380 #ifdef DEBUG
381 	printk("\n");
382 #endif
383 }
384 
385 /*
386  * Alternate definitions that are compile time constants, for
387  * initializing protection_map.  The cachebits are fixed later.
388  */
389 #define PAGE_NONE_C	__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
390 #define PAGE_SHARED_C	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
391 #define PAGE_COPY_C	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
392 #define PAGE_READONLY_C	__pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
393 
394 static pgprot_t protection_map[16] __ro_after_init = {
395 	[VM_NONE]					= PAGE_NONE_C,
396 	[VM_READ]					= PAGE_READONLY_C,
397 	[VM_WRITE]					= PAGE_COPY_C,
398 	[VM_WRITE | VM_READ]				= PAGE_COPY_C,
399 	[VM_EXEC]					= PAGE_READONLY_C,
400 	[VM_EXEC | VM_READ]				= PAGE_READONLY_C,
401 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_C,
402 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_C,
403 	[VM_SHARED]					= PAGE_NONE_C,
404 	[VM_SHARED | VM_READ]				= PAGE_READONLY_C,
405 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED_C,
406 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED_C,
407 	[VM_SHARED | VM_EXEC]				= PAGE_READONLY_C,
408 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_C,
409 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_C,
410 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_C
411 };
412 DECLARE_VM_GET_PAGE_PROT
413 
414 /*
415  * paging_init() continues the virtual memory environment setup which
416  * was begun by the code in arch/head.S.
417  */
418 void __init paging_init(void)
419 {
420 	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
421 	unsigned long min_addr, max_addr;
422 	unsigned long addr;
423 	int i;
424 
425 #ifdef DEBUG
426 	printk ("start of paging_init (%p, %lx)\n", kernel_pg_dir, availmem);
427 #endif
428 
429 	/* Fix the cache mode in the page descriptors for the 680[46]0.  */
430 	if (CPU_IS_040_OR_060) {
431 		int i;
432 #ifndef mm_cachebits
433 		mm_cachebits = _PAGE_CACHE040;
434 #endif
435 		for (i = 0; i < 16; i++)
436 			pgprot_val(protection_map[i]) |= _PAGE_CACHE040;
437 	}
438 
439 	min_addr = m68k_memory[0].addr;
440 	max_addr = min_addr + m68k_memory[0].size - 1;
441 	memblock_add_node(m68k_memory[0].addr, m68k_memory[0].size, 0,
442 			  MEMBLOCK_NONE);
443 	for (i = 1; i < m68k_num_memory;) {
444 		if (m68k_memory[i].addr < min_addr) {
445 			printk("Ignoring memory chunk at 0x%lx:0x%lx before the first chunk\n",
446 				m68k_memory[i].addr, m68k_memory[i].size);
447 			printk("Fix your bootloader or use a memfile to make use of this area!\n");
448 			m68k_num_memory--;
449 			memmove(m68k_memory + i, m68k_memory + i + 1,
450 				(m68k_num_memory - i) * sizeof(struct m68k_mem_info));
451 			continue;
452 		}
453 		memblock_add_node(m68k_memory[i].addr, m68k_memory[i].size, i,
454 				  MEMBLOCK_NONE);
455 		addr = m68k_memory[i].addr + m68k_memory[i].size - 1;
456 		if (addr > max_addr)
457 			max_addr = addr;
458 		i++;
459 	}
460 	m68k_memoffset = min_addr - PAGE_OFFSET;
461 	m68k_virt_to_node_shift = fls(max_addr - min_addr) - 6;
462 
463 	module_fixup(NULL, __start_fixup, __stop_fixup);
464 	flush_icache();
465 
466 	high_memory = phys_to_virt(max_addr) + 1;
467 
468 	min_low_pfn = availmem >> PAGE_SHIFT;
469 	max_pfn = max_low_pfn = (max_addr >> PAGE_SHIFT) + 1;
470 
471 	/* Reserve kernel text/data/bss and the memory allocated in head.S */
472 	memblock_reserve(m68k_memory[0].addr, availmem - m68k_memory[0].addr);
473 
474 	/*
475 	 * Map the physical memory available into the kernel virtual
476 	 * address space. Make sure memblock will not try to allocate
477 	 * pages beyond the memory we already mapped in head.S
478 	 */
479 	memblock_set_bottom_up(true);
480 
481 	for (i = 0; i < m68k_num_memory; i++) {
482 		m68k_setup_node(i);
483 		map_node(i);
484 	}
485 
486 	flush_tlb_all();
487 
488 	early_memtest(min_addr, max_addr);
489 
490 	/*
491 	 * initialize the bad page table and bad page to point
492 	 * to a couple of allocated pages
493 	 */
494 	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
495 	if (!empty_zero_page)
496 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
497 		      __func__, PAGE_SIZE, PAGE_SIZE);
498 
499 	/*
500 	 * Set up SFC/DFC registers
501 	 */
502 	set_fc(USER_DATA);
503 
504 #ifdef DEBUG
505 	printk ("before free_area_init\n");
506 #endif
507 	for (i = 0; i < m68k_num_memory; i++)
508 		if (node_present_pages(i))
509 			node_set_state(i, N_NORMAL_MEMORY);
510 
511 	max_zone_pfn[ZONE_DMA] = memblock_end_of_DRAM();
512 	free_area_init(max_zone_pfn);
513 }
514