1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/arch/m68k/mm/motorola.c 4 * 5 * Routines specific to the Motorola MMU, originally from: 6 * linux/arch/m68k/init.c 7 * which are Copyright (C) 1995 Hamish Macdonald 8 * 9 * Moved 8/20/1999 Sam Creasey 10 */ 11 12 #include <linux/module.h> 13 #include <linux/signal.h> 14 #include <linux/sched.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/kernel.h> 18 #include <linux/string.h> 19 #include <linux/types.h> 20 #include <linux/init.h> 21 #include <linux/memblock.h> 22 #include <linux/gfp.h> 23 24 #include <asm/setup.h> 25 #include <linux/uaccess.h> 26 #include <asm/page.h> 27 #include <asm/pgalloc.h> 28 #include <asm/machdep.h> 29 #include <asm/io.h> 30 #include <asm/dma.h> 31 #ifdef CONFIG_ATARI 32 #include <asm/atari_stram.h> 33 #endif 34 #include <asm/sections.h> 35 36 #undef DEBUG 37 38 #ifndef mm_cachebits 39 /* 40 * Bits to add to page descriptors for "normal" caching mode. 41 * For 68020/030 this is 0. 42 * For 68040, this is _PAGE_CACHE040 (cachable, copyback) 43 */ 44 unsigned long mm_cachebits; 45 EXPORT_SYMBOL(mm_cachebits); 46 #endif 47 48 /* Prior to calling these routines, the page should have been flushed 49 * from both the cache and ATC, or the CPU might not notice that the 50 * cache setting for the page has been changed. -jskov 51 */ 52 static inline void nocache_page(void *vaddr) 53 { 54 unsigned long addr = (unsigned long)vaddr; 55 56 if (CPU_IS_040_OR_060) { 57 pte_t *ptep = virt_to_kpte(addr); 58 59 *ptep = pte_mknocache(*ptep); 60 } 61 } 62 63 static inline void cache_page(void *vaddr) 64 { 65 unsigned long addr = (unsigned long)vaddr; 66 67 if (CPU_IS_040_OR_060) { 68 pte_t *ptep = virt_to_kpte(addr); 69 70 *ptep = pte_mkcache(*ptep); 71 } 72 } 73 74 /* 75 * Motorola 680x0 user's manual recommends using uncached memory for address 76 * translation tables. 77 * 78 * Seeing how the MMU can be external on (some of) these chips, that seems like 79 * a very important recommendation to follow. Provide some helpers to combat 80 * 'variation' amongst the users of this. 81 */ 82 83 void mmu_page_ctor(void *page) 84 { 85 __flush_page_to_ram(page); 86 flush_tlb_kernel_page(page); 87 nocache_page(page); 88 } 89 90 void mmu_page_dtor(void *page) 91 { 92 cache_page(page); 93 } 94 95 /* ++andreas: {get,free}_pointer_table rewritten to use unused fields from 96 struct page instead of separately kmalloced struct. Stolen from 97 arch/sparc/mm/srmmu.c ... */ 98 99 typedef struct list_head ptable_desc; 100 101 static struct list_head ptable_list[2] = { 102 LIST_HEAD_INIT(ptable_list[0]), 103 LIST_HEAD_INIT(ptable_list[1]), 104 }; 105 106 #define PD_PTABLE(page) ((ptable_desc *)&(virt_to_page(page)->lru)) 107 #define PD_PAGE(ptable) (list_entry(ptable, struct page, lru)) 108 #define PD_MARKBITS(dp) (*(unsigned int *)&PD_PAGE(dp)->index) 109 110 static const int ptable_shift[2] = { 111 7+2, /* PGD, PMD */ 112 6+2, /* PTE */ 113 }; 114 115 #define ptable_size(type) (1U << ptable_shift[type]) 116 #define ptable_mask(type) ((1U << (PAGE_SIZE / ptable_size(type))) - 1) 117 118 void __init init_pointer_table(void *table, int type) 119 { 120 ptable_desc *dp; 121 unsigned long ptable = (unsigned long)table; 122 unsigned long page = ptable & PAGE_MASK; 123 unsigned int mask = 1U << ((ptable - page)/ptable_size(type)); 124 125 dp = PD_PTABLE(page); 126 if (!(PD_MARKBITS(dp) & mask)) { 127 PD_MARKBITS(dp) = ptable_mask(type); 128 list_add(dp, &ptable_list[type]); 129 } 130 131 PD_MARKBITS(dp) &= ~mask; 132 pr_debug("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp)); 133 134 /* unreserve the page so it's possible to free that page */ 135 __ClearPageReserved(PD_PAGE(dp)); 136 init_page_count(PD_PAGE(dp)); 137 138 return; 139 } 140 141 void *get_pointer_table(int type) 142 { 143 ptable_desc *dp = ptable_list[type].next; 144 unsigned int mask = list_empty(&ptable_list[type]) ? 0 : PD_MARKBITS(dp); 145 unsigned int tmp, off; 146 147 /* 148 * For a pointer table for a user process address space, a 149 * table is taken from a page allocated for the purpose. Each 150 * page can hold 8 pointer tables. The page is remapped in 151 * virtual address space to be noncacheable. 152 */ 153 if (mask == 0) { 154 void *page; 155 ptable_desc *new; 156 157 if (!(page = (void *)get_zeroed_page(GFP_KERNEL))) 158 return NULL; 159 160 if (type == TABLE_PTE) { 161 /* 162 * m68k doesn't have SPLIT_PTE_PTLOCKS for not having 163 * SMP. 164 */ 165 pgtable_pte_page_ctor(virt_to_page(page)); 166 } 167 168 mmu_page_ctor(page); 169 170 new = PD_PTABLE(page); 171 PD_MARKBITS(new) = ptable_mask(type) - 1; 172 list_add_tail(new, dp); 173 174 return (pmd_t *)page; 175 } 176 177 for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += ptable_size(type)) 178 ; 179 PD_MARKBITS(dp) = mask & ~tmp; 180 if (!PD_MARKBITS(dp)) { 181 /* move to end of list */ 182 list_move_tail(dp, &ptable_list[type]); 183 } 184 return page_address(PD_PAGE(dp)) + off; 185 } 186 187 int free_pointer_table(void *table, int type) 188 { 189 ptable_desc *dp; 190 unsigned long ptable = (unsigned long)table; 191 unsigned long page = ptable & PAGE_MASK; 192 unsigned int mask = 1U << ((ptable - page)/ptable_size(type)); 193 194 dp = PD_PTABLE(page); 195 if (PD_MARKBITS (dp) & mask) 196 panic ("table already free!"); 197 198 PD_MARKBITS (dp) |= mask; 199 200 if (PD_MARKBITS(dp) == ptable_mask(type)) { 201 /* all tables in page are free, free page */ 202 list_del(dp); 203 mmu_page_dtor((void *)page); 204 if (type == TABLE_PTE) 205 pgtable_pte_page_dtor(virt_to_page(page)); 206 free_page (page); 207 return 1; 208 } else if (ptable_list[type].next != dp) { 209 /* 210 * move this descriptor to the front of the list, since 211 * it has one or more free tables. 212 */ 213 list_move(dp, &ptable_list[type]); 214 } 215 return 0; 216 } 217 218 /* size of memory already mapped in head.S */ 219 extern __initdata unsigned long m68k_init_mapped_size; 220 221 extern unsigned long availmem; 222 223 static pte_t *last_pte_table __initdata = NULL; 224 225 static pte_t * __init kernel_page_table(void) 226 { 227 pte_t *pte_table = last_pte_table; 228 229 if (PAGE_ALIGNED(last_pte_table)) { 230 pte_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 231 if (!pte_table) { 232 panic("%s: Failed to allocate %lu bytes align=%lx\n", 233 __func__, PAGE_SIZE, PAGE_SIZE); 234 } 235 236 clear_page(pte_table); 237 mmu_page_ctor(pte_table); 238 239 last_pte_table = pte_table; 240 } 241 242 last_pte_table += PTRS_PER_PTE; 243 244 return pte_table; 245 } 246 247 static pmd_t *last_pmd_table __initdata = NULL; 248 249 static pmd_t * __init kernel_ptr_table(void) 250 { 251 if (!last_pmd_table) { 252 unsigned long pmd, last; 253 int i; 254 255 /* Find the last ptr table that was used in head.S and 256 * reuse the remaining space in that page for further 257 * ptr tables. 258 */ 259 last = (unsigned long)kernel_pg_dir; 260 for (i = 0; i < PTRS_PER_PGD; i++) { 261 pud_t *pud = (pud_t *)(&kernel_pg_dir[i]); 262 263 if (!pud_present(*pud)) 264 continue; 265 pmd = pgd_page_vaddr(kernel_pg_dir[i]); 266 if (pmd > last) 267 last = pmd; 268 } 269 270 last_pmd_table = (pmd_t *)last; 271 #ifdef DEBUG 272 printk("kernel_ptr_init: %p\n", last_pmd_table); 273 #endif 274 } 275 276 last_pmd_table += PTRS_PER_PMD; 277 if (PAGE_ALIGNED(last_pmd_table)) { 278 last_pmd_table = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE); 279 if (!last_pmd_table) 280 panic("%s: Failed to allocate %lu bytes align=%lx\n", 281 __func__, PAGE_SIZE, PAGE_SIZE); 282 283 clear_page(last_pmd_table); 284 mmu_page_ctor(last_pmd_table); 285 } 286 287 return last_pmd_table; 288 } 289 290 static void __init map_node(int node) 291 { 292 unsigned long physaddr, virtaddr, size; 293 pgd_t *pgd_dir; 294 p4d_t *p4d_dir; 295 pud_t *pud_dir; 296 pmd_t *pmd_dir; 297 pte_t *pte_dir; 298 299 size = m68k_memory[node].size; 300 physaddr = m68k_memory[node].addr; 301 virtaddr = (unsigned long)phys_to_virt(physaddr); 302 physaddr |= m68k_supervisor_cachemode | 303 _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY; 304 if (CPU_IS_040_OR_060) 305 physaddr |= _PAGE_GLOBAL040; 306 307 while (size > 0) { 308 #ifdef DEBUG 309 if (!(virtaddr & (PMD_SIZE-1))) 310 printk ("\npa=%#lx va=%#lx ", physaddr & PAGE_MASK, 311 virtaddr); 312 #endif 313 pgd_dir = pgd_offset_k(virtaddr); 314 if (virtaddr && CPU_IS_020_OR_030) { 315 if (!(virtaddr & (PGDIR_SIZE-1)) && 316 size >= PGDIR_SIZE) { 317 #ifdef DEBUG 318 printk ("[very early term]"); 319 #endif 320 pgd_val(*pgd_dir) = physaddr; 321 size -= PGDIR_SIZE; 322 virtaddr += PGDIR_SIZE; 323 physaddr += PGDIR_SIZE; 324 continue; 325 } 326 } 327 p4d_dir = p4d_offset(pgd_dir, virtaddr); 328 pud_dir = pud_offset(p4d_dir, virtaddr); 329 if (!pud_present(*pud_dir)) { 330 pmd_dir = kernel_ptr_table(); 331 #ifdef DEBUG 332 printk ("[new pointer %p]", pmd_dir); 333 #endif 334 pud_set(pud_dir, pmd_dir); 335 } else 336 pmd_dir = pmd_offset(pud_dir, virtaddr); 337 338 if (CPU_IS_020_OR_030) { 339 if (virtaddr) { 340 #ifdef DEBUG 341 printk ("[early term]"); 342 #endif 343 pmd_val(*pmd_dir) = physaddr; 344 physaddr += PMD_SIZE; 345 } else { 346 int i; 347 #ifdef DEBUG 348 printk ("[zero map]"); 349 #endif 350 pte_dir = kernel_page_table(); 351 pmd_set(pmd_dir, pte_dir); 352 353 pte_val(*pte_dir++) = 0; 354 physaddr += PAGE_SIZE; 355 for (i = 1; i < PTRS_PER_PTE; physaddr += PAGE_SIZE, i++) 356 pte_val(*pte_dir++) = physaddr; 357 } 358 size -= PMD_SIZE; 359 virtaddr += PMD_SIZE; 360 } else { 361 if (!pmd_present(*pmd_dir)) { 362 #ifdef DEBUG 363 printk ("[new table]"); 364 #endif 365 pte_dir = kernel_page_table(); 366 pmd_set(pmd_dir, pte_dir); 367 } 368 pte_dir = pte_offset_kernel(pmd_dir, virtaddr); 369 370 if (virtaddr) { 371 if (!pte_present(*pte_dir)) 372 pte_val(*pte_dir) = physaddr; 373 } else 374 pte_val(*pte_dir) = 0; 375 size -= PAGE_SIZE; 376 virtaddr += PAGE_SIZE; 377 physaddr += PAGE_SIZE; 378 } 379 380 } 381 #ifdef DEBUG 382 printk("\n"); 383 #endif 384 } 385 386 /* 387 * paging_init() continues the virtual memory environment setup which 388 * was begun by the code in arch/head.S. 389 */ 390 void __init paging_init(void) 391 { 392 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, }; 393 unsigned long min_addr, max_addr; 394 unsigned long addr; 395 int i; 396 397 #ifdef DEBUG 398 printk ("start of paging_init (%p, %lx)\n", kernel_pg_dir, availmem); 399 #endif 400 401 /* Fix the cache mode in the page descriptors for the 680[46]0. */ 402 if (CPU_IS_040_OR_060) { 403 int i; 404 #ifndef mm_cachebits 405 mm_cachebits = _PAGE_CACHE040; 406 #endif 407 for (i = 0; i < 16; i++) 408 pgprot_val(protection_map[i]) |= _PAGE_CACHE040; 409 } 410 411 min_addr = m68k_memory[0].addr; 412 max_addr = min_addr + m68k_memory[0].size; 413 memblock_add_node(m68k_memory[0].addr, m68k_memory[0].size, 0); 414 for (i = 1; i < m68k_num_memory;) { 415 if (m68k_memory[i].addr < min_addr) { 416 printk("Ignoring memory chunk at 0x%lx:0x%lx before the first chunk\n", 417 m68k_memory[i].addr, m68k_memory[i].size); 418 printk("Fix your bootloader or use a memfile to make use of this area!\n"); 419 m68k_num_memory--; 420 memmove(m68k_memory + i, m68k_memory + i + 1, 421 (m68k_num_memory - i) * sizeof(struct m68k_mem_info)); 422 continue; 423 } 424 memblock_add_node(m68k_memory[i].addr, m68k_memory[i].size, i); 425 addr = m68k_memory[i].addr + m68k_memory[i].size; 426 if (addr > max_addr) 427 max_addr = addr; 428 i++; 429 } 430 m68k_memoffset = min_addr - PAGE_OFFSET; 431 m68k_virt_to_node_shift = fls(max_addr - min_addr - 1) - 6; 432 433 module_fixup(NULL, __start_fixup, __stop_fixup); 434 flush_icache(); 435 436 high_memory = phys_to_virt(max_addr); 437 438 min_low_pfn = availmem >> PAGE_SHIFT; 439 max_pfn = max_low_pfn = max_addr >> PAGE_SHIFT; 440 441 /* Reserve kernel text/data/bss and the memory allocated in head.S */ 442 memblock_reserve(m68k_memory[0].addr, availmem - m68k_memory[0].addr); 443 444 /* 445 * Map the physical memory available into the kernel virtual 446 * address space. Make sure memblock will not try to allocate 447 * pages beyond the memory we already mapped in head.S 448 */ 449 memblock_set_bottom_up(true); 450 451 for (i = 0; i < m68k_num_memory; i++) { 452 m68k_setup_node(i); 453 map_node(i); 454 } 455 456 flush_tlb_all(); 457 458 /* 459 * initialize the bad page table and bad page to point 460 * to a couple of allocated pages 461 */ 462 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); 463 if (!empty_zero_page) 464 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 465 __func__, PAGE_SIZE, PAGE_SIZE); 466 467 /* 468 * Set up SFC/DFC registers 469 */ 470 set_fc(USER_DATA); 471 472 #ifdef DEBUG 473 printk ("before free_area_init\n"); 474 #endif 475 for (i = 0; i < m68k_num_memory; i++) 476 if (node_present_pages(i)) 477 node_set_state(i, N_NORMAL_MEMORY); 478 479 max_zone_pfn[ZONE_DMA] = memblock_end_of_DRAM(); 480 free_area_init(max_zone_pfn); 481 } 482