xref: /openbmc/linux/arch/m68k/mm/mcfmmu.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based upon linux/arch/m68k/mm/sun3mmu.c
4  * Based upon linux/arch/ppc/mm/mmu_context.c
5  *
6  * Implementations of mm routines specific to the Coldfire MMU.
7  *
8  * Copyright (c) 2008 Freescale Semiconductor, Inc.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/memblock.h>
17 
18 #include <asm/setup.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21 #include <asm/mmu_context.h>
22 #include <asm/mcf_pgalloc.h>
23 #include <asm/tlbflush.h>
24 
25 #define KMAPAREA(x)	((x >= VMALLOC_START) && (x < KMAP_END))
26 
27 mm_context_t next_mmu_context;
28 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
29 atomic_t nr_free_contexts;
30 struct mm_struct *context_mm[LAST_CONTEXT+1];
31 unsigned long num_pages;
32 
33 /*
34  * ColdFire paging_init derived from sun3.
35  */
36 void __init paging_init(void)
37 {
38 	pgd_t *pg_dir;
39 	pte_t *pg_table;
40 	unsigned long address, size;
41 	unsigned long next_pgtable, bootmem_end;
42 	unsigned long zones_size[MAX_NR_ZONES];
43 	enum zone_type zone;
44 	int i;
45 
46 	empty_zero_page = (void *) memblock_alloc(PAGE_SIZE, PAGE_SIZE);
47 	if (!empty_zero_page)
48 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
49 		      __func__, PAGE_SIZE, PAGE_SIZE);
50 
51 	pg_dir = swapper_pg_dir;
52 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
53 
54 	size = num_pages * sizeof(pte_t);
55 	size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
56 	next_pgtable = (unsigned long) memblock_alloc(size, PAGE_SIZE);
57 	if (!next_pgtable)
58 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
59 		      __func__, size, PAGE_SIZE);
60 
61 	bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
62 	pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
63 
64 	address = PAGE_OFFSET;
65 	while (address < (unsigned long)high_memory) {
66 		pg_table = (pte_t *) next_pgtable;
67 		next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
68 		pgd_val(*pg_dir) = (unsigned long) pg_table;
69 		pg_dir++;
70 
71 		/* now change pg_table to kernel virtual addresses */
72 		for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
73 			pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
74 			if (address >= (unsigned long) high_memory)
75 				pte_val(pte) = 0;
76 
77 			set_pte(pg_table, pte);
78 			address += PAGE_SIZE;
79 		}
80 	}
81 
82 	current->mm = NULL;
83 
84 	for (zone = 0; zone < MAX_NR_ZONES; zone++)
85 		zones_size[zone] = 0x0;
86 	zones_size[ZONE_DMA] = num_pages;
87 	free_area_init(zones_size);
88 }
89 
90 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
91 {
92 	unsigned long flags, mmuar, mmutr;
93 	struct mm_struct *mm;
94 	pgd_t *pgd;
95 	p4d_t *p4d;
96 	pud_t *pud;
97 	pmd_t *pmd;
98 	pte_t *pte;
99 	int asid;
100 
101 	local_irq_save(flags);
102 
103 	mmuar = (dtlb) ? mmu_read(MMUAR) :
104 		regs->pc + (extension_word * sizeof(long));
105 
106 	mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
107 	if (!mm) {
108 		local_irq_restore(flags);
109 		return -1;
110 	}
111 
112 	pgd = pgd_offset(mm, mmuar);
113 	if (pgd_none(*pgd))  {
114 		local_irq_restore(flags);
115 		return -1;
116 	}
117 
118 	p4d = p4d_offset(pgd, mmuar);
119 	if (p4d_none(*p4d)) {
120 		local_irq_restore(flags);
121 		return -1;
122 	}
123 
124 	pud = pud_offset(p4d, mmuar);
125 	if (pud_none(*pud)) {
126 		local_irq_restore(flags);
127 		return -1;
128 	}
129 
130 	pmd = pmd_offset(pud, mmuar);
131 	if (pmd_none(*pmd)) {
132 		local_irq_restore(flags);
133 		return -1;
134 	}
135 
136 	pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
137 				: pte_offset_map(pmd, mmuar);
138 	if (pte_none(*pte) || !pte_present(*pte)) {
139 		local_irq_restore(flags);
140 		return -1;
141 	}
142 
143 	if (write) {
144 		if (!pte_write(*pte)) {
145 			local_irq_restore(flags);
146 			return -1;
147 		}
148 		set_pte(pte, pte_mkdirty(*pte));
149 	}
150 
151 	set_pte(pte, pte_mkyoung(*pte));
152 	asid = mm->context & 0xff;
153 	if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
154 		set_pte(pte, pte_wrprotect(*pte));
155 
156 	mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
157 	if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
158 		mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
159 	mmu_write(MMUTR, mmutr);
160 
161 	mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
162 		((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
163 
164 	if (dtlb)
165 		mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
166 	else
167 		mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
168 
169 	local_irq_restore(flags);
170 	return 0;
171 }
172 
173 void __init cf_bootmem_alloc(void)
174 {
175 	unsigned long memstart;
176 
177 	/* _rambase and _ramend will be naturally page aligned */
178 	m68k_memory[0].addr = _rambase;
179 	m68k_memory[0].size = _ramend - _rambase;
180 
181 	memblock_add(m68k_memory[0].addr, m68k_memory[0].size);
182 
183 	/* compute total pages in system */
184 	num_pages = PFN_DOWN(_ramend - _rambase);
185 
186 	/* page numbers */
187 	memstart = PAGE_ALIGN(_ramstart);
188 	min_low_pfn = PFN_DOWN(_rambase);
189 	max_pfn = max_low_pfn = PFN_DOWN(_ramend);
190 	high_memory = (void *)_ramend;
191 
192 	/* Reserve kernel text/data/bss */
193 	memblock_reserve(_rambase, memstart - _rambase);
194 
195 	m68k_virt_to_node_shift = fls(_ramend - 1) - 6;
196 	module_fixup(NULL, __start_fixup, __stop_fixup);
197 
198 	/* setup node data */
199 	m68k_setup_node(0);
200 }
201 
202 /*
203  * Initialize the context management stuff.
204  * The following was taken from arch/ppc/mmu_context.c
205  */
206 void __init cf_mmu_context_init(void)
207 {
208 	/*
209 	 * Some processors have too few contexts to reserve one for
210 	 * init_mm, and require using context 0 for a normal task.
211 	 * Other processors reserve the use of context zero for the kernel.
212 	 * This code assumes FIRST_CONTEXT < 32.
213 	 */
214 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
215 	next_mmu_context = FIRST_CONTEXT;
216 	atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
217 }
218 
219 /*
220  * Steal a context from a task that has one at the moment.
221  * This is only used on 8xx and 4xx and we presently assume that
222  * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
223  * whether the MM we steal is in use.
224  * We also assume that this is only used on systems that don't
225  * use an MMU hash table - this is true for 8xx and 4xx.
226  * This isn't an LRU system, it just frees up each context in
227  * turn (sort-of pseudo-random replacement :).  This would be the
228  * place to implement an LRU scheme if anyone was motivated to do it.
229  *  -- paulus
230  */
231 void steal_context(void)
232 {
233 	struct mm_struct *mm;
234 	/*
235 	 * free up context `next_mmu_context'
236 	 * if we shouldn't free context 0, don't...
237 	 */
238 	if (next_mmu_context < FIRST_CONTEXT)
239 		next_mmu_context = FIRST_CONTEXT;
240 	mm = context_mm[next_mmu_context];
241 	flush_tlb_mm(mm);
242 	destroy_context(mm);
243 }
244 
245