xref: /openbmc/linux/arch/m68k/mm/mcfmmu.c (revision ae40e94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based upon linux/arch/m68k/mm/sun3mmu.c
4  * Based upon linux/arch/ppc/mm/mmu_context.c
5  *
6  * Implementations of mm routines specific to the Coldfire MMU.
7  *
8  * Copyright (c) 2008 Freescale Semiconductor, Inc.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/memblock.h>
17 
18 #include <asm/setup.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21 #include <asm/mmu_context.h>
22 #include <asm/mcf_pgalloc.h>
23 #include <asm/tlbflush.h>
24 
25 #define KMAPAREA(x)	((x >= VMALLOC_START) && (x < KMAP_END))
26 
27 mm_context_t next_mmu_context;
28 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
29 atomic_t nr_free_contexts;
30 struct mm_struct *context_mm[LAST_CONTEXT+1];
31 unsigned long num_pages;
32 
33 /*
34  * ColdFire paging_init derived from sun3.
35  */
36 void __init paging_init(void)
37 {
38 	pgd_t *pg_dir;
39 	pte_t *pg_table;
40 	unsigned long address, size;
41 	unsigned long next_pgtable, bootmem_end;
42 	unsigned long zones_size[MAX_NR_ZONES];
43 	enum zone_type zone;
44 	int i;
45 
46 	empty_zero_page = (void *) memblock_alloc(PAGE_SIZE, PAGE_SIZE);
47 	if (!empty_zero_page)
48 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
49 		      __func__, PAGE_SIZE, PAGE_SIZE);
50 
51 	pg_dir = swapper_pg_dir;
52 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
53 
54 	size = num_pages * sizeof(pte_t);
55 	size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
56 	next_pgtable = (unsigned long) memblock_alloc(size, PAGE_SIZE);
57 	if (!next_pgtable)
58 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
59 		      __func__, size, PAGE_SIZE);
60 
61 	bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
62 	pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
63 
64 	address = PAGE_OFFSET;
65 	while (address < (unsigned long)high_memory) {
66 		pg_table = (pte_t *) next_pgtable;
67 		next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
68 		pgd_val(*pg_dir) = (unsigned long) pg_table;
69 		pg_dir++;
70 
71 		/* now change pg_table to kernel virtual addresses */
72 		for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
73 			pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
74 			if (address >= (unsigned long) high_memory)
75 				pte_val(pte) = 0;
76 
77 			set_pte(pg_table, pte);
78 			address += PAGE_SIZE;
79 		}
80 	}
81 
82 	current->mm = NULL;
83 
84 	for (zone = 0; zone < MAX_NR_ZONES; zone++)
85 		zones_size[zone] = 0x0;
86 	zones_size[ZONE_DMA] = num_pages;
87 	free_area_init(zones_size);
88 }
89 
90 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
91 {
92 	unsigned long flags, mmuar, mmutr;
93 	struct mm_struct *mm;
94 	pgd_t *pgd;
95 	pmd_t *pmd;
96 	pte_t *pte;
97 	int asid;
98 
99 	local_irq_save(flags);
100 
101 	mmuar = (dtlb) ? mmu_read(MMUAR) :
102 		regs->pc + (extension_word * sizeof(long));
103 
104 	mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
105 	if (!mm) {
106 		local_irq_restore(flags);
107 		return -1;
108 	}
109 
110 	pgd = pgd_offset(mm, mmuar);
111 	if (pgd_none(*pgd))  {
112 		local_irq_restore(flags);
113 		return -1;
114 	}
115 
116 	pmd = pmd_offset(pgd, mmuar);
117 	if (pmd_none(*pmd)) {
118 		local_irq_restore(flags);
119 		return -1;
120 	}
121 
122 	pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
123 				: pte_offset_map(pmd, mmuar);
124 	if (pte_none(*pte) || !pte_present(*pte)) {
125 		local_irq_restore(flags);
126 		return -1;
127 	}
128 
129 	if (write) {
130 		if (!pte_write(*pte)) {
131 			local_irq_restore(flags);
132 			return -1;
133 		}
134 		set_pte(pte, pte_mkdirty(*pte));
135 	}
136 
137 	set_pte(pte, pte_mkyoung(*pte));
138 	asid = mm->context & 0xff;
139 	if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
140 		set_pte(pte, pte_wrprotect(*pte));
141 
142 	mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
143 	if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
144 		mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
145 	mmu_write(MMUTR, mmutr);
146 
147 	mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
148 		((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
149 
150 	if (dtlb)
151 		mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
152 	else
153 		mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
154 
155 	local_irq_restore(flags);
156 	return 0;
157 }
158 
159 void __init cf_bootmem_alloc(void)
160 {
161 	unsigned long memstart;
162 
163 	/* _rambase and _ramend will be naturally page aligned */
164 	m68k_memory[0].addr = _rambase;
165 	m68k_memory[0].size = _ramend - _rambase;
166 
167 	memblock_add(m68k_memory[0].addr, m68k_memory[0].size);
168 
169 	/* compute total pages in system */
170 	num_pages = PFN_DOWN(_ramend - _rambase);
171 
172 	/* page numbers */
173 	memstart = PAGE_ALIGN(_ramstart);
174 	min_low_pfn = PFN_DOWN(_rambase);
175 	max_pfn = max_low_pfn = PFN_DOWN(_ramend);
176 	high_memory = (void *)_ramend;
177 
178 	/* Reserve kernel text/data/bss */
179 	memblock_reserve(_rambase, memstart - _rambase);
180 
181 	m68k_virt_to_node_shift = fls(_ramend - 1) - 6;
182 	module_fixup(NULL, __start_fixup, __stop_fixup);
183 
184 	/* setup node data */
185 	m68k_setup_node(0);
186 }
187 
188 /*
189  * Initialize the context management stuff.
190  * The following was taken from arch/ppc/mmu_context.c
191  */
192 void __init cf_mmu_context_init(void)
193 {
194 	/*
195 	 * Some processors have too few contexts to reserve one for
196 	 * init_mm, and require using context 0 for a normal task.
197 	 * Other processors reserve the use of context zero for the kernel.
198 	 * This code assumes FIRST_CONTEXT < 32.
199 	 */
200 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
201 	next_mmu_context = FIRST_CONTEXT;
202 	atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
203 }
204 
205 /*
206  * Steal a context from a task that has one at the moment.
207  * This is only used on 8xx and 4xx and we presently assume that
208  * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
209  * whether the MM we steal is in use.
210  * We also assume that this is only used on systems that don't
211  * use an MMU hash table - this is true for 8xx and 4xx.
212  * This isn't an LRU system, it just frees up each context in
213  * turn (sort-of pseudo-random replacement :).  This would be the
214  * place to implement an LRU scheme if anyone was motivated to do it.
215  *  -- paulus
216  */
217 void steal_context(void)
218 {
219 	struct mm_struct *mm;
220 	/*
221 	 * free up context `next_mmu_context'
222 	 * if we shouldn't free context 0, don't...
223 	 */
224 	if (next_mmu_context < FIRST_CONTEXT)
225 		next_mmu_context = FIRST_CONTEXT;
226 	mm = context_mm[next_mmu_context];
227 	flush_tlb_mm(mm);
228 	destroy_context(mm);
229 }
230 
231