xref: /openbmc/linux/arch/m68k/mm/mcfmmu.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based upon linux/arch/m68k/mm/sun3mmu.c
4  * Based upon linux/arch/ppc/mm/mmu_context.c
5  *
6  * Implementations of mm routines specific to the Coldfire MMU.
7  *
8  * Copyright (c) 2008 Freescale Semiconductor, Inc.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/bootmem.h>
17 
18 #include <asm/setup.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21 #include <asm/mmu_context.h>
22 #include <asm/mcf_pgalloc.h>
23 #include <asm/tlbflush.h>
24 
25 #define KMAPAREA(x)	((x >= VMALLOC_START) && (x < KMAP_END))
26 
27 mm_context_t next_mmu_context;
28 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
29 atomic_t nr_free_contexts;
30 struct mm_struct *context_mm[LAST_CONTEXT+1];
31 unsigned long num_pages;
32 
33 /*
34  * ColdFire paging_init derived from sun3.
35  */
36 void __init paging_init(void)
37 {
38 	pgd_t *pg_dir;
39 	pte_t *pg_table;
40 	unsigned long address, size;
41 	unsigned long next_pgtable, bootmem_end;
42 	unsigned long zones_size[MAX_NR_ZONES];
43 	enum zone_type zone;
44 	int i;
45 
46 	empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
47 	memset((void *) empty_zero_page, 0, PAGE_SIZE);
48 
49 	pg_dir = swapper_pg_dir;
50 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
51 
52 	size = num_pages * sizeof(pte_t);
53 	size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
54 	next_pgtable = (unsigned long) alloc_bootmem_pages(size);
55 
56 	bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
57 	pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
58 
59 	address = PAGE_OFFSET;
60 	while (address < (unsigned long)high_memory) {
61 		pg_table = (pte_t *) next_pgtable;
62 		next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
63 		pgd_val(*pg_dir) = (unsigned long) pg_table;
64 		pg_dir++;
65 
66 		/* now change pg_table to kernel virtual addresses */
67 		for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
68 			pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
69 			if (address >= (unsigned long) high_memory)
70 				pte_val(pte) = 0;
71 
72 			set_pte(pg_table, pte);
73 			address += PAGE_SIZE;
74 		}
75 	}
76 
77 	current->mm = NULL;
78 
79 	for (zone = 0; zone < MAX_NR_ZONES; zone++)
80 		zones_size[zone] = 0x0;
81 	zones_size[ZONE_DMA] = num_pages;
82 	free_area_init(zones_size);
83 }
84 
85 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
86 {
87 	unsigned long flags, mmuar, mmutr;
88 	struct mm_struct *mm;
89 	pgd_t *pgd;
90 	pmd_t *pmd;
91 	pte_t *pte;
92 	int asid;
93 
94 	local_irq_save(flags);
95 
96 	mmuar = (dtlb) ? mmu_read(MMUAR) :
97 		regs->pc + (extension_word * sizeof(long));
98 
99 	mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
100 	if (!mm) {
101 		local_irq_restore(flags);
102 		return -1;
103 	}
104 
105 	pgd = pgd_offset(mm, mmuar);
106 	if (pgd_none(*pgd))  {
107 		local_irq_restore(flags);
108 		return -1;
109 	}
110 
111 	pmd = pmd_offset(pgd, mmuar);
112 	if (pmd_none(*pmd)) {
113 		local_irq_restore(flags);
114 		return -1;
115 	}
116 
117 	pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
118 				: pte_offset_map(pmd, mmuar);
119 	if (pte_none(*pte) || !pte_present(*pte)) {
120 		local_irq_restore(flags);
121 		return -1;
122 	}
123 
124 	if (write) {
125 		if (!pte_write(*pte)) {
126 			local_irq_restore(flags);
127 			return -1;
128 		}
129 		set_pte(pte, pte_mkdirty(*pte));
130 	}
131 
132 	set_pte(pte, pte_mkyoung(*pte));
133 	asid = mm->context & 0xff;
134 	if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
135 		set_pte(pte, pte_wrprotect(*pte));
136 
137 	mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
138 	if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
139 		mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
140 	mmu_write(MMUTR, mmutr);
141 
142 	mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
143 		((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
144 
145 	if (dtlb)
146 		mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
147 	else
148 		mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
149 
150 	local_irq_restore(flags);
151 	return 0;
152 }
153 
154 void __init cf_bootmem_alloc(void)
155 {
156 	unsigned long start_pfn;
157 	unsigned long memstart;
158 
159 	/* _rambase and _ramend will be naturally page aligned */
160 	m68k_memory[0].addr = _rambase;
161 	m68k_memory[0].size = _ramend - _rambase;
162 
163 	/* compute total pages in system */
164 	num_pages = PFN_DOWN(_ramend - _rambase);
165 
166 	/* page numbers */
167 	memstart = PAGE_ALIGN(_ramstart);
168 	min_low_pfn = PFN_DOWN(_rambase);
169 	start_pfn = PFN_DOWN(memstart);
170 	max_pfn = max_low_pfn = PFN_DOWN(_ramend);
171 	high_memory = (void *)_ramend;
172 
173 	m68k_virt_to_node_shift = fls(_ramend - 1) - 6;
174 	module_fixup(NULL, __start_fixup, __stop_fixup);
175 
176 	/* setup bootmem data */
177 	m68k_setup_node(0);
178 	memstart += init_bootmem_node(NODE_DATA(0), start_pfn,
179 		min_low_pfn, max_low_pfn);
180 	free_bootmem_node(NODE_DATA(0), memstart, _ramend - memstart);
181 }
182 
183 /*
184  * Initialize the context management stuff.
185  * The following was taken from arch/ppc/mmu_context.c
186  */
187 void __init cf_mmu_context_init(void)
188 {
189 	/*
190 	 * Some processors have too few contexts to reserve one for
191 	 * init_mm, and require using context 0 for a normal task.
192 	 * Other processors reserve the use of context zero for the kernel.
193 	 * This code assumes FIRST_CONTEXT < 32.
194 	 */
195 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
196 	next_mmu_context = FIRST_CONTEXT;
197 	atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
198 }
199 
200 /*
201  * Steal a context from a task that has one at the moment.
202  * This is only used on 8xx and 4xx and we presently assume that
203  * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
204  * whether the MM we steal is in use.
205  * We also assume that this is only used on systems that don't
206  * use an MMU hash table - this is true for 8xx and 4xx.
207  * This isn't an LRU system, it just frees up each context in
208  * turn (sort-of pseudo-random replacement :).  This would be the
209  * place to implement an LRU scheme if anyone was motivated to do it.
210  *  -- paulus
211  */
212 void steal_context(void)
213 {
214 	struct mm_struct *mm;
215 	/*
216 	 * free up context `next_mmu_context'
217 	 * if we shouldn't free context 0, don't...
218 	 */
219 	if (next_mmu_context < FIRST_CONTEXT)
220 		next_mmu_context = FIRST_CONTEXT;
221 	mm = context_mm[next_mmu_context];
222 	flush_tlb_mm(mm);
223 	destroy_context(mm);
224 }
225 
226