xref: /openbmc/linux/arch/m68k/mm/mcfmmu.c (revision 0da85d1e)
1 /*
2  * Based upon linux/arch/m68k/mm/sun3mmu.c
3  * Based upon linux/arch/ppc/mm/mmu_context.c
4  *
5  * Implementations of mm routines specific to the Coldfire MMU.
6  *
7  * Copyright (c) 2008 Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/bootmem.h>
16 
17 #include <asm/setup.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/mcf_pgalloc.h>
22 #include <asm/tlbflush.h>
23 
24 #define KMAPAREA(x)	((x >= VMALLOC_START) && (x < KMAP_END))
25 
26 mm_context_t next_mmu_context;
27 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
28 atomic_t nr_free_contexts;
29 struct mm_struct *context_mm[LAST_CONTEXT+1];
30 extern unsigned long num_pages;
31 
32 /*
33  * ColdFire paging_init derived from sun3.
34  */
35 void __init paging_init(void)
36 {
37 	pgd_t *pg_dir;
38 	pte_t *pg_table;
39 	unsigned long address, size;
40 	unsigned long next_pgtable, bootmem_end;
41 	unsigned long zones_size[MAX_NR_ZONES];
42 	enum zone_type zone;
43 	int i;
44 
45 	empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
46 	memset((void *) empty_zero_page, 0, PAGE_SIZE);
47 
48 	pg_dir = swapper_pg_dir;
49 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
50 
51 	size = num_pages * sizeof(pte_t);
52 	size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
53 	next_pgtable = (unsigned long) alloc_bootmem_pages(size);
54 
55 	bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
56 	pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
57 
58 	address = PAGE_OFFSET;
59 	while (address < (unsigned long)high_memory) {
60 		pg_table = (pte_t *) next_pgtable;
61 		next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
62 		pgd_val(*pg_dir) = (unsigned long) pg_table;
63 		pg_dir++;
64 
65 		/* now change pg_table to kernel virtual addresses */
66 		for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
67 			pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
68 			if (address >= (unsigned long) high_memory)
69 				pte_val(pte) = 0;
70 
71 			set_pte(pg_table, pte);
72 			address += PAGE_SIZE;
73 		}
74 	}
75 
76 	current->mm = NULL;
77 
78 	for (zone = 0; zone < MAX_NR_ZONES; zone++)
79 		zones_size[zone] = 0x0;
80 	zones_size[ZONE_DMA] = num_pages;
81 	free_area_init(zones_size);
82 }
83 
84 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
85 {
86 	unsigned long flags, mmuar, mmutr;
87 	struct mm_struct *mm;
88 	pgd_t *pgd;
89 	pmd_t *pmd;
90 	pte_t *pte;
91 	int asid;
92 
93 	local_irq_save(flags);
94 
95 	mmuar = (dtlb) ? mmu_read(MMUAR) :
96 		regs->pc + (extension_word * sizeof(long));
97 
98 	mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
99 	if (!mm) {
100 		local_irq_restore(flags);
101 		return -1;
102 	}
103 
104 	pgd = pgd_offset(mm, mmuar);
105 	if (pgd_none(*pgd))  {
106 		local_irq_restore(flags);
107 		return -1;
108 	}
109 
110 	pmd = pmd_offset(pgd, mmuar);
111 	if (pmd_none(*pmd)) {
112 		local_irq_restore(flags);
113 		return -1;
114 	}
115 
116 	pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
117 				: pte_offset_map(pmd, mmuar);
118 	if (pte_none(*pte) || !pte_present(*pte)) {
119 		local_irq_restore(flags);
120 		return -1;
121 	}
122 
123 	if (write) {
124 		if (!pte_write(*pte)) {
125 			local_irq_restore(flags);
126 			return -1;
127 		}
128 		set_pte(pte, pte_mkdirty(*pte));
129 	}
130 
131 	set_pte(pte, pte_mkyoung(*pte));
132 	asid = mm->context & 0xff;
133 	if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
134 		set_pte(pte, pte_wrprotect(*pte));
135 
136 	mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
137 	if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
138 		mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
139 	mmu_write(MMUTR, mmutr);
140 
141 	mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
142 		((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
143 
144 	if (dtlb)
145 		mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
146 	else
147 		mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
148 
149 	local_irq_restore(flags);
150 	return 0;
151 }
152 
153 /*
154  * Initialize the context management stuff.
155  * The following was taken from arch/ppc/mmu_context.c
156  */
157 void __init mmu_context_init(void)
158 {
159 	/*
160 	 * Some processors have too few contexts to reserve one for
161 	 * init_mm, and require using context 0 for a normal task.
162 	 * Other processors reserve the use of context zero for the kernel.
163 	 * This code assumes FIRST_CONTEXT < 32.
164 	 */
165 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
166 	next_mmu_context = FIRST_CONTEXT;
167 	atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
168 }
169 
170 /*
171  * Steal a context from a task that has one at the moment.
172  * This is only used on 8xx and 4xx and we presently assume that
173  * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
174  * whether the MM we steal is in use.
175  * We also assume that this is only used on systems that don't
176  * use an MMU hash table - this is true for 8xx and 4xx.
177  * This isn't an LRU system, it just frees up each context in
178  * turn (sort-of pseudo-random replacement :).  This would be the
179  * place to implement an LRU scheme if anyone was motivated to do it.
180  *  -- paulus
181  */
182 void steal_context(void)
183 {
184 	struct mm_struct *mm;
185 	/*
186 	 * free up context `next_mmu_context'
187 	 * if we shouldn't free context 0, don't...
188 	 */
189 	if (next_mmu_context < FIRST_CONTEXT)
190 		next_mmu_context = FIRST_CONTEXT;
191 	mm = context_mm[next_mmu_context];
192 	flush_tlb_mm(mm);
193 	destroy_context(mm);
194 }
195 
196