xref: /openbmc/linux/arch/m68k/mm/mcfmmu.c (revision 05bcf503)
1 /*
2  * Based upon linux/arch/m68k/mm/sun3mmu.c
3  * Based upon linux/arch/ppc/mm/mmu_context.c
4  *
5  * Implementations of mm routines specific to the Coldfire MMU.
6  *
7  * Copyright (c) 2008 Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/bootmem.h>
16 
17 #include <asm/setup.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20 #include <asm/mmu_context.h>
21 #include <asm/mcf_pgalloc.h>
22 #include <asm/tlbflush.h>
23 
24 #define KMAPAREA(x)	((x >= VMALLOC_START) && (x < KMAP_END))
25 
26 mm_context_t next_mmu_context;
27 unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
28 atomic_t nr_free_contexts;
29 struct mm_struct *context_mm[LAST_CONTEXT+1];
30 extern unsigned long num_pages;
31 
32 void free_initmem(void)
33 {
34 }
35 
36 /*
37  * ColdFire paging_init derived from sun3.
38  */
39 void __init paging_init(void)
40 {
41 	pgd_t *pg_dir;
42 	pte_t *pg_table;
43 	unsigned long address, size;
44 	unsigned long next_pgtable, bootmem_end;
45 	unsigned long zones_size[MAX_NR_ZONES];
46 	enum zone_type zone;
47 	int i;
48 
49 	empty_zero_page = (void *) alloc_bootmem_pages(PAGE_SIZE);
50 	memset((void *) empty_zero_page, 0, PAGE_SIZE);
51 
52 	pg_dir = swapper_pg_dir;
53 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
54 
55 	size = num_pages * sizeof(pte_t);
56 	size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1);
57 	next_pgtable = (unsigned long) alloc_bootmem_pages(size);
58 
59 	bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK;
60 	pg_dir += PAGE_OFFSET >> PGDIR_SHIFT;
61 
62 	address = PAGE_OFFSET;
63 	while (address < (unsigned long)high_memory) {
64 		pg_table = (pte_t *) next_pgtable;
65 		next_pgtable += PTRS_PER_PTE * sizeof(pte_t);
66 		pgd_val(*pg_dir) = (unsigned long) pg_table;
67 		pg_dir++;
68 
69 		/* now change pg_table to kernel virtual addresses */
70 		for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) {
71 			pte_t pte = pfn_pte(virt_to_pfn(address), PAGE_INIT);
72 			if (address >= (unsigned long) high_memory)
73 				pte_val(pte) = 0;
74 
75 			set_pte(pg_table, pte);
76 			address += PAGE_SIZE;
77 		}
78 	}
79 
80 	current->mm = NULL;
81 
82 	for (zone = 0; zone < MAX_NR_ZONES; zone++)
83 		zones_size[zone] = 0x0;
84 	zones_size[ZONE_DMA] = num_pages;
85 	free_area_init(zones_size);
86 }
87 
88 int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word)
89 {
90 	unsigned long flags, mmuar, mmutr;
91 	struct mm_struct *mm;
92 	pgd_t *pgd;
93 	pmd_t *pmd;
94 	pte_t *pte;
95 	int asid;
96 
97 	local_irq_save(flags);
98 
99 	mmuar = (dtlb) ? mmu_read(MMUAR) :
100 		regs->pc + (extension_word * sizeof(long));
101 
102 	mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm;
103 	if (!mm) {
104 		local_irq_restore(flags);
105 		return -1;
106 	}
107 
108 	pgd = pgd_offset(mm, mmuar);
109 	if (pgd_none(*pgd))  {
110 		local_irq_restore(flags);
111 		return -1;
112 	}
113 
114 	pmd = pmd_offset(pgd, mmuar);
115 	if (pmd_none(*pmd)) {
116 		local_irq_restore(flags);
117 		return -1;
118 	}
119 
120 	pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar)
121 				: pte_offset_map(pmd, mmuar);
122 	if (pte_none(*pte) || !pte_present(*pte)) {
123 		local_irq_restore(flags);
124 		return -1;
125 	}
126 
127 	if (write) {
128 		if (!pte_write(*pte)) {
129 			local_irq_restore(flags);
130 			return -1;
131 		}
132 		set_pte(pte, pte_mkdirty(*pte));
133 	}
134 
135 	set_pte(pte, pte_mkyoung(*pte));
136 	asid = mm->context & 0xff;
137 	if (!pte_dirty(*pte) && !KMAPAREA(mmuar))
138 		set_pte(pte, pte_wrprotect(*pte));
139 
140 	mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V;
141 	if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE))
142 		mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT;
143 	mmu_write(MMUTR, mmutr);
144 
145 	mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) |
146 		((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X);
147 
148 	if (dtlb)
149 		mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA);
150 	else
151 		mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA);
152 
153 	local_irq_restore(flags);
154 	return 0;
155 }
156 
157 /*
158  * Initialize the context management stuff.
159  * The following was taken from arch/ppc/mmu_context.c
160  */
161 void __init mmu_context_init(void)
162 {
163 	/*
164 	 * Some processors have too few contexts to reserve one for
165 	 * init_mm, and require using context 0 for a normal task.
166 	 * Other processors reserve the use of context zero for the kernel.
167 	 * This code assumes FIRST_CONTEXT < 32.
168 	 */
169 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
170 	next_mmu_context = FIRST_CONTEXT;
171 	atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1);
172 }
173 
174 /*
175  * Steal a context from a task that has one at the moment.
176  * This is only used on 8xx and 4xx and we presently assume that
177  * they don't do SMP.  If they do then thicfpgalloc.hs will have to check
178  * whether the MM we steal is in use.
179  * We also assume that this is only used on systems that don't
180  * use an MMU hash table - this is true for 8xx and 4xx.
181  * This isn't an LRU system, it just frees up each context in
182  * turn (sort-of pseudo-random replacement :).  This would be the
183  * place to implement an LRU scheme if anyone was motivated to do it.
184  *  -- paulus
185  */
186 void steal_context(void)
187 {
188 	struct mm_struct *mm;
189 	/*
190 	 * free up context `next_mmu_context'
191 	 * if we shouldn't free context 0, don't...
192 	 */
193 	if (next_mmu_context < FIRST_CONTEXT)
194 		next_mmu_context = FIRST_CONTEXT;
195 	mm = context_mm[next_mmu_context];
196 	flush_tlb_mm(mm);
197 	destroy_context(mm);
198 }
199 
200