xref: /openbmc/linux/arch/m68k/mm/fault.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/m68k/mm/fault.c
4  *
5  *  Copyright (C) 1995  Hamish Macdonald
6  */
7 
8 #include <linux/mman.h>
9 #include <linux/mm.h>
10 #include <linux/kernel.h>
11 #include <linux/ptrace.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/uaccess.h>
15 
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/pgalloc.h>
19 
20 extern void die_if_kernel(char *, struct pt_regs *, long);
21 
22 int send_fault_sig(struct pt_regs *regs)
23 {
24 	int signo, si_code;
25 	void __user *addr;
26 
27 	signo = current->thread.signo;
28 	si_code = current->thread.code;
29 	addr = (void __user *)current->thread.faddr;
30 	pr_debug("send_fault_sig: %p,%d,%d\n", addr, signo, si_code);
31 
32 	if (user_mode(regs)) {
33 		force_sig_fault(signo, si_code, addr);
34 	} else {
35 		if (fixup_exception(regs))
36 			return -1;
37 
38 		//if (signo == SIGBUS)
39 		//	force_sig_fault(si_signo, si_code, addr);
40 
41 		/*
42 		 * Oops. The kernel tried to access some bad page. We'll have to
43 		 * terminate things with extreme prejudice.
44 		 */
45 		if ((unsigned long)addr < PAGE_SIZE)
46 			pr_alert("Unable to handle kernel NULL pointer dereference");
47 		else
48 			pr_alert("Unable to handle kernel access");
49 		pr_cont(" at virtual address %p\n", addr);
50 		die_if_kernel("Oops", regs, 0 /*error_code*/);
51 		do_exit(SIGKILL);
52 	}
53 
54 	return 1;
55 }
56 
57 /*
58  * This routine handles page faults.  It determines the problem, and
59  * then passes it off to one of the appropriate routines.
60  *
61  * error_code:
62  *	bit 0 == 0 means no page found, 1 means protection fault
63  *	bit 1 == 0 means read, 1 means write
64  *
65  * If this routine detects a bad access, it returns 1, otherwise it
66  * returns 0.
67  */
68 int do_page_fault(struct pt_regs *regs, unsigned long address,
69 			      unsigned long error_code)
70 {
71 	struct mm_struct *mm = current->mm;
72 	struct vm_area_struct * vma;
73 	vm_fault_t fault;
74 	unsigned int flags = FAULT_FLAG_DEFAULT;
75 
76 	pr_debug("do page fault:\nregs->sr=%#x, regs->pc=%#lx, address=%#lx, %ld, %p\n",
77 		regs->sr, regs->pc, address, error_code, mm ? mm->pgd : NULL);
78 
79 	/*
80 	 * If we're in an interrupt or have no user
81 	 * context, we must not take the fault..
82 	 */
83 	if (faulthandler_disabled() || !mm)
84 		goto no_context;
85 
86 	if (user_mode(regs))
87 		flags |= FAULT_FLAG_USER;
88 retry:
89 	mmap_read_lock(mm);
90 
91 	vma = find_vma(mm, address);
92 	if (!vma)
93 		goto map_err;
94 	if (vma->vm_flags & VM_IO)
95 		goto acc_err;
96 	if (vma->vm_start <= address)
97 		goto good_area;
98 	if (!(vma->vm_flags & VM_GROWSDOWN))
99 		goto map_err;
100 	if (user_mode(regs)) {
101 		/* Accessing the stack below usp is always a bug.  The
102 		   "+ 256" is there due to some instructions doing
103 		   pre-decrement on the stack and that doesn't show up
104 		   until later.  */
105 		if (address + 256 < rdusp())
106 			goto map_err;
107 	}
108 	if (expand_stack(vma, address))
109 		goto map_err;
110 
111 /*
112  * Ok, we have a good vm_area for this memory access, so
113  * we can handle it..
114  */
115 good_area:
116 	pr_debug("do_page_fault: good_area\n");
117 	switch (error_code & 3) {
118 		default:	/* 3: write, present */
119 			/* fall through */
120 		case 2:		/* write, not present */
121 			if (!(vma->vm_flags & VM_WRITE))
122 				goto acc_err;
123 			flags |= FAULT_FLAG_WRITE;
124 			break;
125 		case 1:		/* read, present */
126 			goto acc_err;
127 		case 0:		/* read, not present */
128 			if (unlikely(!vma_is_accessible(vma)))
129 				goto acc_err;
130 	}
131 
132 	/*
133 	 * If for any reason at all we couldn't handle the fault,
134 	 * make sure we exit gracefully rather than endlessly redo
135 	 * the fault.
136 	 */
137 
138 	fault = handle_mm_fault(vma, address, flags);
139 	pr_debug("handle_mm_fault returns %x\n", fault);
140 
141 	if (fault_signal_pending(fault, regs))
142 		return 0;
143 
144 	if (unlikely(fault & VM_FAULT_ERROR)) {
145 		if (fault & VM_FAULT_OOM)
146 			goto out_of_memory;
147 		else if (fault & VM_FAULT_SIGSEGV)
148 			goto map_err;
149 		else if (fault & VM_FAULT_SIGBUS)
150 			goto bus_err;
151 		BUG();
152 	}
153 
154 	/*
155 	 * Major/minor page fault accounting is only done on the
156 	 * initial attempt. If we go through a retry, it is extremely
157 	 * likely that the page will be found in page cache at that point.
158 	 */
159 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
160 		if (fault & VM_FAULT_MAJOR)
161 			current->maj_flt++;
162 		else
163 			current->min_flt++;
164 		if (fault & VM_FAULT_RETRY) {
165 			flags |= FAULT_FLAG_TRIED;
166 
167 			/*
168 			 * No need to mmap_read_unlock(mm) as we would
169 			 * have already released it in __lock_page_or_retry
170 			 * in mm/filemap.c.
171 			 */
172 
173 			goto retry;
174 		}
175 	}
176 
177 	mmap_read_unlock(mm);
178 	return 0;
179 
180 /*
181  * We ran out of memory, or some other thing happened to us that made
182  * us unable to handle the page fault gracefully.
183  */
184 out_of_memory:
185 	mmap_read_unlock(mm);
186 	if (!user_mode(regs))
187 		goto no_context;
188 	pagefault_out_of_memory();
189 	return 0;
190 
191 no_context:
192 	current->thread.signo = SIGBUS;
193 	current->thread.faddr = address;
194 	return send_fault_sig(regs);
195 
196 bus_err:
197 	current->thread.signo = SIGBUS;
198 	current->thread.code = BUS_ADRERR;
199 	current->thread.faddr = address;
200 	goto send_sig;
201 
202 map_err:
203 	current->thread.signo = SIGSEGV;
204 	current->thread.code = SEGV_MAPERR;
205 	current->thread.faddr = address;
206 	goto send_sig;
207 
208 acc_err:
209 	current->thread.signo = SIGSEGV;
210 	current->thread.code = SEGV_ACCERR;
211 	current->thread.faddr = address;
212 
213 send_sig:
214 	mmap_read_unlock(mm);
215 	return send_fault_sig(regs);
216 }
217