1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Miscellaneous Mac68K-specific stuff 4 */ 5 6 #include <linux/types.h> 7 #include <linux/errno.h> 8 #include <linux/kernel.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/time.h> 12 #include <linux/rtc.h> 13 #include <linux/mm.h> 14 15 #include <linux/adb.h> 16 #include <linux/cuda.h> 17 #include <linux/pmu.h> 18 19 #include <linux/uaccess.h> 20 #include <asm/io.h> 21 #include <asm/segment.h> 22 #include <asm/setup.h> 23 #include <asm/macintosh.h> 24 #include <asm/mac_via.h> 25 #include <asm/mac_oss.h> 26 27 #include <asm/machdep.h> 28 29 /* 30 * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU 31 * times wrap in 2040. If we need to handle later times, the read_time functions 32 * need to be changed to interpret wrapped times as post-2040. 33 */ 34 35 #define RTC_OFFSET 2082844800 36 37 static void (*rom_reset)(void); 38 39 #ifdef CONFIG_ADB_CUDA 40 static time64_t cuda_read_time(void) 41 { 42 struct adb_request req; 43 time64_t time; 44 45 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0) 46 return 0; 47 while (!req.complete) 48 cuda_poll(); 49 50 time = (u32)((req.reply[3] << 24) | (req.reply[4] << 16) | 51 (req.reply[5] << 8) | req.reply[6]); 52 53 return time - RTC_OFFSET; 54 } 55 56 static void cuda_write_time(time64_t time) 57 { 58 struct adb_request req; 59 u32 data = lower_32_bits(time + RTC_OFFSET); 60 61 if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME, 62 (data >> 24) & 0xFF, (data >> 16) & 0xFF, 63 (data >> 8) & 0xFF, data & 0xFF) < 0) 64 return; 65 while (!req.complete) 66 cuda_poll(); 67 } 68 69 static __u8 cuda_read_pram(int offset) 70 { 71 struct adb_request req; 72 73 if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, 74 (offset >> 8) & 0xFF, offset & 0xFF) < 0) 75 return 0; 76 while (!req.complete) 77 cuda_poll(); 78 return req.reply[3]; 79 } 80 81 static void cuda_write_pram(int offset, __u8 data) 82 { 83 struct adb_request req; 84 85 if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, 86 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) 87 return; 88 while (!req.complete) 89 cuda_poll(); 90 } 91 #endif /* CONFIG_ADB_CUDA */ 92 93 #ifdef CONFIG_ADB_PMU 94 static time64_t pmu_read_time(void) 95 { 96 struct adb_request req; 97 time64_t time; 98 99 if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0) 100 return 0; 101 while (!req.complete) 102 pmu_poll(); 103 104 time = (u32)((req.reply[1] << 24) | (req.reply[2] << 16) | 105 (req.reply[3] << 8) | req.reply[4]); 106 107 return time - RTC_OFFSET; 108 } 109 110 static void pmu_write_time(time64_t time) 111 { 112 struct adb_request req; 113 u32 data = lower_32_bits(time + RTC_OFFSET); 114 115 if (pmu_request(&req, NULL, 5, PMU_SET_RTC, 116 (data >> 24) & 0xFF, (data >> 16) & 0xFF, 117 (data >> 8) & 0xFF, data & 0xFF) < 0) 118 return; 119 while (!req.complete) 120 pmu_poll(); 121 } 122 123 static __u8 pmu_read_pram(int offset) 124 { 125 struct adb_request req; 126 127 if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM, 128 (offset >> 8) & 0xFF, offset & 0xFF) < 0) 129 return 0; 130 while (!req.complete) 131 pmu_poll(); 132 return req.reply[3]; 133 } 134 135 static void pmu_write_pram(int offset, __u8 data) 136 { 137 struct adb_request req; 138 139 if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM, 140 (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) 141 return; 142 while (!req.complete) 143 pmu_poll(); 144 } 145 #endif /* CONFIG_ADB_PMU */ 146 147 /* 148 * VIA PRAM/RTC access routines 149 * 150 * Must be called with interrupts disabled and 151 * the RTC should be enabled. 152 */ 153 154 static __u8 via_pram_readbyte(void) 155 { 156 int i, reg; 157 __u8 data; 158 159 reg = via1[vBufB] & ~VIA1B_vRTCClk; 160 161 /* Set the RTC data line to be an input. */ 162 163 via1[vDirB] &= ~VIA1B_vRTCData; 164 165 /* The bits of the byte come out in MSB order */ 166 167 data = 0; 168 for (i = 0 ; i < 8 ; i++) { 169 via1[vBufB] = reg; 170 via1[vBufB] = reg | VIA1B_vRTCClk; 171 data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData); 172 } 173 174 /* Return RTC data line to output state */ 175 176 via1[vDirB] |= VIA1B_vRTCData; 177 178 return data; 179 } 180 181 static void via_pram_writebyte(__u8 data) 182 { 183 int i, reg, bit; 184 185 reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData); 186 187 /* The bits of the byte go in in MSB order */ 188 189 for (i = 0 ; i < 8 ; i++) { 190 bit = data & 0x80? 1 : 0; 191 data <<= 1; 192 via1[vBufB] = reg | bit; 193 via1[vBufB] = reg | bit | VIA1B_vRTCClk; 194 } 195 } 196 197 /* 198 * Execute a VIA PRAM/RTC command. For read commands 199 * data should point to a one-byte buffer for the 200 * resulting data. For write commands it should point 201 * to the data byte to for the command. 202 * 203 * This function disables all interrupts while running. 204 */ 205 206 static void via_pram_command(int command, __u8 *data) 207 { 208 unsigned long flags; 209 int is_read; 210 211 local_irq_save(flags); 212 213 /* Enable the RTC and make sure the strobe line is high */ 214 215 via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb; 216 217 if (command & 0xFF00) { /* extended (two-byte) command */ 218 via_pram_writebyte((command & 0xFF00) >> 8); 219 via_pram_writebyte(command & 0xFF); 220 is_read = command & 0x8000; 221 } else { /* one-byte command */ 222 via_pram_writebyte(command); 223 is_read = command & 0x80; 224 } 225 if (is_read) { 226 *data = via_pram_readbyte(); 227 } else { 228 via_pram_writebyte(*data); 229 } 230 231 /* All done, disable the RTC */ 232 233 via1[vBufB] |= VIA1B_vRTCEnb; 234 235 local_irq_restore(flags); 236 } 237 238 static __u8 via_read_pram(int offset) 239 { 240 return 0; 241 } 242 243 static void via_write_pram(int offset, __u8 data) 244 { 245 } 246 247 /* 248 * Return the current time in seconds since January 1, 1904. 249 * 250 * This only works on machines with the VIA-based PRAM/RTC, which 251 * is basically any machine with Mac II-style ADB. 252 */ 253 254 static time64_t via_read_time(void) 255 { 256 union { 257 __u8 cdata[4]; 258 __u32 idata; 259 } result, last_result; 260 int count = 1; 261 262 via_pram_command(0x81, &last_result.cdata[3]); 263 via_pram_command(0x85, &last_result.cdata[2]); 264 via_pram_command(0x89, &last_result.cdata[1]); 265 via_pram_command(0x8D, &last_result.cdata[0]); 266 267 /* 268 * The NetBSD guys say to loop until you get the same reading 269 * twice in a row. 270 */ 271 272 while (1) { 273 via_pram_command(0x81, &result.cdata[3]); 274 via_pram_command(0x85, &result.cdata[2]); 275 via_pram_command(0x89, &result.cdata[1]); 276 via_pram_command(0x8D, &result.cdata[0]); 277 278 if (result.idata == last_result.idata) 279 return (time64_t)result.idata - RTC_OFFSET; 280 281 if (++count > 10) 282 break; 283 284 last_result.idata = result.idata; 285 } 286 287 pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n", 288 __func__, last_result.idata, result.idata); 289 290 return 0; 291 } 292 293 /* 294 * Set the current time to a number of seconds since January 1, 1904. 295 * 296 * This only works on machines with the VIA-based PRAM/RTC, which 297 * is basically any machine with Mac II-style ADB. 298 */ 299 300 static void via_write_time(time64_t time) 301 { 302 union { 303 __u8 cdata[4]; 304 __u32 idata; 305 } data; 306 __u8 temp; 307 308 /* Clear the write protect bit */ 309 310 temp = 0x55; 311 via_pram_command(0x35, &temp); 312 313 data.idata = lower_32_bits(time + RTC_OFFSET); 314 via_pram_command(0x01, &data.cdata[3]); 315 via_pram_command(0x05, &data.cdata[2]); 316 via_pram_command(0x09, &data.cdata[1]); 317 via_pram_command(0x0D, &data.cdata[0]); 318 319 /* Set the write protect bit */ 320 321 temp = 0xD5; 322 via_pram_command(0x35, &temp); 323 } 324 325 static void via_shutdown(void) 326 { 327 if (rbv_present) { 328 via2[rBufB] &= ~0x04; 329 } else { 330 /* Direction of vDirB is output */ 331 via2[vDirB] |= 0x04; 332 /* Send a value of 0 on that line */ 333 via2[vBufB] &= ~0x04; 334 mdelay(1000); 335 } 336 } 337 338 static void oss_shutdown(void) 339 { 340 oss->rom_ctrl = OSS_POWEROFF; 341 } 342 343 #ifdef CONFIG_ADB_CUDA 344 static void cuda_restart(void) 345 { 346 struct adb_request req; 347 348 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0) 349 return; 350 while (!req.complete) 351 cuda_poll(); 352 } 353 354 static void cuda_shutdown(void) 355 { 356 struct adb_request req; 357 358 if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0) 359 return; 360 361 /* Avoid infinite polling loop when PSU is not under Cuda control */ 362 switch (macintosh_config->ident) { 363 case MAC_MODEL_C660: 364 case MAC_MODEL_Q605: 365 case MAC_MODEL_Q605_ACC: 366 case MAC_MODEL_P475: 367 case MAC_MODEL_P475F: 368 return; 369 } 370 371 while (!req.complete) 372 cuda_poll(); 373 } 374 #endif /* CONFIG_ADB_CUDA */ 375 376 /* 377 *------------------------------------------------------------------- 378 * Below this point are the generic routines; they'll dispatch to the 379 * correct routine for the hardware on which we're running. 380 *------------------------------------------------------------------- 381 */ 382 383 void mac_pram_read(int offset, __u8 *buffer, int len) 384 { 385 __u8 (*func)(int); 386 int i; 387 388 switch (macintosh_config->adb_type) { 389 case MAC_ADB_IOP: 390 case MAC_ADB_II: 391 case MAC_ADB_PB1: 392 func = via_read_pram; 393 break; 394 #ifdef CONFIG_ADB_CUDA 395 case MAC_ADB_EGRET: 396 case MAC_ADB_CUDA: 397 func = cuda_read_pram; 398 break; 399 #endif 400 #ifdef CONFIG_ADB_PMU 401 case MAC_ADB_PB2: 402 func = pmu_read_pram; 403 break; 404 #endif 405 default: 406 return; 407 } 408 for (i = 0 ; i < len ; i++) { 409 buffer[i] = (*func)(offset++); 410 } 411 } 412 413 void mac_pram_write(int offset, __u8 *buffer, int len) 414 { 415 void (*func)(int, __u8); 416 int i; 417 418 switch (macintosh_config->adb_type) { 419 case MAC_ADB_IOP: 420 case MAC_ADB_II: 421 case MAC_ADB_PB1: 422 func = via_write_pram; 423 break; 424 #ifdef CONFIG_ADB_CUDA 425 case MAC_ADB_EGRET: 426 case MAC_ADB_CUDA: 427 func = cuda_write_pram; 428 break; 429 #endif 430 #ifdef CONFIG_ADB_PMU 431 case MAC_ADB_PB2: 432 func = pmu_write_pram; 433 break; 434 #endif 435 default: 436 return; 437 } 438 for (i = 0 ; i < len ; i++) { 439 (*func)(offset++, buffer[i]); 440 } 441 } 442 443 void mac_poweroff(void) 444 { 445 if (oss_present) { 446 oss_shutdown(); 447 } else if (macintosh_config->adb_type == MAC_ADB_II) { 448 via_shutdown(); 449 #ifdef CONFIG_ADB_CUDA 450 } else if (macintosh_config->adb_type == MAC_ADB_EGRET || 451 macintosh_config->adb_type == MAC_ADB_CUDA) { 452 cuda_shutdown(); 453 #endif 454 #ifdef CONFIG_ADB_PMU 455 } else if (macintosh_config->adb_type == MAC_ADB_PB2) { 456 pmu_shutdown(); 457 #endif 458 } 459 460 pr_crit("It is now safe to turn off your Macintosh.\n"); 461 local_irq_disable(); 462 while(1); 463 } 464 465 void mac_reset(void) 466 { 467 if (macintosh_config->adb_type == MAC_ADB_II) { 468 unsigned long flags; 469 470 /* need ROMBASE in booter */ 471 /* indeed, plus need to MAP THE ROM !! */ 472 473 if (mac_bi_data.rombase == 0) 474 mac_bi_data.rombase = 0x40800000; 475 476 /* works on some */ 477 rom_reset = (void *) (mac_bi_data.rombase + 0xa); 478 479 if (macintosh_config->ident == MAC_MODEL_SE30) { 480 /* 481 * MSch: Machines known to crash on ROM reset ... 482 */ 483 } else { 484 local_irq_save(flags); 485 486 rom_reset(); 487 488 local_irq_restore(flags); 489 } 490 #ifdef CONFIG_ADB_CUDA 491 } else if (macintosh_config->adb_type == MAC_ADB_EGRET || 492 macintosh_config->adb_type == MAC_ADB_CUDA) { 493 cuda_restart(); 494 #endif 495 #ifdef CONFIG_ADB_PMU 496 } else if (macintosh_config->adb_type == MAC_ADB_PB2) { 497 pmu_restart(); 498 #endif 499 } else if (CPU_IS_030) { 500 501 /* 030-specific reset routine. The idea is general, but the 502 * specific registers to reset are '030-specific. Until I 503 * have a non-030 machine, I can't test anything else. 504 * -- C. Scott Ananian <cananian@alumni.princeton.edu> 505 */ 506 507 unsigned long rombase = 0x40000000; 508 509 /* make a 1-to-1 mapping, using the transparent tran. reg. */ 510 unsigned long virt = (unsigned long) mac_reset; 511 unsigned long phys = virt_to_phys(mac_reset); 512 unsigned long addr = (phys&0xFF000000)|0x8777; 513 unsigned long offset = phys-virt; 514 515 local_irq_disable(); /* lets not screw this up, ok? */ 516 __asm__ __volatile__(".chip 68030\n\t" 517 "pmove %0,%/tt0\n\t" 518 ".chip 68k" 519 : : "m" (addr)); 520 /* Now jump to physical address so we can disable MMU */ 521 __asm__ __volatile__( 522 ".chip 68030\n\t" 523 "lea %/pc@(1f),%/a0\n\t" 524 "addl %0,%/a0\n\t"/* fixup target address and stack ptr */ 525 "addl %0,%/sp\n\t" 526 "pflusha\n\t" 527 "jmp %/a0@\n\t" /* jump into physical memory */ 528 "0:.long 0\n\t" /* a constant zero. */ 529 /* OK. Now reset everything and jump to reset vector. */ 530 "1:\n\t" 531 "lea %/pc@(0b),%/a0\n\t" 532 "pmove %/a0@, %/tc\n\t" /* disable mmu */ 533 "pmove %/a0@, %/tt0\n\t" /* disable tt0 */ 534 "pmove %/a0@, %/tt1\n\t" /* disable tt1 */ 535 "movel #0, %/a0\n\t" 536 "movec %/a0, %/vbr\n\t" /* clear vector base register */ 537 "movec %/a0, %/cacr\n\t" /* disable caches */ 538 "movel #0x0808,%/a0\n\t" 539 "movec %/a0, %/cacr\n\t" /* flush i&d caches */ 540 "movew #0x2700,%/sr\n\t" /* set up status register */ 541 "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */ 542 "movec %/a0, %/isp\n\t" 543 "movel %1@(0x4),%/a0\n\t" /* load reset vector */ 544 "reset\n\t" /* reset external devices */ 545 "jmp %/a0@\n\t" /* jump to the reset vector */ 546 ".chip 68k" 547 : : "r" (offset), "a" (rombase) : "a0"); 548 } 549 550 /* should never get here */ 551 pr_crit("Restart failed. Please restart manually.\n"); 552 local_irq_disable(); 553 while(1); 554 } 555 556 /* 557 * This function translates seconds since 1970 into a proper date. 558 * 559 * Algorithm cribbed from glibc2.1, __offtime(). 560 * 561 * This is roughly same as rtc_time64_to_tm(), which we should probably 562 * use here, but it's only available when CONFIG_RTC_LIB is enabled. 563 */ 564 #define SECS_PER_MINUTE (60) 565 #define SECS_PER_HOUR (SECS_PER_MINUTE * 60) 566 #define SECS_PER_DAY (SECS_PER_HOUR * 24) 567 568 static void unmktime(time64_t time, long offset, 569 int *yearp, int *monp, int *dayp, 570 int *hourp, int *minp, int *secp) 571 { 572 /* How many days come before each month (0-12). */ 573 static const unsigned short int __mon_yday[2][13] = 574 { 575 /* Normal years. */ 576 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, 577 /* Leap years. */ 578 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } 579 }; 580 int days, rem, y, wday, yday; 581 const unsigned short int *ip; 582 583 days = div_u64_rem(time, SECS_PER_DAY, &rem); 584 rem += offset; 585 while (rem < 0) { 586 rem += SECS_PER_DAY; 587 --days; 588 } 589 while (rem >= SECS_PER_DAY) { 590 rem -= SECS_PER_DAY; 591 ++days; 592 } 593 *hourp = rem / SECS_PER_HOUR; 594 rem %= SECS_PER_HOUR; 595 *minp = rem / SECS_PER_MINUTE; 596 *secp = rem % SECS_PER_MINUTE; 597 /* January 1, 1970 was a Thursday. */ 598 wday = (4 + days) % 7; /* Day in the week. Not currently used */ 599 if (wday < 0) wday += 7; 600 y = 1970; 601 602 #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0)) 603 #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) 604 #define __isleap(year) \ 605 ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) 606 607 while (days < 0 || days >= (__isleap (y) ? 366 : 365)) 608 { 609 /* Guess a corrected year, assuming 365 days per year. */ 610 long int yg = y + days / 365 - (days % 365 < 0); 611 612 /* Adjust DAYS and Y to match the guessed year. */ 613 days -= (yg - y) * 365 + 614 LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1); 615 y = yg; 616 } 617 *yearp = y - 1900; 618 yday = days; /* day in the year. Not currently used. */ 619 ip = __mon_yday[__isleap(y)]; 620 for (y = 11; days < (long int) ip[y]; --y) 621 continue; 622 days -= ip[y]; 623 *monp = y; 624 *dayp = days + 1; /* day in the month */ 625 return; 626 } 627 628 /* 629 * Read/write the hardware clock. 630 */ 631 632 int mac_hwclk(int op, struct rtc_time *t) 633 { 634 time64_t now; 635 636 if (!op) { /* read */ 637 switch (macintosh_config->adb_type) { 638 case MAC_ADB_IOP: 639 case MAC_ADB_II: 640 case MAC_ADB_PB1: 641 now = via_read_time(); 642 break; 643 #ifdef CONFIG_ADB_CUDA 644 case MAC_ADB_EGRET: 645 case MAC_ADB_CUDA: 646 now = cuda_read_time(); 647 break; 648 #endif 649 #ifdef CONFIG_ADB_PMU 650 case MAC_ADB_PB2: 651 now = pmu_read_time(); 652 break; 653 #endif 654 default: 655 now = 0; 656 } 657 658 t->tm_wday = 0; 659 unmktime(now, 0, 660 &t->tm_year, &t->tm_mon, &t->tm_mday, 661 &t->tm_hour, &t->tm_min, &t->tm_sec); 662 pr_debug("%s: read %04d-%02d-%-2d %02d:%02d:%02d\n", 663 __func__, t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 664 t->tm_hour, t->tm_min, t->tm_sec); 665 } else { /* write */ 666 pr_debug("%s: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n", 667 __func__, t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 668 t->tm_hour, t->tm_min, t->tm_sec); 669 670 now = mktime64(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, 671 t->tm_hour, t->tm_min, t->tm_sec); 672 673 switch (macintosh_config->adb_type) { 674 case MAC_ADB_IOP: 675 case MAC_ADB_II: 676 case MAC_ADB_PB1: 677 via_write_time(now); 678 break; 679 #ifdef CONFIG_ADB_CUDA 680 case MAC_ADB_EGRET: 681 case MAC_ADB_CUDA: 682 cuda_write_time(now); 683 break; 684 #endif 685 #ifdef CONFIG_ADB_PMU 686 case MAC_ADB_PB2: 687 pmu_write_time(now); 688 break; 689 #endif 690 default: 691 return -ENODEV; 692 } 693 } 694 return 0; 695 } 696