xref: /openbmc/linux/arch/m68k/mac/misc.c (revision 23c2b932)
1 /*
2  * Miscellaneous Mac68K-specific stuff
3  */
4 
5 #include <linux/types.h>
6 #include <linux/errno.h>
7 #include <linux/miscdevice.h>
8 #include <linux/kernel.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/time.h>
12 #include <linux/rtc.h>
13 #include <linux/mm.h>
14 
15 #include <linux/adb.h>
16 #include <linux/cuda.h>
17 #include <linux/pmu.h>
18 
19 #include <asm/uaccess.h>
20 #include <asm/io.h>
21 #include <asm/rtc.h>
22 #include <asm/segment.h>
23 #include <asm/setup.h>
24 #include <asm/macintosh.h>
25 #include <asm/mac_via.h>
26 #include <asm/mac_oss.h>
27 
28 #include <asm/machdep.h>
29 
30 /* Offset between Unix time (1970-based) and Mac time (1904-based) */
31 
32 #define RTC_OFFSET 2082844800
33 
34 static void (*rom_reset)(void);
35 
36 #ifdef CONFIG_ADB_CUDA
37 static long cuda_read_time(void)
38 {
39 	struct adb_request req;
40 	long time;
41 
42 	if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME) < 0)
43 		return 0;
44 	while (!req.complete)
45 		cuda_poll();
46 
47 	time = (req.reply[3] << 24) | (req.reply[4] << 16)
48 		| (req.reply[5] << 8) | req.reply[6];
49 	return time - RTC_OFFSET;
50 }
51 
52 static void cuda_write_time(long data)
53 {
54 	struct adb_request req;
55 	data += RTC_OFFSET;
56 	if (cuda_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME,
57 			(data >> 24) & 0xFF, (data >> 16) & 0xFF,
58 			(data >> 8) & 0xFF, data & 0xFF) < 0)
59 		return;
60 	while (!req.complete)
61 		cuda_poll();
62 }
63 
64 static __u8 cuda_read_pram(int offset)
65 {
66 	struct adb_request req;
67 	if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
68 			(offset >> 8) & 0xFF, offset & 0xFF) < 0)
69 		return 0;
70 	while (!req.complete)
71 		cuda_poll();
72 	return req.reply[3];
73 }
74 
75 static void cuda_write_pram(int offset, __u8 data)
76 {
77 	struct adb_request req;
78 	if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
79 			(offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
80 		return;
81 	while (!req.complete)
82 		cuda_poll();
83 }
84 #else
85 #define cuda_read_time() 0
86 #define cuda_write_time(n)
87 #define cuda_read_pram NULL
88 #define cuda_write_pram NULL
89 #endif
90 
91 #ifdef CONFIG_ADB_PMU68K
92 static long pmu_read_time(void)
93 {
94 	struct adb_request req;
95 	long time;
96 
97 	if (pmu_request(&req, NULL, 1, PMU_READ_RTC) < 0)
98 		return 0;
99 	while (!req.complete)
100 		pmu_poll();
101 
102 	time = (req.reply[1] << 24) | (req.reply[2] << 16)
103 		| (req.reply[3] << 8) | req.reply[4];
104 	return time - RTC_OFFSET;
105 }
106 
107 static void pmu_write_time(long data)
108 {
109 	struct adb_request req;
110 	data += RTC_OFFSET;
111 	if (pmu_request(&req, NULL, 5, PMU_SET_RTC,
112 			(data >> 24) & 0xFF, (data >> 16) & 0xFF,
113 			(data >> 8) & 0xFF, data & 0xFF) < 0)
114 		return;
115 	while (!req.complete)
116 		pmu_poll();
117 }
118 
119 static __u8 pmu_read_pram(int offset)
120 {
121 	struct adb_request req;
122 	if (pmu_request(&req, NULL, 3, PMU_READ_NVRAM,
123 			(offset >> 8) & 0xFF, offset & 0xFF) < 0)
124 		return 0;
125 	while (!req.complete)
126 		pmu_poll();
127 	return req.reply[3];
128 }
129 
130 static void pmu_write_pram(int offset, __u8 data)
131 {
132 	struct adb_request req;
133 	if (pmu_request(&req, NULL, 4, PMU_WRITE_NVRAM,
134 			(offset >> 8) & 0xFF, offset & 0xFF, data) < 0)
135 		return;
136 	while (!req.complete)
137 		pmu_poll();
138 }
139 #else
140 #define pmu_read_time() 0
141 #define pmu_write_time(n)
142 #define pmu_read_pram NULL
143 #define pmu_write_pram NULL
144 #endif
145 
146 #if 0 /* def CONFIG_ADB_MACIISI */
147 extern int maciisi_request(struct adb_request *req,
148 			void (*done)(struct adb_request *), int nbytes, ...);
149 
150 static long maciisi_read_time(void)
151 {
152 	struct adb_request req;
153 	long time;
154 
155 	if (maciisi_request(&req, NULL, 2, CUDA_PACKET, CUDA_GET_TIME))
156 		return 0;
157 
158 	time = (req.reply[3] << 24) | (req.reply[4] << 16)
159 		| (req.reply[5] << 8) | req.reply[6];
160 	return time - RTC_OFFSET;
161 }
162 
163 static void maciisi_write_time(long data)
164 {
165 	struct adb_request req;
166 	data += RTC_OFFSET;
167 	maciisi_request(&req, NULL, 6, CUDA_PACKET, CUDA_SET_TIME,
168 			(data >> 24) & 0xFF, (data >> 16) & 0xFF,
169 			(data >> 8) & 0xFF, data & 0xFF);
170 }
171 
172 static __u8 maciisi_read_pram(int offset)
173 {
174 	struct adb_request req;
175 	if (maciisi_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM,
176 			(offset >> 8) & 0xFF, offset & 0xFF))
177 		return 0;
178 	return req.reply[3];
179 }
180 
181 static void maciisi_write_pram(int offset, __u8 data)
182 {
183 	struct adb_request req;
184 	maciisi_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM,
185 			(offset >> 8) & 0xFF, offset & 0xFF, data);
186 }
187 #else
188 #define maciisi_read_time() 0
189 #define maciisi_write_time(n)
190 #define maciisi_read_pram NULL
191 #define maciisi_write_pram NULL
192 #endif
193 
194 /*
195  * VIA PRAM/RTC access routines
196  *
197  * Must be called with interrupts disabled and
198  * the RTC should be enabled.
199  */
200 
201 static __u8 via_pram_readbyte(void)
202 {
203 	int	i,reg;
204 	__u8	data;
205 
206 	reg = via1[vBufB] & ~VIA1B_vRTCClk;
207 
208 	/* Set the RTC data line to be an input. */
209 
210 	via1[vDirB] &= ~VIA1B_vRTCData;
211 
212 	/* The bits of the byte come out in MSB order */
213 
214 	data = 0;
215 	for (i = 0 ; i < 8 ; i++) {
216 		via1[vBufB] = reg;
217 		via1[vBufB] = reg | VIA1B_vRTCClk;
218 		data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData);
219 	}
220 
221 	/* Return RTC data line to output state */
222 
223 	via1[vDirB] |= VIA1B_vRTCData;
224 
225 	return data;
226 }
227 
228 static void via_pram_writebyte(__u8 data)
229 {
230 	int	i,reg,bit;
231 
232 	reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData);
233 
234 	/* The bits of the byte go in in MSB order */
235 
236 	for (i = 0 ; i < 8 ; i++) {
237 		bit = data & 0x80? 1 : 0;
238 		data <<= 1;
239 		via1[vBufB] = reg | bit;
240 		via1[vBufB] = reg | bit | VIA1B_vRTCClk;
241 	}
242 }
243 
244 /*
245  * Execute a VIA PRAM/RTC command. For read commands
246  * data should point to a one-byte buffer for the
247  * resulting data. For write commands it should point
248  * to the data byte to for the command.
249  *
250  * This function disables all interrupts while running.
251  */
252 
253 static void via_pram_command(int command, __u8 *data)
254 {
255 	unsigned long flags;
256 	int	is_read;
257 
258 	local_irq_save(flags);
259 
260 	/* Enable the RTC and make sure the strobe line is high */
261 
262 	via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb;
263 
264 	if (command & 0xFF00) {		/* extended (two-byte) command */
265 		via_pram_writebyte((command & 0xFF00) >> 8);
266 		via_pram_writebyte(command & 0xFF);
267 		is_read = command & 0x8000;
268 	} else {			/* one-byte command */
269 		via_pram_writebyte(command);
270 		is_read = command & 0x80;
271 	}
272 	if (is_read) {
273 		*data = via_pram_readbyte();
274 	} else {
275 		via_pram_writebyte(*data);
276 	}
277 
278 	/* All done, disable the RTC */
279 
280 	via1[vBufB] |= VIA1B_vRTCEnb;
281 
282 	local_irq_restore(flags);
283 }
284 
285 static __u8 via_read_pram(int offset)
286 {
287 	return 0;
288 }
289 
290 static void via_write_pram(int offset, __u8 data)
291 {
292 }
293 
294 /*
295  * Return the current time in seconds since January 1, 1904.
296  *
297  * This only works on machines with the VIA-based PRAM/RTC, which
298  * is basically any machine with Mac II-style ADB.
299  */
300 
301 static long via_read_time(void)
302 {
303 	union {
304 		__u8 cdata[4];
305 		long idata;
306 	} result, last_result;
307 	int count = 1;
308 
309 	via_pram_command(0x81, &last_result.cdata[3]);
310 	via_pram_command(0x85, &last_result.cdata[2]);
311 	via_pram_command(0x89, &last_result.cdata[1]);
312 	via_pram_command(0x8D, &last_result.cdata[0]);
313 
314 	/*
315 	 * The NetBSD guys say to loop until you get the same reading
316 	 * twice in a row.
317 	 */
318 
319 	while (1) {
320 		via_pram_command(0x81, &result.cdata[3]);
321 		via_pram_command(0x85, &result.cdata[2]);
322 		via_pram_command(0x89, &result.cdata[1]);
323 		via_pram_command(0x8D, &result.cdata[0]);
324 
325 		if (result.idata == last_result.idata)
326 			return result.idata - RTC_OFFSET;
327 
328 		if (++count > 10)
329 			break;
330 
331 		last_result.idata = result.idata;
332 	}
333 
334 	pr_err("via_read_time: failed to read a stable value; "
335 	       "got 0x%08lx then 0x%08lx\n",
336 	       last_result.idata, result.idata);
337 
338 	return 0;
339 }
340 
341 /*
342  * Set the current time to a number of seconds since January 1, 1904.
343  *
344  * This only works on machines with the VIA-based PRAM/RTC, which
345  * is basically any machine with Mac II-style ADB.
346  */
347 
348 static void via_write_time(long time)
349 {
350 	union {
351 		__u8  cdata[4];
352 		long  idata;
353 	} data;
354 	__u8	temp;
355 
356 	/* Clear the write protect bit */
357 
358 	temp = 0x55;
359 	via_pram_command(0x35, &temp);
360 
361 	data.idata = time + RTC_OFFSET;
362 	via_pram_command(0x01, &data.cdata[3]);
363 	via_pram_command(0x05, &data.cdata[2]);
364 	via_pram_command(0x09, &data.cdata[1]);
365 	via_pram_command(0x0D, &data.cdata[0]);
366 
367 	/* Set the write protect bit */
368 
369 	temp = 0xD5;
370 	via_pram_command(0x35, &temp);
371 }
372 
373 static void via_shutdown(void)
374 {
375 	if (rbv_present) {
376 		via2[rBufB] &= ~0x04;
377 	} else {
378 		/* Direction of vDirB is output */
379 		via2[vDirB] |= 0x04;
380 		/* Send a value of 0 on that line */
381 		via2[vBufB] &= ~0x04;
382 		mdelay(1000);
383 	}
384 }
385 
386 /*
387  * FIXME: not sure how this is supposed to work exactly...
388  */
389 
390 static void oss_shutdown(void)
391 {
392 	oss->rom_ctrl = OSS_POWEROFF;
393 }
394 
395 #ifdef CONFIG_ADB_CUDA
396 
397 static void cuda_restart(void)
398 {
399 	struct adb_request req;
400 	if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0)
401 		return;
402 	while (!req.complete)
403 		cuda_poll();
404 }
405 
406 static void cuda_shutdown(void)
407 {
408 	struct adb_request req;
409 	if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0)
410 		return;
411 	while (!req.complete)
412 		cuda_poll();
413 }
414 
415 #endif /* CONFIG_ADB_CUDA */
416 
417 #ifdef CONFIG_ADB_PMU68K
418 
419 void pmu_restart(void)
420 {
421 	struct adb_request req;
422 	if (pmu_request(&req, NULL,
423 			2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0)
424 		return;
425 	while (!req.complete)
426 		pmu_poll();
427 	if (pmu_request(&req, NULL, 1, PMU_RESET) < 0)
428 		return;
429 	while (!req.complete)
430 		pmu_poll();
431 }
432 
433 void pmu_shutdown(void)
434 {
435 	struct adb_request req;
436 	if (pmu_request(&req, NULL,
437 			2, PMU_SET_INTR_MASK, PMU_INT_ADB|PMU_INT_TICK) < 0)
438 		return;
439 	while (!req.complete)
440 		pmu_poll();
441 	if (pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 'M', 'A', 'T', 'T') < 0)
442 		return;
443 	while (!req.complete)
444 		pmu_poll();
445 }
446 
447 #endif
448 
449 /*
450  *-------------------------------------------------------------------
451  * Below this point are the generic routines; they'll dispatch to the
452  * correct routine for the hardware on which we're running.
453  *-------------------------------------------------------------------
454  */
455 
456 void mac_pram_read(int offset, __u8 *buffer, int len)
457 {
458 	__u8 (*func)(int);
459 	int i;
460 
461 	switch(macintosh_config->adb_type) {
462 	case MAC_ADB_IISI:
463 		func = maciisi_read_pram; break;
464 	case MAC_ADB_PB1:
465 	case MAC_ADB_PB2:
466 		func = pmu_read_pram; break;
467 	case MAC_ADB_CUDA:
468 		func = cuda_read_pram; break;
469 	default:
470 		func = via_read_pram;
471 	}
472 	if (!func)
473 		return;
474 	for (i = 0 ; i < len ; i++) {
475 		buffer[i] = (*func)(offset++);
476 	}
477 }
478 
479 void mac_pram_write(int offset, __u8 *buffer, int len)
480 {
481 	void (*func)(int, __u8);
482 	int i;
483 
484 	switch(macintosh_config->adb_type) {
485 	case MAC_ADB_IISI:
486 		func = maciisi_write_pram; break;
487 	case MAC_ADB_PB1:
488 	case MAC_ADB_PB2:
489 		func = pmu_write_pram; break;
490 	case MAC_ADB_CUDA:
491 		func = cuda_write_pram; break;
492 	default:
493 		func = via_write_pram;
494 	}
495 	if (!func)
496 		return;
497 	for (i = 0 ; i < len ; i++) {
498 		(*func)(offset++, buffer[i]);
499 	}
500 }
501 
502 void mac_poweroff(void)
503 {
504 	/*
505 	 * MAC_ADB_IISI may need to be moved up here if it doesn't actually
506 	 * work using the ADB packet method.  --David Kilzer
507 	 */
508 
509 	if (oss_present) {
510 		oss_shutdown();
511 	} else if (macintosh_config->adb_type == MAC_ADB_II) {
512 		via_shutdown();
513 #ifdef CONFIG_ADB_CUDA
514 	} else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
515 		cuda_shutdown();
516 #endif
517 #ifdef CONFIG_ADB_PMU68K
518 	} else if (macintosh_config->adb_type == MAC_ADB_PB1
519 		|| macintosh_config->adb_type == MAC_ADB_PB2) {
520 		pmu_shutdown();
521 #endif
522 	}
523 	local_irq_enable();
524 	printk("It is now safe to turn off your Macintosh.\n");
525 	while(1);
526 }
527 
528 void mac_reset(void)
529 {
530 	if (macintosh_config->adb_type == MAC_ADB_II) {
531 		unsigned long flags;
532 
533 		/* need ROMBASE in booter */
534 		/* indeed, plus need to MAP THE ROM !! */
535 
536 		if (mac_bi_data.rombase == 0)
537 			mac_bi_data.rombase = 0x40800000;
538 
539 		/* works on some */
540 		rom_reset = (void *) (mac_bi_data.rombase + 0xa);
541 
542 		if (macintosh_config->ident == MAC_MODEL_SE30) {
543 			/*
544 			 * MSch: Machines known to crash on ROM reset ...
545 			 */
546 		} else {
547 			local_irq_save(flags);
548 
549 			rom_reset();
550 
551 			local_irq_restore(flags);
552 		}
553 #ifdef CONFIG_ADB_CUDA
554 	} else if (macintosh_config->adb_type == MAC_ADB_CUDA) {
555 		cuda_restart();
556 #endif
557 #ifdef CONFIG_ADB_PMU68K
558 	} else if (macintosh_config->adb_type == MAC_ADB_PB1
559 		|| macintosh_config->adb_type == MAC_ADB_PB2) {
560 		pmu_restart();
561 #endif
562 	} else if (CPU_IS_030) {
563 
564 		/* 030-specific reset routine.  The idea is general, but the
565 		 * specific registers to reset are '030-specific.  Until I
566 		 * have a non-030 machine, I can't test anything else.
567 		 *  -- C. Scott Ananian <cananian@alumni.princeton.edu>
568 		 */
569 
570 		unsigned long rombase = 0x40000000;
571 
572 		/* make a 1-to-1 mapping, using the transparent tran. reg. */
573 		unsigned long virt = (unsigned long) mac_reset;
574 		unsigned long phys = virt_to_phys(mac_reset);
575 		unsigned long addr = (phys&0xFF000000)|0x8777;
576 		unsigned long offset = phys-virt;
577 		local_irq_disable(); /* lets not screw this up, ok? */
578 		__asm__ __volatile__(".chip 68030\n\t"
579 				     "pmove %0,%/tt0\n\t"
580 				     ".chip 68k"
581 				     : : "m" (addr));
582 		/* Now jump to physical address so we can disable MMU */
583 		__asm__ __volatile__(
584                     ".chip 68030\n\t"
585 		    "lea %/pc@(1f),%/a0\n\t"
586 		    "addl %0,%/a0\n\t"/* fixup target address and stack ptr */
587 		    "addl %0,%/sp\n\t"
588 		    "pflusha\n\t"
589 		    "jmp %/a0@\n\t" /* jump into physical memory */
590 		    "0:.long 0\n\t" /* a constant zero. */
591 		    /* OK.  Now reset everything and jump to reset vector. */
592 		    "1:\n\t"
593 		    "lea %/pc@(0b),%/a0\n\t"
594 		    "pmove %/a0@, %/tc\n\t" /* disable mmu */
595 		    "pmove %/a0@, %/tt0\n\t" /* disable tt0 */
596 		    "pmove %/a0@, %/tt1\n\t" /* disable tt1 */
597 		    "movel #0, %/a0\n\t"
598 		    "movec %/a0, %/vbr\n\t" /* clear vector base register */
599 		    "movec %/a0, %/cacr\n\t" /* disable caches */
600 		    "movel #0x0808,%/a0\n\t"
601 		    "movec %/a0, %/cacr\n\t" /* flush i&d caches */
602 		    "movew #0x2700,%/sr\n\t" /* set up status register */
603 		    "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */
604 		    "movec %/a0, %/isp\n\t"
605 		    "movel %1@(0x4),%/a0\n\t" /* load reset vector */
606 		    "reset\n\t" /* reset external devices */
607 		    "jmp %/a0@\n\t" /* jump to the reset vector */
608 		    ".chip 68k"
609 		    : : "r" (offset), "a" (rombase) : "a0");
610 	}
611 
612 	/* should never get here */
613 	local_irq_enable();
614 	printk ("Restart failed.  Please restart manually.\n");
615 	while(1);
616 }
617 
618 /*
619  * This function translates seconds since 1970 into a proper date.
620  *
621  * Algorithm cribbed from glibc2.1, __offtime().
622  */
623 #define SECS_PER_MINUTE (60)
624 #define SECS_PER_HOUR  (SECS_PER_MINUTE * 60)
625 #define SECS_PER_DAY   (SECS_PER_HOUR * 24)
626 
627 static void unmktime(unsigned long time, long offset,
628 		     int *yearp, int *monp, int *dayp,
629 		     int *hourp, int *minp, int *secp)
630 {
631         /* How many days come before each month (0-12).  */
632 	static const unsigned short int __mon_yday[2][13] =
633 	{
634 		/* Normal years.  */
635 		{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
636 		/* Leap years.  */
637 		{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
638 	};
639 	long int days, rem, y, wday, yday;
640 	const unsigned short int *ip;
641 
642 	days = time / SECS_PER_DAY;
643 	rem = time % SECS_PER_DAY;
644 	rem += offset;
645 	while (rem < 0) {
646 		rem += SECS_PER_DAY;
647 		--days;
648 	}
649 	while (rem >= SECS_PER_DAY) {
650 		rem -= SECS_PER_DAY;
651 		++days;
652 	}
653 	*hourp = rem / SECS_PER_HOUR;
654 	rem %= SECS_PER_HOUR;
655 	*minp = rem / SECS_PER_MINUTE;
656 	*secp = rem % SECS_PER_MINUTE;
657 	/* January 1, 1970 was a Thursday. */
658 	wday = (4 + days) % 7; /* Day in the week. Not currently used */
659 	if (wday < 0) wday += 7;
660 	y = 1970;
661 
662 #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0))
663 #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))
664 #define __isleap(year)	\
665   ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
666 
667 	while (days < 0 || days >= (__isleap (y) ? 366 : 365))
668 	{
669 		/* Guess a corrected year, assuming 365 days per year.  */
670 		long int yg = y + days / 365 - (days % 365 < 0);
671 
672 		/* Adjust DAYS and Y to match the guessed year.  */
673 		days -= ((yg - y) * 365
674 			 + LEAPS_THRU_END_OF (yg - 1)
675 			 - LEAPS_THRU_END_OF (y - 1));
676 		y = yg;
677 	}
678 	*yearp = y - 1900;
679 	yday = days; /* day in the year.  Not currently used. */
680 	ip = __mon_yday[__isleap(y)];
681 	for (y = 11; days < (long int) ip[y]; --y)
682 		continue;
683 	days -= ip[y];
684 	*monp = y;
685 	*dayp = days + 1; /* day in the month */
686 	return;
687 }
688 
689 /*
690  * Read/write the hardware clock.
691  */
692 
693 int mac_hwclk(int op, struct rtc_time *t)
694 {
695 	unsigned long now;
696 
697 	if (!op) { /* read */
698 		switch (macintosh_config->adb_type) {
699 		case MAC_ADB_II:
700 		case MAC_ADB_IOP:
701 			now = via_read_time();
702 			break;
703 		case MAC_ADB_IISI:
704 			now = maciisi_read_time();
705 			break;
706 		case MAC_ADB_PB1:
707 		case MAC_ADB_PB2:
708 			now = pmu_read_time();
709 			break;
710 		case MAC_ADB_CUDA:
711 			now = cuda_read_time();
712 			break;
713 		default:
714 			now = 0;
715 		}
716 
717 		t->tm_wday = 0;
718 		unmktime(now, 0,
719 			 &t->tm_year, &t->tm_mon, &t->tm_mday,
720 			 &t->tm_hour, &t->tm_min, &t->tm_sec);
721 #if 0
722 		printk("mac_hwclk: read %04d-%02d-%-2d %02d:%02d:%02d\n",
723 			t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
724 			t->tm_hour, t->tm_min, t->tm_sec);
725 #endif
726 	} else { /* write */
727 #if 0
728 		printk("mac_hwclk: tried to write %04d-%02d-%-2d %02d:%02d:%02d\n",
729 			t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
730 			t->tm_hour, t->tm_min, t->tm_sec);
731 #endif
732 
733 		now = mktime(t->tm_year + 1900, t->tm_mon + 1, t->tm_mday,
734 			     t->tm_hour, t->tm_min, t->tm_sec);
735 
736 		switch (macintosh_config->adb_type) {
737 		case MAC_ADB_II:
738 		case MAC_ADB_IOP:
739 			via_write_time(now);
740 			break;
741 		case MAC_ADB_CUDA:
742 			cuda_write_time(now);
743 			break;
744 		case MAC_ADB_PB1:
745 		case MAC_ADB_PB2:
746 			pmu_write_time(now);
747 			break;
748 		case MAC_ADB_IISI:
749 			maciisi_write_time(now);
750 		}
751 	}
752 	return 0;
753 }
754 
755 /*
756  * Set minutes/seconds in the hardware clock
757  */
758 
759 int mac_set_clock_mmss (unsigned long nowtime)
760 {
761 	struct rtc_time now;
762 
763 	mac_hwclk(0, &now);
764 	now.tm_sec = nowtime % 60;
765 	now.tm_min = (nowtime / 60) % 60;
766 	mac_hwclk(1, &now);
767 
768 	return 0;
769 }
770