xref: /openbmc/linux/arch/m68k/mac/macints.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *	Macintosh interrupts
3  *
4  * General design:
5  * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6  * exclusively use the autovector interrupts (the 'generic level0-level7'
7  * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
8  * are used:
9  *	1	- VIA1
10  *		  - slot 0: one second interrupt (CA2)
11  *		  - slot 1: VBlank (CA1)
12  *		  - slot 2: ADB data ready (SR full)
13  *		  - slot 3: ADB data  (CB2)
14  *		  - slot 4: ADB clock (CB1)
15  *		  - slot 5: timer 2
16  *		  - slot 6: timer 1
17  *		  - slot 7: status of IRQ; signals 'any enabled int.'
18  *
19  *	2	- VIA2 or RBV
20  *		  - slot 0: SCSI DRQ (CA2)
21  *		  - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22  *		  - slot 2: /EXP IRQ (only on IIci)
23  *		  - slot 3: SCSI IRQ (CB2)
24  *		  - slot 4: ASC IRQ (CB1)
25  *		  - slot 5: timer 2 (not on IIci)
26  *		  - slot 6: timer 1 (not on IIci)
27  *		  - slot 7: status of IRQ; signals 'any enabled int.'
28  *
29  *	2	- OSS (IIfx only?)
30  *		  - slot 0: SCSI interrupt
31  *		  - slot 1: Sound interrupt
32  *
33  * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
34  *
35  *	3	- unused (?)
36  *
37  *	4	- SCC (slot number determined by reading RR3 on the SSC itself)
38  *		  - slot 1: SCC channel A
39  *		  - slot 2: SCC channel B
40  *
41  *	5	- unused (?)
42  *		  [serial errors or special conditions seem to raise level 6
43  *		  interrupts on some models (LC4xx?)]
44  *
45  *	6	- off switch (?)
46  *
47  * For OSS Macintoshes (IIfx only at this point):
48  *
49  *	3	- Nubus interrupt
50  *		  - slot 0: Slot $9
51  *		  - slot 1: Slot $A
52  *		  - slot 2: Slot $B
53  *		  - slot 3: Slot $C
54  *		  - slot 4: Slot $D
55  *		  - slot 5: Slot $E
56  *
57  *	4	- SCC IOP
58  *		  - slot 1: SCC channel A
59  *		  - slot 2: SCC channel B
60  *
61  *	5	- ISM IOP (ADB?)
62  *
63  *	6	- unused
64  *
65  * For PSC Macintoshes (660AV, 840AV):
66  *
67  *	3	- PSC level 3
68  *		  - slot 0: MACE
69  *
70  *	4	- PSC level 4
71  *		  - slot 1: SCC channel A interrupt
72  *		  - slot 2: SCC channel B interrupt
73  *		  - slot 3: MACE DMA
74  *
75  *	5	- PSC level 5
76  *
77  *	6	- PSC level 6
78  *
79  * Finally we have good 'ole level 7, the non-maskable interrupt:
80  *
81  *	7	- NMI (programmer's switch on the back of some Macs)
82  *		  Also RAM parity error on models which support it (IIc, IIfx?)
83  *
84  * The current interrupt logic looks something like this:
85  *
86  * - We install dispatchers for the autovector interrupts (1-7). These
87  *   dispatchers are responsible for querying the hardware (the
88  *   VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89  *   this information a machspec interrupt number is generated by placing the
90  *   index of the interrupt hardware into the low three bits and the original
91  *   autovector interrupt number in the upper 5 bits. The handlers for the
92  *   resulting machspec interrupt are then called.
93  *
94  * - Nubus is a special case because its interrupts are hidden behind two
95  *   layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96  *   which translates to IRQ number 17. In this spot we install _another_
97  *   dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98  *   then forms a new machspec interrupt number as above with the slot number
99  *   minus 9 in the low three bits and the pseudo-level 7 in the upper five
100  *   bits.  The handlers for this new machspec interrupt number are then
101  *   called. This puts Nubus interrupts into the range 56-62.
102  *
103  * - The Baboon interrupts (used on some PowerBooks) are an even more special
104  *   case. They're hidden behind the Nubus slot $C interrupt thus adding a
105  *   third layer of indirection. Why oh why did the Apple engineers do that?
106  *
107  * - We support "fast" and "slow" handlers, just like the Amiga port. The
108  *   fast handlers are called first and with all interrupts disabled. They
109  *   are expected to execute quickly (hence the name). The slow handlers are
110  *   called last with interrupts enabled and the interrupt level restored.
111  *   They must therefore be reentrant.
112  *
113  *   TODO:
114  *
115  */
116 
117 #include <linux/module.h>
118 #include <linux/types.h>
119 #include <linux/kernel.h>
120 #include <linux/sched.h>
121 #include <linux/kernel_stat.h>
122 #include <linux/interrupt.h> /* for intr_count */
123 #include <linux/delay.h>
124 #include <linux/seq_file.h>
125 
126 #include <asm/system.h>
127 #include <asm/irq.h>
128 #include <asm/traps.h>
129 #include <asm/bootinfo.h>
130 #include <asm/macintosh.h>
131 #include <asm/mac_via.h>
132 #include <asm/mac_psc.h>
133 #include <asm/hwtest.h>
134 #include <asm/errno.h>
135 #include <asm/macints.h>
136 #include <asm/irq_regs.h>
137 #include <asm/mac_oss.h>
138 
139 #define DEBUG_SPURIOUS
140 #define SHUTUP_SONIC
141 
142 /* SCC interrupt mask */
143 
144 static int scc_mask;
145 
146 /*
147  * VIA/RBV hooks
148  */
149 
150 extern void via_register_interrupts(void);
151 extern void via_irq_enable(int);
152 extern void via_irq_disable(int);
153 extern void via_irq_clear(int);
154 extern int  via_irq_pending(int);
155 
156 /*
157  * OSS hooks
158  */
159 
160 extern void oss_register_interrupts(void);
161 extern void oss_irq_enable(int);
162 extern void oss_irq_disable(int);
163 extern void oss_irq_clear(int);
164 extern int  oss_irq_pending(int);
165 
166 /*
167  * PSC hooks
168  */
169 
170 extern void psc_register_interrupts(void);
171 extern void psc_irq_enable(int);
172 extern void psc_irq_disable(int);
173 extern void psc_irq_clear(int);
174 extern int  psc_irq_pending(int);
175 
176 /*
177  * IOP hooks
178  */
179 
180 extern void iop_register_interrupts(void);
181 
182 /*
183  * Baboon hooks
184  */
185 
186 extern int baboon_present;
187 
188 extern void baboon_register_interrupts(void);
189 extern void baboon_irq_enable(int);
190 extern void baboon_irq_disable(int);
191 extern void baboon_irq_clear(int);
192 
193 /*
194  * SCC interrupt routines
195  */
196 
197 static void scc_irq_enable(unsigned int);
198 static void scc_irq_disable(unsigned int);
199 
200 /*
201  * console_loglevel determines NMI handler function
202  */
203 
204 irqreturn_t mac_nmi_handler(int, void *);
205 irqreturn_t mac_debug_handler(int, void *);
206 
207 /* #define DEBUG_MACINTS */
208 
209 void mac_enable_irq(unsigned int irq);
210 void mac_disable_irq(unsigned int irq);
211 
212 static struct irq_controller mac_irq_controller = {
213 	.name		= "mac",
214 	.lock		= __SPIN_LOCK_UNLOCKED(mac_irq_controller.lock),
215 	.enable		= mac_enable_irq,
216 	.disable	= mac_disable_irq,
217 };
218 
219 void __init mac_init_IRQ(void)
220 {
221 #ifdef DEBUG_MACINTS
222 	printk("mac_init_IRQ(): Setting things up...\n");
223 #endif
224 	scc_mask = 0;
225 
226 	m68k_setup_irq_controller(&mac_irq_controller, IRQ_USER,
227 				  NUM_MAC_SOURCES - IRQ_USER);
228 	/* Make sure the SONIC interrupt is cleared or things get ugly */
229 #ifdef SHUTUP_SONIC
230 	printk("Killing onboard sonic... ");
231 	/* This address should hopefully be mapped already */
232 	if (hwreg_present((void*)(0x50f0a000))) {
233 		*(long *)(0x50f0a014) = 0x7fffL;
234 		*(long *)(0x50f0a010) = 0L;
235 	}
236 	printk("Done.\n");
237 #endif /* SHUTUP_SONIC */
238 
239 	/*
240 	 * Now register the handlers for the master IRQ handlers
241 	 * at levels 1-7. Most of the work is done elsewhere.
242 	 */
243 
244 	if (oss_present)
245 		oss_register_interrupts();
246 	else
247 		via_register_interrupts();
248 	if (psc_present)
249 		psc_register_interrupts();
250 	if (baboon_present)
251 		baboon_register_interrupts();
252 	iop_register_interrupts();
253 	if (request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
254 			mac_nmi_handler))
255 		pr_err("Couldn't register NMI\n");
256 #ifdef DEBUG_MACINTS
257 	printk("mac_init_IRQ(): Done!\n");
258 #endif
259 }
260 
261 /*
262  *  mac_enable_irq - enable an interrupt source
263  * mac_disable_irq - disable an interrupt source
264  *   mac_clear_irq - clears a pending interrupt
265  * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
266  *
267  * These routines are just dispatchers to the VIA/OSS/PSC routines.
268  */
269 
270 void mac_enable_irq(unsigned int irq)
271 {
272 	int irq_src = IRQ_SRC(irq);
273 
274 	switch(irq_src) {
275 	case 1:
276 		via_irq_enable(irq);
277 		break;
278 	case 2:
279 	case 7:
280 		if (oss_present)
281 			oss_irq_enable(irq);
282 		else
283 			via_irq_enable(irq);
284 		break;
285 	case 3:
286 	case 4:
287 	case 5:
288 	case 6:
289 		if (psc_present)
290 			psc_irq_enable(irq);
291 		else if (oss_present)
292 			oss_irq_enable(irq);
293 		else if (irq_src == 4)
294 			scc_irq_enable(irq);
295 		break;
296 	case 8:
297 		if (baboon_present)
298 			baboon_irq_enable(irq);
299 		break;
300 	}
301 }
302 
303 void mac_disable_irq(unsigned int irq)
304 {
305 	int irq_src = IRQ_SRC(irq);
306 
307 	switch(irq_src) {
308 	case 1:
309 		via_irq_disable(irq);
310 		break;
311 	case 2:
312 	case 7:
313 		if (oss_present)
314 			oss_irq_disable(irq);
315 		else
316 			via_irq_disable(irq);
317 		break;
318 	case 3:
319 	case 4:
320 	case 5:
321 	case 6:
322 		if (psc_present)
323 			psc_irq_disable(irq);
324 		else if (oss_present)
325 			oss_irq_disable(irq);
326 		else if (irq_src == 4)
327 			scc_irq_disable(irq);
328 		break;
329 	case 8:
330 		if (baboon_present)
331 			baboon_irq_disable(irq);
332 		break;
333 	}
334 }
335 
336 void mac_clear_irq(unsigned int irq)
337 {
338 	switch(IRQ_SRC(irq)) {
339 	case 1:
340 		via_irq_clear(irq);
341 		break;
342 	case 2:
343 	case 7:
344 		if (oss_present)
345 			oss_irq_clear(irq);
346 		else
347 			via_irq_clear(irq);
348 		break;
349 	case 3:
350 	case 4:
351 	case 5:
352 	case 6:
353 		if (psc_present)
354 			psc_irq_clear(irq);
355 		else if (oss_present)
356 			oss_irq_clear(irq);
357 		break;
358 	case 8:
359 		if (baboon_present)
360 			baboon_irq_clear(irq);
361 		break;
362 	}
363 }
364 
365 int mac_irq_pending(unsigned int irq)
366 {
367 	switch(IRQ_SRC(irq)) {
368 	case 1:
369 		return via_irq_pending(irq);
370 	case 2:
371 	case 7:
372 		if (oss_present)
373 			return oss_irq_pending(irq);
374 		else
375 			return via_irq_pending(irq);
376 	case 3:
377 	case 4:
378 	case 5:
379 	case 6:
380 		if (psc_present)
381 			return psc_irq_pending(irq);
382 		else if (oss_present)
383 			return oss_irq_pending(irq);
384 	}
385 	return 0;
386 }
387 EXPORT_SYMBOL(mac_irq_pending);
388 
389 static int num_debug[8];
390 
391 irqreturn_t mac_debug_handler(int irq, void *dev_id)
392 {
393 	if (num_debug[irq] < 10) {
394 		printk("DEBUG: Unexpected IRQ %d\n", irq);
395 		num_debug[irq]++;
396 	}
397 	return IRQ_HANDLED;
398 }
399 
400 static int in_nmi;
401 static volatile int nmi_hold;
402 
403 irqreturn_t mac_nmi_handler(int irq, void *dev_id)
404 {
405 	int i;
406 	/*
407 	 * generate debug output on NMI switch if 'debug' kernel option given
408 	 * (only works with Penguin!)
409 	 */
410 
411 	in_nmi++;
412 	for (i=0; i<100; i++)
413 		udelay(1000);
414 
415 	if (in_nmi == 1) {
416 		nmi_hold = 1;
417 		printk("... pausing, press NMI to resume ...");
418 	} else {
419 		printk(" ok!\n");
420 		nmi_hold = 0;
421 	}
422 
423 	barrier();
424 
425 	while (nmi_hold == 1)
426 		udelay(1000);
427 
428 	if (console_loglevel >= 8) {
429 #if 0
430 		struct pt_regs *fp = get_irq_regs();
431 		show_state();
432 		printk("PC: %08lx\nSR: %04x  SP: %p\n", fp->pc, fp->sr, fp);
433 		printk("d0: %08lx    d1: %08lx    d2: %08lx    d3: %08lx\n",
434 		       fp->d0, fp->d1, fp->d2, fp->d3);
435 		printk("d4: %08lx    d5: %08lx    a0: %08lx    a1: %08lx\n",
436 		       fp->d4, fp->d5, fp->a0, fp->a1);
437 
438 		if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
439 			printk("Corrupted stack page\n");
440 		printk("Process %s (pid: %d, stackpage=%08lx)\n",
441 			current->comm, current->pid, current->kernel_stack_page);
442 		if (intr_count == 1)
443 			dump_stack((struct frame *)fp);
444 #else
445 		/* printk("NMI "); */
446 #endif
447 	}
448 	in_nmi--;
449 	return IRQ_HANDLED;
450 }
451 
452 /*
453  * Simple routines for masking and unmasking
454  * SCC interrupts in cases where this can't be
455  * done in hardware (only the PSC can do that.)
456  */
457 
458 static void scc_irq_enable(unsigned int irq)
459 {
460 	int irq_idx = IRQ_IDX(irq);
461 
462 	scc_mask |= (1 << irq_idx);
463 }
464 
465 static void scc_irq_disable(unsigned int irq)
466 {
467 	int irq_idx = IRQ_IDX(irq);
468 
469 	scc_mask &= ~(1 << irq_idx);
470 }
471 
472 /*
473  * SCC master interrupt handler. We have to do a bit of magic here
474  * to figure out what channel gave us the interrupt; putting this
475  * here is cleaner than hacking it into drivers/char/macserial.c.
476  */
477 
478 void mac_scc_dispatch(int irq, void *dev_id)
479 {
480 	volatile unsigned char *scc = (unsigned char *) mac_bi_data.sccbase + 2;
481 	unsigned char reg;
482 	unsigned long flags;
483 
484 	/* Read RR3 from the chip. Always do this on channel A */
485 	/* This must be an atomic operation so disable irqs.   */
486 
487 	local_irq_save(flags);
488 	*scc = 3;
489 	reg = *scc;
490 	local_irq_restore(flags);
491 
492 	/* Now dispatch. Bits 0-2 are for channel B and */
493 	/* bits 3-5 are for channel A. We can safely    */
494 	/* ignore the remaining bits here.              */
495 	/*                                              */
496 	/* Note that we're ignoring scc_mask for now.   */
497 	/* If we actually mask the ints then we tend to */
498 	/* get hammered by very persistent SCC irqs,    */
499 	/* and since they're autovector interrupts they */
500 	/* pretty much kill the system.                 */
501 
502 	if (reg & 0x38)
503 		m68k_handle_int(IRQ_SCCA);
504 	if (reg & 0x07)
505 		m68k_handle_int(IRQ_SCCB);
506 }
507