xref: /openbmc/linux/arch/m68k/mac/macints.c (revision 9c5f4afd)
1 /*
2  *	Macintosh interrupts
3  *
4  * General design:
5  * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6  * exclusively use the autovector interrupts (the 'generic level0-level7'
7  * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
8  * are used:
9  *	1	- VIA1
10  *		  - slot 0: one second interrupt (CA2)
11  *		  - slot 1: VBlank (CA1)
12  *		  - slot 2: ADB data ready (SR full)
13  *		  - slot 3: ADB data  (CB2)
14  *		  - slot 4: ADB clock (CB1)
15  *		  - slot 5: timer 2
16  *		  - slot 6: timer 1
17  *		  - slot 7: status of IRQ; signals 'any enabled int.'
18  *
19  *	2	- VIA2 or RBV
20  *		  - slot 0: SCSI DRQ (CA2)
21  *		  - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22  *		  - slot 2: /EXP IRQ (only on IIci)
23  *		  - slot 3: SCSI IRQ (CB2)
24  *		  - slot 4: ASC IRQ (CB1)
25  *		  - slot 5: timer 2 (not on IIci)
26  *		  - slot 6: timer 1 (not on IIci)
27  *		  - slot 7: status of IRQ; signals 'any enabled int.'
28  *
29  *	2	- OSS (IIfx only?)
30  *		  - slot 0: SCSI interrupt
31  *		  - slot 1: Sound interrupt
32  *
33  * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
34  *
35  *	3	- unused (?)
36  *
37  *	4	- SCC (slot number determined by reading RR3 on the SSC itself)
38  *		  - slot 1: SCC channel A
39  *		  - slot 2: SCC channel B
40  *
41  *	5	- unused (?)
42  *		  [serial errors or special conditions seem to raise level 6
43  *		  interrupts on some models (LC4xx?)]
44  *
45  *	6	- off switch (?)
46  *
47  * For OSS Macintoshes (IIfx only at this point):
48  *
49  *	3	- Nubus interrupt
50  *		  - slot 0: Slot $9
51  *		  - slot 1: Slot $A
52  *		  - slot 2: Slot $B
53  *		  - slot 3: Slot $C
54  *		  - slot 4: Slot $D
55  *		  - slot 5: Slot $E
56  *
57  *	4	- SCC IOP
58  *		  - slot 1: SCC channel A
59  *		  - slot 2: SCC channel B
60  *
61  *	5	- ISM IOP (ADB?)
62  *
63  *	6	- unused
64  *
65  * For PSC Macintoshes (660AV, 840AV):
66  *
67  *	3	- PSC level 3
68  *		  - slot 0: MACE
69  *
70  *	4	- PSC level 4
71  *		  - slot 1: SCC channel A interrupt
72  *		  - slot 2: SCC channel B interrupt
73  *		  - slot 3: MACE DMA
74  *
75  *	5	- PSC level 5
76  *
77  *	6	- PSC level 6
78  *
79  * Finally we have good 'ole level 7, the non-maskable interrupt:
80  *
81  *	7	- NMI (programmer's switch on the back of some Macs)
82  *		  Also RAM parity error on models which support it (IIc, IIfx?)
83  *
84  * The current interrupt logic looks something like this:
85  *
86  * - We install dispatchers for the autovector interrupts (1-7). These
87  *   dispatchers are responsible for querying the hardware (the
88  *   VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89  *   this information a machspec interrupt number is generated by placing the
90  *   index of the interrupt hardware into the low three bits and the original
91  *   autovector interrupt number in the upper 5 bits. The handlers for the
92  *   resulting machspec interrupt are then called.
93  *
94  * - Nubus is a special case because its interrupts are hidden behind two
95  *   layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96  *   which translates to IRQ number 17. In this spot we install _another_
97  *   dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98  *   then forms a new machspec interrupt number as above with the slot number
99  *   minus 9 in the low three bits and the pseudo-level 7 in the upper five
100  *   bits.  The handlers for this new machspec interrupt number are then
101  *   called. This puts Nubus interrupts into the range 56-62.
102  *
103  * - The Baboon interrupts (used on some PowerBooks) are an even more special
104  *   case. They're hidden behind the Nubus slot $C interrupt thus adding a
105  *   third layer of indirection. Why oh why did the Apple engineers do that?
106  *
107  * - We support "fast" and "slow" handlers, just like the Amiga port. The
108  *   fast handlers are called first and with all interrupts disabled. They
109  *   are expected to execute quickly (hence the name). The slow handlers are
110  *   called last with interrupts enabled and the interrupt level restored.
111  *   They must therefore be reentrant.
112  *
113  *   TODO:
114  *
115  */
116 
117 #include <linux/types.h>
118 #include <linux/kernel.h>
119 #include <linux/sched.h>
120 #include <linux/kernel_stat.h>
121 #include <linux/interrupt.h> /* for intr_count */
122 #include <linux/delay.h>
123 #include <linux/seq_file.h>
124 
125 #include <asm/system.h>
126 #include <asm/irq.h>
127 #include <asm/traps.h>
128 #include <asm/bootinfo.h>
129 #include <asm/machw.h>
130 #include <asm/macintosh.h>
131 #include <asm/mac_via.h>
132 #include <asm/mac_psc.h>
133 #include <asm/hwtest.h>
134 #include <asm/errno.h>
135 #include <asm/macints.h>
136 
137 #define DEBUG_SPURIOUS
138 #define SHUTUP_SONIC
139 
140 /* SCC interrupt mask */
141 
142 static int scc_mask;
143 
144 /*
145  * VIA/RBV hooks
146  */
147 
148 extern void via_init(void);
149 extern void via_register_interrupts(void);
150 extern void via_irq_enable(int);
151 extern void via_irq_disable(int);
152 extern void via_irq_clear(int);
153 extern int  via_irq_pending(int);
154 
155 /*
156  * OSS hooks
157  */
158 
159 extern int oss_present;
160 
161 extern void oss_init(void);
162 extern void oss_register_interrupts(void);
163 extern void oss_irq_enable(int);
164 extern void oss_irq_disable(int);
165 extern void oss_irq_clear(int);
166 extern int  oss_irq_pending(int);
167 
168 /*
169  * PSC hooks
170  */
171 
172 extern int psc_present;
173 
174 extern void psc_init(void);
175 extern void psc_register_interrupts(void);
176 extern void psc_irq_enable(int);
177 extern void psc_irq_disable(int);
178 extern void psc_irq_clear(int);
179 extern int  psc_irq_pending(int);
180 
181 /*
182  * IOP hooks
183  */
184 
185 extern void iop_register_interrupts(void);
186 
187 /*
188  * Baboon hooks
189  */
190 
191 extern int baboon_present;
192 
193 extern void baboon_init(void);
194 extern void baboon_register_interrupts(void);
195 extern void baboon_irq_enable(int);
196 extern void baboon_irq_disable(int);
197 extern void baboon_irq_clear(int);
198 extern int  baboon_irq_pending(int);
199 
200 /*
201  * SCC interrupt routines
202  */
203 
204 static void scc_irq_enable(unsigned int);
205 static void scc_irq_disable(unsigned int);
206 
207 /*
208  * console_loglevel determines NMI handler function
209  */
210 
211 irqreturn_t mac_nmi_handler(int, void *, struct pt_regs *);
212 irqreturn_t mac_debug_handler(int, void *, struct pt_regs *);
213 
214 /* #define DEBUG_MACINTS */
215 
216 static void mac_enable_irq(unsigned int irq);
217 static void mac_disable_irq(unsigned int irq);
218 
219 static struct irq_controller mac_irq_controller = {
220 	.name		= "mac",
221 	.lock		= SPIN_LOCK_UNLOCKED,
222 	.enable		= mac_enable_irq,
223 	.disable	= mac_disable_irq,
224 };
225 
226 void mac_init_IRQ(void)
227 {
228 #ifdef DEBUG_MACINTS
229 	printk("mac_init_IRQ(): Setting things up...\n");
230 #endif
231 	scc_mask = 0;
232 
233 	m68k_setup_irq_controller(&mac_irq_controller, IRQ_USER,
234 				  NUM_MAC_SOURCES - IRQ_USER);
235 	/* Make sure the SONIC interrupt is cleared or things get ugly */
236 #ifdef SHUTUP_SONIC
237 	printk("Killing onboard sonic... ");
238 	/* This address should hopefully be mapped already */
239 	if (hwreg_present((void*)(0x50f0a000))) {
240 		*(long *)(0x50f0a014) = 0x7fffL;
241 		*(long *)(0x50f0a010) = 0L;
242 	}
243 	printk("Done.\n");
244 #endif /* SHUTUP_SONIC */
245 
246 	/*
247 	 * Now register the handlers for the master IRQ handlers
248 	 * at levels 1-7. Most of the work is done elsewhere.
249 	 */
250 
251 	if (oss_present)
252 		oss_register_interrupts();
253 	else
254 		via_register_interrupts();
255 	if (psc_present)
256 		psc_register_interrupts();
257 	if (baboon_present)
258 		baboon_register_interrupts();
259 	iop_register_interrupts();
260 	request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
261 			mac_nmi_handler);
262 #ifdef DEBUG_MACINTS
263 	printk("mac_init_IRQ(): Done!\n");
264 #endif
265 }
266 
267 /*
268  *  mac_enable_irq - enable an interrupt source
269  * mac_disable_irq - disable an interrupt source
270  *   mac_clear_irq - clears a pending interrupt
271  * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
272  *
273  * These routines are just dispatchers to the VIA/OSS/PSC routines.
274  */
275 
276 static void mac_enable_irq(unsigned int irq)
277 {
278 	int irq_src = IRQ_SRC(irq);
279 
280 	switch(irq_src) {
281 	case 1:
282 		via_irq_enable(irq);
283 		break;
284 	case 2:
285 	case 7:
286 		if (oss_present)
287 			oss_irq_enable(irq);
288 		else
289 			via_irq_enable(irq);
290 		break;
291 	case 3:
292 	case 4:
293 	case 5:
294 	case 6:
295 		if (psc_present)
296 			psc_irq_enable(irq);
297 		else if (oss_present)
298 			oss_irq_enable(irq);
299 		else if (irq_src == 4)
300 			scc_irq_enable(irq);
301 		break;
302 	case 8:
303 		if (baboon_present)
304 			baboon_irq_enable(irq);
305 		break;
306 	}
307 }
308 
309 static void mac_disable_irq(unsigned int irq)
310 {
311 	int irq_src = IRQ_SRC(irq);
312 
313 	switch(irq_src) {
314 	case 1:
315 		via_irq_disable(irq);
316 		break;
317 	case 2:
318 	case 7:
319 		if (oss_present)
320 			oss_irq_disable(irq);
321 		else
322 			via_irq_disable(irq);
323 		break;
324 	case 3:
325 	case 4:
326 	case 5:
327 	case 6:
328 		if (psc_present)
329 			psc_irq_disable(irq);
330 		else if (oss_present)
331 			oss_irq_disable(irq);
332 		else if (irq_src == 4)
333 			scc_irq_disable(irq);
334 		break;
335 	case 8:
336 		if (baboon_present)
337 			baboon_irq_disable(irq);
338 		break;
339 	}
340 }
341 
342 void mac_clear_irq(unsigned int irq)
343 {
344 	switch(IRQ_SRC(irq)) {
345 	case 1:
346 		via_irq_clear(irq);
347 		break;
348 	case 2:
349 	case 7:
350 		if (oss_present)
351 			oss_irq_clear(irq);
352 		else
353 			via_irq_clear(irq);
354 		break;
355 	case 3:
356 	case 4:
357 	case 5:
358 	case 6:
359 		if (psc_present)
360 			psc_irq_clear(irq);
361 		else if (oss_present)
362 			oss_irq_clear(irq);
363 		break;
364 	case 8:
365 		if (baboon_present)
366 			baboon_irq_clear(irq);
367 		break;
368 	}
369 }
370 
371 int mac_irq_pending(unsigned int irq)
372 {
373 	switch(IRQ_SRC(irq)) {
374 	case 1:
375 		return via_irq_pending(irq);
376 	case 2:
377 	case 7:
378 		if (oss_present)
379 			return oss_irq_pending(irq);
380 		else
381 			return via_irq_pending(irq);
382 	case 3:
383 	case 4:
384 	case 5:
385 	case 6:
386 		if (psc_present)
387 			return psc_irq_pending(irq);
388 		else if (oss_present)
389 			return oss_irq_pending(irq);
390 	}
391 	return 0;
392 }
393 
394 static int num_debug[8];
395 
396 irqreturn_t mac_debug_handler(int irq, void *dev_id, struct pt_regs *regs)
397 {
398 	if (num_debug[irq] < 10) {
399 		printk("DEBUG: Unexpected IRQ %d\n", irq);
400 		num_debug[irq]++;
401 	}
402 	return IRQ_HANDLED;
403 }
404 
405 static int in_nmi;
406 static volatile int nmi_hold;
407 
408 irqreturn_t mac_nmi_handler(int irq, void *dev_id, struct pt_regs *fp)
409 {
410 	int i;
411 	/*
412 	 * generate debug output on NMI switch if 'debug' kernel option given
413 	 * (only works with Penguin!)
414 	 */
415 
416 	in_nmi++;
417 	for (i=0; i<100; i++)
418 		udelay(1000);
419 
420 	if (in_nmi == 1) {
421 		nmi_hold = 1;
422 		printk("... pausing, press NMI to resume ...");
423 	} else {
424 		printk(" ok!\n");
425 		nmi_hold = 0;
426 	}
427 
428 	barrier();
429 
430 	while (nmi_hold == 1)
431 		udelay(1000);
432 
433 	if (console_loglevel >= 8) {
434 #if 0
435 		show_state();
436 		printk("PC: %08lx\nSR: %04x  SP: %p\n", fp->pc, fp->sr, fp);
437 		printk("d0: %08lx    d1: %08lx    d2: %08lx    d3: %08lx\n",
438 		       fp->d0, fp->d1, fp->d2, fp->d3);
439 		printk("d4: %08lx    d5: %08lx    a0: %08lx    a1: %08lx\n",
440 		       fp->d4, fp->d5, fp->a0, fp->a1);
441 
442 		if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
443 			printk("Corrupted stack page\n");
444 		printk("Process %s (pid: %d, stackpage=%08lx)\n",
445 			current->comm, current->pid, current->kernel_stack_page);
446 		if (intr_count == 1)
447 			dump_stack((struct frame *)fp);
448 #else
449 		/* printk("NMI "); */
450 #endif
451 	}
452 	in_nmi--;
453 	return IRQ_HANDLED;
454 }
455 
456 /*
457  * Simple routines for masking and unmasking
458  * SCC interrupts in cases where this can't be
459  * done in hardware (only the PSC can do that.)
460  */
461 
462 static void scc_irq_enable(unsigned int irq)
463 {
464 	int irq_idx = IRQ_IDX(irq);
465 
466 	scc_mask |= (1 << irq_idx);
467 }
468 
469 static void scc_irq_disable(unsigned int irq)
470 {
471 	int irq_idx = IRQ_IDX(irq);
472 
473 	scc_mask &= ~(1 << irq_idx);
474 }
475 
476 /*
477  * SCC master interrupt handler. We have to do a bit of magic here
478  * to figure out what channel gave us the interrupt; putting this
479  * here is cleaner than hacking it into drivers/char/macserial.c.
480  */
481 
482 void mac_scc_dispatch(int irq, void *dev_id, struct pt_regs *regs)
483 {
484 	volatile unsigned char *scc = (unsigned char *) mac_bi_data.sccbase + 2;
485 	unsigned char reg;
486 	unsigned long flags;
487 
488 	/* Read RR3 from the chip. Always do this on channel A */
489 	/* This must be an atomic operation so disable irqs.   */
490 
491 	local_irq_save(flags);
492 	*scc = 3;
493 	reg = *scc;
494 	local_irq_restore(flags);
495 
496 	/* Now dispatch. Bits 0-2 are for channel B and */
497 	/* bits 3-5 are for channel A. We can safely    */
498 	/* ignore the remaining bits here.              */
499 	/*                                              */
500 	/* Note that we're ignoring scc_mask for now.   */
501 	/* If we actually mask the ints then we tend to */
502 	/* get hammered by very persistent SCC irqs,    */
503 	/* and since they're autovector interrupts they */
504 	/* pretty much kill the system.                 */
505 
506 	if (reg & 0x38)
507 		m68k_handle_int(IRQ_SCCA, regs);
508 	if (reg & 0x07)
509 		m68k_handle_int(IRQ_SCCB, regs);
510 }
511