xref: /openbmc/linux/arch/m68k/mac/macints.c (revision 746e8d3b)
1 /*
2  *	Macintosh interrupts
3  *
4  * General design:
5  * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6  * exclusively use the autovector interrupts (the 'generic level0-level7'
7  * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
8  * are used:
9  *	1	- VIA1
10  *		  - slot 0: one second interrupt (CA2)
11  *		  - slot 1: VBlank (CA1)
12  *		  - slot 2: ADB data ready (SR full)
13  *		  - slot 3: ADB data  (CB2)
14  *		  - slot 4: ADB clock (CB1)
15  *		  - slot 5: timer 2
16  *		  - slot 6: timer 1
17  *		  - slot 7: status of IRQ; signals 'any enabled int.'
18  *
19  *	2	- VIA2 or RBV
20  *		  - slot 0: SCSI DRQ (CA2)
21  *		  - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22  *		  - slot 2: /EXP IRQ (only on IIci)
23  *		  - slot 3: SCSI IRQ (CB2)
24  *		  - slot 4: ASC IRQ (CB1)
25  *		  - slot 5: timer 2 (not on IIci)
26  *		  - slot 6: timer 1 (not on IIci)
27  *		  - slot 7: status of IRQ; signals 'any enabled int.'
28  *
29  *	2	- OSS (IIfx only?)
30  *		  - slot 0: SCSI interrupt
31  *		  - slot 1: Sound interrupt
32  *
33  * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
34  *
35  *	3	- unused (?)
36  *
37  *	4	- SCC (slot number determined by reading RR3 on the SSC itself)
38  *		  - slot 1: SCC channel A
39  *		  - slot 2: SCC channel B
40  *
41  *	5	- unused (?)
42  *		  [serial errors or special conditions seem to raise level 6
43  *		  interrupts on some models (LC4xx?)]
44  *
45  *	6	- off switch (?)
46  *
47  * For OSS Macintoshes (IIfx only at this point):
48  *
49  *	3	- Nubus interrupt
50  *		  - slot 0: Slot $9
51  *		  - slot 1: Slot $A
52  *		  - slot 2: Slot $B
53  *		  - slot 3: Slot $C
54  *		  - slot 4: Slot $D
55  *		  - slot 5: Slot $E
56  *
57  *	4	- SCC IOP
58  *		  - slot 1: SCC channel A
59  *		  - slot 2: SCC channel B
60  *
61  *	5	- ISM IOP (ADB?)
62  *
63  *	6	- unused
64  *
65  * For PSC Macintoshes (660AV, 840AV):
66  *
67  *	3	- PSC level 3
68  *		  - slot 0: MACE
69  *
70  *	4	- PSC level 4
71  *		  - slot 1: SCC channel A interrupt
72  *		  - slot 2: SCC channel B interrupt
73  *		  - slot 3: MACE DMA
74  *
75  *	5	- PSC level 5
76  *
77  *	6	- PSC level 6
78  *
79  * Finally we have good 'ole level 7, the non-maskable interrupt:
80  *
81  *	7	- NMI (programmer's switch on the back of some Macs)
82  *		  Also RAM parity error on models which support it (IIc, IIfx?)
83  *
84  * The current interrupt logic looks something like this:
85  *
86  * - We install dispatchers for the autovector interrupts (1-7). These
87  *   dispatchers are responsible for querying the hardware (the
88  *   VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89  *   this information a machspec interrupt number is generated by placing the
90  *   index of the interrupt hardware into the low three bits and the original
91  *   autovector interrupt number in the upper 5 bits. The handlers for the
92  *   resulting machspec interrupt are then called.
93  *
94  * - Nubus is a special case because its interrupts are hidden behind two
95  *   layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96  *   which translates to IRQ number 17. In this spot we install _another_
97  *   dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98  *   then forms a new machspec interrupt number as above with the slot number
99  *   minus 9 in the low three bits and the pseudo-level 7 in the upper five
100  *   bits.  The handlers for this new machspec interrupt number are then
101  *   called. This puts Nubus interrupts into the range 56-62.
102  *
103  * - The Baboon interrupts (used on some PowerBooks) are an even more special
104  *   case. They're hidden behind the Nubus slot $C interrupt thus adding a
105  *   third layer of indirection. Why oh why did the Apple engineers do that?
106  *
107  * - We support "fast" and "slow" handlers, just like the Amiga port. The
108  *   fast handlers are called first and with all interrupts disabled. They
109  *   are expected to execute quickly (hence the name). The slow handlers are
110  *   called last with interrupts enabled and the interrupt level restored.
111  *   They must therefore be reentrant.
112  *
113  *   TODO:
114  *
115  */
116 
117 #include <linux/module.h>
118 #include <linux/types.h>
119 #include <linux/kernel.h>
120 #include <linux/sched.h>
121 #include <linux/kernel_stat.h>
122 #include <linux/interrupt.h> /* for intr_count */
123 #include <linux/delay.h>
124 #include <linux/seq_file.h>
125 
126 #include <asm/system.h>
127 #include <asm/irq.h>
128 #include <asm/traps.h>
129 #include <asm/bootinfo.h>
130 #include <asm/macintosh.h>
131 #include <asm/mac_via.h>
132 #include <asm/mac_psc.h>
133 #include <asm/hwtest.h>
134 #include <asm/errno.h>
135 #include <asm/macints.h>
136 #include <asm/irq_regs.h>
137 
138 #define DEBUG_SPURIOUS
139 #define SHUTUP_SONIC
140 
141 /* SCC interrupt mask */
142 
143 static int scc_mask;
144 
145 /*
146  * VIA/RBV hooks
147  */
148 
149 extern void via_init(void);
150 extern void via_register_interrupts(void);
151 extern void via_irq_enable(int);
152 extern void via_irq_disable(int);
153 extern void via_irq_clear(int);
154 extern int  via_irq_pending(int);
155 
156 /*
157  * OSS hooks
158  */
159 
160 extern int oss_present;
161 
162 extern void oss_init(void);
163 extern void oss_register_interrupts(void);
164 extern void oss_irq_enable(int);
165 extern void oss_irq_disable(int);
166 extern void oss_irq_clear(int);
167 extern int  oss_irq_pending(int);
168 
169 /*
170  * PSC hooks
171  */
172 
173 extern int psc_present;
174 
175 extern void psc_init(void);
176 extern void psc_register_interrupts(void);
177 extern void psc_irq_enable(int);
178 extern void psc_irq_disable(int);
179 extern void psc_irq_clear(int);
180 extern int  psc_irq_pending(int);
181 
182 /*
183  * IOP hooks
184  */
185 
186 extern void iop_register_interrupts(void);
187 
188 /*
189  * Baboon hooks
190  */
191 
192 extern int baboon_present;
193 
194 extern void baboon_init(void);
195 extern void baboon_register_interrupts(void);
196 extern void baboon_irq_enable(int);
197 extern void baboon_irq_disable(int);
198 extern void baboon_irq_clear(int);
199 extern int  baboon_irq_pending(int);
200 
201 /*
202  * SCC interrupt routines
203  */
204 
205 static void scc_irq_enable(unsigned int);
206 static void scc_irq_disable(unsigned int);
207 
208 /*
209  * console_loglevel determines NMI handler function
210  */
211 
212 irqreturn_t mac_nmi_handler(int, void *);
213 irqreturn_t mac_debug_handler(int, void *);
214 
215 /* #define DEBUG_MACINTS */
216 
217 void mac_enable_irq(unsigned int irq);
218 void mac_disable_irq(unsigned int irq);
219 
220 static struct irq_controller mac_irq_controller = {
221 	.name		= "mac",
222 	.lock		= __SPIN_LOCK_UNLOCKED(mac_irq_controller.lock),
223 	.enable		= mac_enable_irq,
224 	.disable	= mac_disable_irq,
225 };
226 
227 void __init mac_init_IRQ(void)
228 {
229 #ifdef DEBUG_MACINTS
230 	printk("mac_init_IRQ(): Setting things up...\n");
231 #endif
232 	scc_mask = 0;
233 
234 	m68k_setup_irq_controller(&mac_irq_controller, IRQ_USER,
235 				  NUM_MAC_SOURCES - IRQ_USER);
236 	/* Make sure the SONIC interrupt is cleared or things get ugly */
237 #ifdef SHUTUP_SONIC
238 	printk("Killing onboard sonic... ");
239 	/* This address should hopefully be mapped already */
240 	if (hwreg_present((void*)(0x50f0a000))) {
241 		*(long *)(0x50f0a014) = 0x7fffL;
242 		*(long *)(0x50f0a010) = 0L;
243 	}
244 	printk("Done.\n");
245 #endif /* SHUTUP_SONIC */
246 
247 	/*
248 	 * Now register the handlers for the master IRQ handlers
249 	 * at levels 1-7. Most of the work is done elsewhere.
250 	 */
251 
252 	if (oss_present)
253 		oss_register_interrupts();
254 	else
255 		via_register_interrupts();
256 	if (psc_present)
257 		psc_register_interrupts();
258 	if (baboon_present)
259 		baboon_register_interrupts();
260 	iop_register_interrupts();
261 	request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
262 			mac_nmi_handler);
263 #ifdef DEBUG_MACINTS
264 	printk("mac_init_IRQ(): Done!\n");
265 #endif
266 }
267 
268 /*
269  *  mac_enable_irq - enable an interrupt source
270  * mac_disable_irq - disable an interrupt source
271  *   mac_clear_irq - clears a pending interrupt
272  * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
273  *
274  * These routines are just dispatchers to the VIA/OSS/PSC routines.
275  */
276 
277 void mac_enable_irq(unsigned int irq)
278 {
279 	int irq_src = IRQ_SRC(irq);
280 
281 	switch(irq_src) {
282 	case 1:
283 		via_irq_enable(irq);
284 		break;
285 	case 2:
286 	case 7:
287 		if (oss_present)
288 			oss_irq_enable(irq);
289 		else
290 			via_irq_enable(irq);
291 		break;
292 	case 3:
293 	case 4:
294 	case 5:
295 	case 6:
296 		if (psc_present)
297 			psc_irq_enable(irq);
298 		else if (oss_present)
299 			oss_irq_enable(irq);
300 		else if (irq_src == 4)
301 			scc_irq_enable(irq);
302 		break;
303 	case 8:
304 		if (baboon_present)
305 			baboon_irq_enable(irq);
306 		break;
307 	}
308 }
309 
310 void mac_disable_irq(unsigned int irq)
311 {
312 	int irq_src = IRQ_SRC(irq);
313 
314 	switch(irq_src) {
315 	case 1:
316 		via_irq_disable(irq);
317 		break;
318 	case 2:
319 	case 7:
320 		if (oss_present)
321 			oss_irq_disable(irq);
322 		else
323 			via_irq_disable(irq);
324 		break;
325 	case 3:
326 	case 4:
327 	case 5:
328 	case 6:
329 		if (psc_present)
330 			psc_irq_disable(irq);
331 		else if (oss_present)
332 			oss_irq_disable(irq);
333 		else if (irq_src == 4)
334 			scc_irq_disable(irq);
335 		break;
336 	case 8:
337 		if (baboon_present)
338 			baboon_irq_disable(irq);
339 		break;
340 	}
341 }
342 
343 void mac_clear_irq(unsigned int irq)
344 {
345 	switch(IRQ_SRC(irq)) {
346 	case 1:
347 		via_irq_clear(irq);
348 		break;
349 	case 2:
350 	case 7:
351 		if (oss_present)
352 			oss_irq_clear(irq);
353 		else
354 			via_irq_clear(irq);
355 		break;
356 	case 3:
357 	case 4:
358 	case 5:
359 	case 6:
360 		if (psc_present)
361 			psc_irq_clear(irq);
362 		else if (oss_present)
363 			oss_irq_clear(irq);
364 		break;
365 	case 8:
366 		if (baboon_present)
367 			baboon_irq_clear(irq);
368 		break;
369 	}
370 }
371 
372 int mac_irq_pending(unsigned int irq)
373 {
374 	switch(IRQ_SRC(irq)) {
375 	case 1:
376 		return via_irq_pending(irq);
377 	case 2:
378 	case 7:
379 		if (oss_present)
380 			return oss_irq_pending(irq);
381 		else
382 			return via_irq_pending(irq);
383 	case 3:
384 	case 4:
385 	case 5:
386 	case 6:
387 		if (psc_present)
388 			return psc_irq_pending(irq);
389 		else if (oss_present)
390 			return oss_irq_pending(irq);
391 	}
392 	return 0;
393 }
394 EXPORT_SYMBOL(mac_irq_pending);
395 
396 static int num_debug[8];
397 
398 irqreturn_t mac_debug_handler(int irq, void *dev_id)
399 {
400 	if (num_debug[irq] < 10) {
401 		printk("DEBUG: Unexpected IRQ %d\n", irq);
402 		num_debug[irq]++;
403 	}
404 	return IRQ_HANDLED;
405 }
406 
407 static int in_nmi;
408 static volatile int nmi_hold;
409 
410 irqreturn_t mac_nmi_handler(int irq, void *dev_id)
411 {
412 	int i;
413 	/*
414 	 * generate debug output on NMI switch if 'debug' kernel option given
415 	 * (only works with Penguin!)
416 	 */
417 
418 	in_nmi++;
419 	for (i=0; i<100; i++)
420 		udelay(1000);
421 
422 	if (in_nmi == 1) {
423 		nmi_hold = 1;
424 		printk("... pausing, press NMI to resume ...");
425 	} else {
426 		printk(" ok!\n");
427 		nmi_hold = 0;
428 	}
429 
430 	barrier();
431 
432 	while (nmi_hold == 1)
433 		udelay(1000);
434 
435 	if (console_loglevel >= 8) {
436 #if 0
437 		struct pt_regs *fp = get_irq_regs();
438 		show_state();
439 		printk("PC: %08lx\nSR: %04x  SP: %p\n", fp->pc, fp->sr, fp);
440 		printk("d0: %08lx    d1: %08lx    d2: %08lx    d3: %08lx\n",
441 		       fp->d0, fp->d1, fp->d2, fp->d3);
442 		printk("d4: %08lx    d5: %08lx    a0: %08lx    a1: %08lx\n",
443 		       fp->d4, fp->d5, fp->a0, fp->a1);
444 
445 		if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
446 			printk("Corrupted stack page\n");
447 		printk("Process %s (pid: %d, stackpage=%08lx)\n",
448 			current->comm, current->pid, current->kernel_stack_page);
449 		if (intr_count == 1)
450 			dump_stack((struct frame *)fp);
451 #else
452 		/* printk("NMI "); */
453 #endif
454 	}
455 	in_nmi--;
456 	return IRQ_HANDLED;
457 }
458 
459 /*
460  * Simple routines for masking and unmasking
461  * SCC interrupts in cases where this can't be
462  * done in hardware (only the PSC can do that.)
463  */
464 
465 static void scc_irq_enable(unsigned int irq)
466 {
467 	int irq_idx = IRQ_IDX(irq);
468 
469 	scc_mask |= (1 << irq_idx);
470 }
471 
472 static void scc_irq_disable(unsigned int irq)
473 {
474 	int irq_idx = IRQ_IDX(irq);
475 
476 	scc_mask &= ~(1 << irq_idx);
477 }
478 
479 /*
480  * SCC master interrupt handler. We have to do a bit of magic here
481  * to figure out what channel gave us the interrupt; putting this
482  * here is cleaner than hacking it into drivers/char/macserial.c.
483  */
484 
485 void mac_scc_dispatch(int irq, void *dev_id)
486 {
487 	volatile unsigned char *scc = (unsigned char *) mac_bi_data.sccbase + 2;
488 	unsigned char reg;
489 	unsigned long flags;
490 
491 	/* Read RR3 from the chip. Always do this on channel A */
492 	/* This must be an atomic operation so disable irqs.   */
493 
494 	local_irq_save(flags);
495 	*scc = 3;
496 	reg = *scc;
497 	local_irq_restore(flags);
498 
499 	/* Now dispatch. Bits 0-2 are for channel B and */
500 	/* bits 3-5 are for channel A. We can safely    */
501 	/* ignore the remaining bits here.              */
502 	/*                                              */
503 	/* Note that we're ignoring scc_mask for now.   */
504 	/* If we actually mask the ints then we tend to */
505 	/* get hammered by very persistent SCC irqs,    */
506 	/* and since they're autovector interrupts they */
507 	/* pretty much kill the system.                 */
508 
509 	if (reg & 0x38)
510 		m68k_handle_int(IRQ_SCCA);
511 	if (reg & 0x07)
512 		m68k_handle_int(IRQ_SCCB);
513 }
514