1 /* 2 * I/O Processor (IOP) management 3 * Written and (C) 1999 by Joshua M. Thompson (funaho@jurai.org) 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice and this list of conditions. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice and this list of conditions in the documentation and/or other 12 * materials provided with the distribution. 13 */ 14 15 /* 16 * The IOP chips are used in the IIfx and some Quadras (900, 950) to manage 17 * serial and ADB. They are actually a 6502 processor and some glue logic. 18 * 19 * 990429 (jmt) - Initial implementation, just enough to knock the SCC IOP 20 * into compatible mode so nobody has to fiddle with the 21 * Serial Switch control panel anymore. 22 * 990603 (jmt) - Added code to grab the correct ISM IOP interrupt for OSS 23 * and non-OSS machines (at least I hope it's correct on a 24 * non-OSS machine -- someone with a Q900 or Q950 needs to 25 * check this.) 26 * 990605 (jmt) - Rearranged things a bit wrt IOP detection; iop_present is 27 * gone, IOP base addresses are now in an array and the 28 * globally-visible functions take an IOP number instead of an 29 * an actual base address. 30 * 990610 (jmt) - Finished the message passing framework and it seems to work. 31 * Sending _definitely_ works; my adb-bus.c mods can send 32 * messages and receive the MSG_COMPLETED status back from the 33 * IOP. The trick now is figuring out the message formats. 34 * 990611 (jmt) - More cleanups. Fixed problem where unclaimed messages on a 35 * receive channel were never properly acknowledged. Bracketed 36 * the remaining debug printk's with #ifdef's and disabled 37 * debugging. I can now type on the console. 38 * 990612 (jmt) - Copyright notice added. Reworked the way replies are handled. 39 * It turns out that replies are placed back in the send buffer 40 * for that channel; messages on the receive channels are always 41 * unsolicited messages from the IOP (and our replies to them 42 * should go back in the receive channel.) Also added tracking 43 * of device names to the listener functions ala the interrupt 44 * handlers. 45 * 990729 (jmt) - Added passing of pt_regs structure to IOP handlers. This is 46 * used by the new unified ADB driver. 47 * 48 * TODO: 49 * 50 * o Something should be periodically checking iop_alive() to make sure the 51 * IOP hasn't died. 52 * o Some of the IOP manager routines need better error checking and 53 * return codes. Nothing major, just prettying up. 54 */ 55 56 /* 57 * ----------------------- 58 * IOP Message Passing 101 59 * ----------------------- 60 * 61 * The host talks to the IOPs using a rather simple message-passing scheme via 62 * a shared memory area in the IOP RAM. Each IOP has seven "channels"; each 63 * channel is connected to a specific software driver on the IOP. For example 64 * on the SCC IOP there is one channel for each serial port. Each channel has 65 * an incoming and and outgoing message queue with a depth of one. 66 * 67 * A message is 32 bytes plus a state byte for the channel (MSG_IDLE, MSG_NEW, 68 * MSG_RCVD, MSG_COMPLETE). To send a message you copy the message into the 69 * buffer, set the state to MSG_NEW and signal the IOP by setting the IRQ flag 70 * in the IOP control to 1. The IOP will move the state to MSG_RCVD when it 71 * receives the message and then to MSG_COMPLETE when the message processing 72 * has completed. It is the host's responsibility at that point to read the 73 * reply back out of the send channel buffer and reset the channel state back 74 * to MSG_IDLE. 75 * 76 * To receive message from the IOP the same procedure is used except the roles 77 * are reversed. That is, the IOP puts message in the channel with a state of 78 * MSG_NEW, and the host receives the message and move its state to MSG_RCVD 79 * and then to MSG_COMPLETE when processing is completed and the reply (if any) 80 * has been placed back in the receive channel. The IOP will then reset the 81 * channel state to MSG_IDLE. 82 * 83 * Two sets of host interrupts are provided, INT0 and INT1. Both appear on one 84 * interrupt level; they are distinguished by a pair of bits in the IOP status 85 * register. The IOP will raise INT0 when one or more messages in the send 86 * channels have gone to the MSG_COMPLETE state and it will raise INT1 when one 87 * or more messages on the receive channels have gone to the MSG_NEW state. 88 * 89 * Since each channel handles only one message we have to implement a small 90 * interrupt-driven queue on our end. Messages to be sent are placed on the 91 * queue for sending and contain a pointer to an optional callback function. 92 * The handler for a message is called when the message state goes to 93 * MSG_COMPLETE. 94 * 95 * For receiving message we maintain a list of handler functions to call when 96 * a message is received on that IOP/channel combination. The handlers are 97 * called much like an interrupt handler and are passed a copy of the message 98 * from the IOP. The message state will be in MSG_RCVD while the handler runs; 99 * it is the handler's responsibility to call iop_complete_message() when 100 * finished; this function moves the message state to MSG_COMPLETE and signals 101 * the IOP. This two-step process is provided to allow the handler to defer 102 * message processing to a bottom-half handler if the processing will take 103 * a significant amount of time (handlers are called at interrupt time so they 104 * should execute quickly.) 105 */ 106 107 #include <linux/types.h> 108 #include <linux/kernel.h> 109 #include <linux/mm.h> 110 #include <linux/delay.h> 111 #include <linux/init.h> 112 #include <linux/interrupt.h> 113 114 #include <asm/macintosh.h> 115 #include <asm/macints.h> 116 #include <asm/mac_iop.h> 117 118 #ifdef DEBUG 119 #define iop_pr_debug(fmt, ...) \ 120 printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__) 121 #define iop_pr_cont(fmt, ...) \ 122 printk(KERN_CONT fmt, ##__VA_ARGS__) 123 #else 124 #define iop_pr_debug(fmt, ...) \ 125 no_printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__) 126 #define iop_pr_cont(fmt, ...) \ 127 no_printk(KERN_CONT fmt, ##__VA_ARGS__) 128 #endif 129 130 /* Non-zero if the IOPs are present */ 131 132 int iop_scc_present, iop_ism_present; 133 134 /* structure for tracking channel listeners */ 135 136 struct listener { 137 const char *devname; 138 void (*handler)(struct iop_msg *); 139 }; 140 141 /* 142 * IOP structures for the two IOPs 143 * 144 * The SCC IOP controls both serial ports (A and B) as its two functions. 145 * The ISM IOP controls the SWIM (floppy drive) and ADB. 146 */ 147 148 static volatile struct mac_iop *iop_base[NUM_IOPS]; 149 150 /* 151 * IOP message queues 152 */ 153 154 static struct iop_msg iop_msg_pool[NUM_IOP_MSGS]; 155 static struct iop_msg *iop_send_queue[NUM_IOPS][NUM_IOP_CHAN]; 156 static struct listener iop_listeners[NUM_IOPS][NUM_IOP_CHAN]; 157 158 irqreturn_t iop_ism_irq(int, void *); 159 160 /* 161 * Private access functions 162 */ 163 164 static __inline__ void iop_loadaddr(volatile struct mac_iop *iop, __u16 addr) 165 { 166 iop->ram_addr_lo = addr; 167 iop->ram_addr_hi = addr >> 8; 168 } 169 170 static __inline__ __u8 iop_readb(volatile struct mac_iop *iop, __u16 addr) 171 { 172 iop->ram_addr_lo = addr; 173 iop->ram_addr_hi = addr >> 8; 174 return iop->ram_data; 175 } 176 177 static __inline__ void iop_writeb(volatile struct mac_iop *iop, __u16 addr, __u8 data) 178 { 179 iop->ram_addr_lo = addr; 180 iop->ram_addr_hi = addr >> 8; 181 iop->ram_data = data; 182 } 183 184 static __inline__ void iop_stop(volatile struct mac_iop *iop) 185 { 186 iop->status_ctrl &= ~IOP_RUN; 187 } 188 189 static __inline__ void iop_start(volatile struct mac_iop *iop) 190 { 191 iop->status_ctrl = IOP_RUN | IOP_AUTOINC; 192 } 193 194 static __inline__ void iop_bypass(volatile struct mac_iop *iop) 195 { 196 iop->status_ctrl |= IOP_BYPASS; 197 } 198 199 static __inline__ void iop_interrupt(volatile struct mac_iop *iop) 200 { 201 iop->status_ctrl |= IOP_IRQ; 202 } 203 204 static int iop_alive(volatile struct mac_iop *iop) 205 { 206 int retval; 207 208 retval = (iop_readb(iop, IOP_ADDR_ALIVE) == 0xFF); 209 iop_writeb(iop, IOP_ADDR_ALIVE, 0); 210 return retval; 211 } 212 213 static struct iop_msg *iop_get_unused_msg(void) 214 { 215 int i; 216 unsigned long flags; 217 218 local_irq_save(flags); 219 220 for (i = 0 ; i < NUM_IOP_MSGS ; i++) { 221 if (iop_msg_pool[i].status == IOP_MSGSTATUS_UNUSED) { 222 iop_msg_pool[i].status = IOP_MSGSTATUS_WAITING; 223 local_irq_restore(flags); 224 return &iop_msg_pool[i]; 225 } 226 } 227 228 local_irq_restore(flags); 229 return NULL; 230 } 231 232 /* 233 * This is called by the startup code before anything else. Its purpose 234 * is to find and initialize the IOPs early in the boot sequence, so that 235 * the serial IOP can be placed into bypass mode _before_ we try to 236 * initialize the serial console. 237 */ 238 239 void __init iop_preinit(void) 240 { 241 if (macintosh_config->scc_type == MAC_SCC_IOP) { 242 if (macintosh_config->ident == MAC_MODEL_IIFX) { 243 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_IIFX; 244 } else { 245 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_QUADRA; 246 } 247 iop_base[IOP_NUM_SCC]->status_ctrl = 0x87; 248 iop_scc_present = 1; 249 } else { 250 iop_base[IOP_NUM_SCC] = NULL; 251 iop_scc_present = 0; 252 } 253 if (macintosh_config->adb_type == MAC_ADB_IOP) { 254 if (macintosh_config->ident == MAC_MODEL_IIFX) { 255 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_IIFX; 256 } else { 257 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_QUADRA; 258 } 259 iop_base[IOP_NUM_ISM]->status_ctrl = 0; 260 iop_ism_present = 1; 261 } else { 262 iop_base[IOP_NUM_ISM] = NULL; 263 iop_ism_present = 0; 264 } 265 } 266 267 /* 268 * Initialize the IOPs, if present. 269 */ 270 271 void __init iop_init(void) 272 { 273 int i; 274 275 if (iop_scc_present) { 276 pr_debug("SCC IOP detected at %p\n", iop_base[IOP_NUM_SCC]); 277 } 278 if (iop_ism_present) { 279 pr_debug("ISM IOP detected at %p\n", iop_base[IOP_NUM_ISM]); 280 iop_start(iop_base[IOP_NUM_ISM]); 281 iop_alive(iop_base[IOP_NUM_ISM]); /* clears the alive flag */ 282 } 283 284 /* Make the whole pool available and empty the queues */ 285 286 for (i = 0 ; i < NUM_IOP_MSGS ; i++) { 287 iop_msg_pool[i].status = IOP_MSGSTATUS_UNUSED; 288 } 289 290 for (i = 0 ; i < NUM_IOP_CHAN ; i++) { 291 iop_send_queue[IOP_NUM_SCC][i] = NULL; 292 iop_send_queue[IOP_NUM_ISM][i] = NULL; 293 iop_listeners[IOP_NUM_SCC][i].devname = NULL; 294 iop_listeners[IOP_NUM_SCC][i].handler = NULL; 295 iop_listeners[IOP_NUM_ISM][i].devname = NULL; 296 iop_listeners[IOP_NUM_ISM][i].handler = NULL; 297 } 298 } 299 300 /* 301 * Register the interrupt handler for the IOPs. 302 * TODO: might be wrong for non-OSS machines. Anyone? 303 */ 304 305 void __init iop_register_interrupts(void) 306 { 307 if (iop_ism_present) { 308 if (macintosh_config->ident == MAC_MODEL_IIFX) { 309 if (request_irq(IRQ_MAC_ADB, iop_ism_irq, 0, 310 "ISM IOP", (void *)IOP_NUM_ISM)) 311 pr_err("Couldn't register ISM IOP interrupt\n"); 312 } else { 313 if (request_irq(IRQ_VIA2_0, iop_ism_irq, 0, "ISM IOP", 314 (void *)IOP_NUM_ISM)) 315 pr_err("Couldn't register ISM IOP interrupt\n"); 316 } 317 if (!iop_alive(iop_base[IOP_NUM_ISM])) { 318 pr_warn("IOP: oh my god, they killed the ISM IOP!\n"); 319 } else { 320 pr_warn("IOP: the ISM IOP seems to be alive.\n"); 321 } 322 } 323 } 324 325 /* 326 * Register or unregister a listener for a specific IOP and channel 327 * 328 * If the handler pointer is NULL the current listener (if any) is 329 * unregistered. Otherwise the new listener is registered provided 330 * there is no existing listener registered. 331 */ 332 333 int iop_listen(uint iop_num, uint chan, 334 void (*handler)(struct iop_msg *), 335 const char *devname) 336 { 337 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL; 338 if (chan >= NUM_IOP_CHAN) return -EINVAL; 339 if (iop_listeners[iop_num][chan].handler && handler) return -EINVAL; 340 iop_listeners[iop_num][chan].devname = devname; 341 iop_listeners[iop_num][chan].handler = handler; 342 return 0; 343 } 344 345 /* 346 * Complete reception of a message, which just means copying the reply 347 * into the buffer, setting the channel state to MSG_COMPLETE and 348 * notifying the IOP. 349 */ 350 351 void iop_complete_message(struct iop_msg *msg) 352 { 353 int iop_num = msg->iop_num; 354 int chan = msg->channel; 355 int i,offset; 356 357 iop_pr_debug("msg %p iop_num %d channel %d\n", msg, msg->iop_num, 358 msg->channel); 359 360 offset = IOP_ADDR_RECV_MSG + (msg->channel * IOP_MSG_LEN); 361 362 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 363 iop_writeb(iop_base[iop_num], offset, msg->reply[i]); 364 } 365 366 iop_writeb(iop_base[iop_num], 367 IOP_ADDR_RECV_STATE + chan, IOP_MSG_COMPLETE); 368 iop_interrupt(iop_base[msg->iop_num]); 369 370 msg->status = IOP_MSGSTATUS_UNUSED; 371 } 372 373 /* 374 * Actually put a message into a send channel buffer 375 */ 376 377 static void iop_do_send(struct iop_msg *msg) 378 { 379 volatile struct mac_iop *iop = iop_base[msg->iop_num]; 380 int i,offset; 381 382 offset = IOP_ADDR_SEND_MSG + (msg->channel * IOP_MSG_LEN); 383 384 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 385 iop_writeb(iop, offset, msg->message[i]); 386 } 387 388 iop_writeb(iop, IOP_ADDR_SEND_STATE + msg->channel, IOP_MSG_NEW); 389 390 iop_interrupt(iop); 391 } 392 393 /* 394 * Handle sending a message on a channel that 395 * has gone into the IOP_MSG_COMPLETE state. 396 */ 397 398 static void iop_handle_send(uint iop_num, uint chan) 399 { 400 volatile struct mac_iop *iop = iop_base[iop_num]; 401 struct iop_msg *msg; 402 int i,offset; 403 404 iop_pr_debug("iop_num %d chan %d\n", iop_num, chan); 405 406 iop_writeb(iop, IOP_ADDR_SEND_STATE + chan, IOP_MSG_IDLE); 407 408 if (!(msg = iop_send_queue[iop_num][chan])) return; 409 410 msg->status = IOP_MSGSTATUS_COMPLETE; 411 offset = IOP_ADDR_SEND_MSG + (chan * IOP_MSG_LEN); 412 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 413 msg->reply[i] = iop_readb(iop, offset); 414 } 415 if (msg->handler) (*msg->handler)(msg); 416 msg->status = IOP_MSGSTATUS_UNUSED; 417 msg = msg->next; 418 iop_send_queue[iop_num][chan] = msg; 419 if (msg) iop_do_send(msg); 420 } 421 422 /* 423 * Handle reception of a message on a channel that has 424 * gone into the IOP_MSG_NEW state. 425 */ 426 427 static void iop_handle_recv(uint iop_num, uint chan) 428 { 429 volatile struct mac_iop *iop = iop_base[iop_num]; 430 int i,offset; 431 struct iop_msg *msg; 432 433 iop_pr_debug("iop_num %d chan %d\n", iop_num, chan); 434 435 msg = iop_get_unused_msg(); 436 msg->iop_num = iop_num; 437 msg->channel = chan; 438 msg->status = IOP_MSGSTATUS_UNSOL; 439 msg->handler = iop_listeners[iop_num][chan].handler; 440 441 offset = IOP_ADDR_RECV_MSG + (chan * IOP_MSG_LEN); 442 443 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 444 msg->message[i] = iop_readb(iop, offset); 445 } 446 447 iop_writeb(iop, IOP_ADDR_RECV_STATE + chan, IOP_MSG_RCVD); 448 449 /* If there is a listener, call it now. Otherwise complete */ 450 /* the message ourselves to avoid possible stalls. */ 451 452 if (msg->handler) { 453 (*msg->handler)(msg); 454 } else { 455 iop_pr_debug("unclaimed message on iop_num %d chan %d\n", 456 iop_num, chan); 457 iop_pr_debug("%*ph\n", IOP_MSG_LEN, msg->message); 458 iop_complete_message(msg); 459 } 460 } 461 462 /* 463 * Send a message 464 * 465 * The message is placed at the end of the send queue. Afterwards if the 466 * channel is idle we force an immediate send of the next message in the 467 * queue. 468 */ 469 470 int iop_send_message(uint iop_num, uint chan, void *privdata, 471 uint msg_len, __u8 *msg_data, 472 void (*handler)(struct iop_msg *)) 473 { 474 struct iop_msg *msg, *q; 475 476 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL; 477 if (chan >= NUM_IOP_CHAN) return -EINVAL; 478 if (msg_len > IOP_MSG_LEN) return -EINVAL; 479 480 msg = iop_get_unused_msg(); 481 if (!msg) return -ENOMEM; 482 483 msg->next = NULL; 484 msg->status = IOP_MSGSTATUS_WAITING; 485 msg->iop_num = iop_num; 486 msg->channel = chan; 487 msg->caller_priv = privdata; 488 memcpy(msg->message, msg_data, msg_len); 489 msg->handler = handler; 490 491 if (!(q = iop_send_queue[iop_num][chan])) { 492 iop_send_queue[iop_num][chan] = msg; 493 } else { 494 while (q->next) q = q->next; 495 q->next = msg; 496 } 497 498 if (iop_readb(iop_base[iop_num], 499 IOP_ADDR_SEND_STATE + chan) == IOP_MSG_IDLE) { 500 iop_do_send(msg); 501 } 502 503 return 0; 504 } 505 506 /* 507 * Upload code to the shared RAM of an IOP. 508 */ 509 510 void iop_upload_code(uint iop_num, __u8 *code_start, 511 uint code_len, __u16 shared_ram_start) 512 { 513 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return; 514 515 iop_loadaddr(iop_base[iop_num], shared_ram_start); 516 517 while (code_len--) { 518 iop_base[iop_num]->ram_data = *code_start++; 519 } 520 } 521 522 /* 523 * Download code from the shared RAM of an IOP. 524 */ 525 526 void iop_download_code(uint iop_num, __u8 *code_start, 527 uint code_len, __u16 shared_ram_start) 528 { 529 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return; 530 531 iop_loadaddr(iop_base[iop_num], shared_ram_start); 532 533 while (code_len--) { 534 *code_start++ = iop_base[iop_num]->ram_data; 535 } 536 } 537 538 /* 539 * Compare the code in the shared RAM of an IOP with a copy in system memory 540 * and return 0 on match or the first nonmatching system memory address on 541 * failure. 542 */ 543 544 __u8 *iop_compare_code(uint iop_num, __u8 *code_start, 545 uint code_len, __u16 shared_ram_start) 546 { 547 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return code_start; 548 549 iop_loadaddr(iop_base[iop_num], shared_ram_start); 550 551 while (code_len--) { 552 if (*code_start != iop_base[iop_num]->ram_data) { 553 return code_start; 554 } 555 code_start++; 556 } 557 return (__u8 *) 0; 558 } 559 560 /* 561 * Handle an ISM IOP interrupt 562 */ 563 564 irqreturn_t iop_ism_irq(int irq, void *dev_id) 565 { 566 uint iop_num = (uint) dev_id; 567 volatile struct mac_iop *iop = iop_base[iop_num]; 568 int i,state; 569 570 iop_pr_debug("status %02X\n", iop->status_ctrl); 571 572 /* INT0 indicates a state change on an outgoing message channel */ 573 574 if (iop->status_ctrl & IOP_INT0) { 575 iop->status_ctrl = IOP_INT0 | IOP_RUN | IOP_AUTOINC; 576 iop_pr_debug("new status %02X, send states", iop->status_ctrl); 577 for (i = 0 ; i < NUM_IOP_CHAN ; i++) { 578 state = iop_readb(iop, IOP_ADDR_SEND_STATE + i); 579 iop_pr_cont(" %02X", state); 580 if (state == IOP_MSG_COMPLETE) { 581 iop_handle_send(iop_num, i); 582 } 583 } 584 iop_pr_cont("\n"); 585 } 586 587 if (iop->status_ctrl & IOP_INT1) { /* INT1 for incoming msgs */ 588 iop->status_ctrl = IOP_INT1 | IOP_RUN | IOP_AUTOINC; 589 iop_pr_debug("new status %02X, recv states", iop->status_ctrl); 590 for (i = 0 ; i < NUM_IOP_CHAN ; i++) { 591 state = iop_readb(iop, IOP_ADDR_RECV_STATE + i); 592 iop_pr_cont(" %02X", state); 593 if (state == IOP_MSG_NEW) { 594 iop_handle_recv(iop_num, i); 595 } 596 } 597 iop_pr_cont("\n"); 598 } 599 return IRQ_HANDLED; 600 } 601 602 void iop_ism_irq_poll(uint iop_num) 603 { 604 unsigned long flags; 605 606 local_irq_save(flags); 607 iop_ism_irq(0, (void *)iop_num); 608 local_irq_restore(flags); 609 } 610