1 /* 2 * I/O Processor (IOP) management 3 * Written and (C) 1999 by Joshua M. Thompson (funaho@jurai.org) 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice and this list of conditions. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice and this list of conditions in the documentation and/or other 12 * materials provided with the distribution. 13 */ 14 15 /* 16 * The IOP chips are used in the IIfx and some Quadras (900, 950) to manage 17 * serial and ADB. They are actually a 6502 processor and some glue logic. 18 * 19 * 990429 (jmt) - Initial implementation, just enough to knock the SCC IOP 20 * into compatible mode so nobody has to fiddle with the 21 * Serial Switch control panel anymore. 22 * 990603 (jmt) - Added code to grab the correct ISM IOP interrupt for OSS 23 * and non-OSS machines (at least I hope it's correct on a 24 * non-OSS machine -- someone with a Q900 or Q950 needs to 25 * check this.) 26 * 990605 (jmt) - Rearranged things a bit wrt IOP detection; iop_present is 27 * gone, IOP base addresses are now in an array and the 28 * globally-visible functions take an IOP number instead of an 29 * an actual base address. 30 * 990610 (jmt) - Finished the message passing framework and it seems to work. 31 * Sending _definitely_ works; my adb-bus.c mods can send 32 * messages and receive the MSG_COMPLETED status back from the 33 * IOP. The trick now is figuring out the message formats. 34 * 990611 (jmt) - More cleanups. Fixed problem where unclaimed messages on a 35 * receive channel were never properly acknowledged. Bracketed 36 * the remaining debug printk's with #ifdef's and disabled 37 * debugging. I can now type on the console. 38 * 990612 (jmt) - Copyright notice added. Reworked the way replies are handled. 39 * It turns out that replies are placed back in the send buffer 40 * for that channel; messages on the receive channels are always 41 * unsolicited messages from the IOP (and our replies to them 42 * should go back in the receive channel.) Also added tracking 43 * of device names to the listener functions ala the interrupt 44 * handlers. 45 * 990729 (jmt) - Added passing of pt_regs structure to IOP handlers. This is 46 * used by the new unified ADB driver. 47 * 48 * TODO: 49 * 50 * o Something should be periodically checking iop_alive() to make sure the 51 * IOP hasn't died. 52 * o Some of the IOP manager routines need better error checking and 53 * return codes. Nothing major, just prettying up. 54 */ 55 56 /* 57 * ----------------------- 58 * IOP Message Passing 101 59 * ----------------------- 60 * 61 * The host talks to the IOPs using a rather simple message-passing scheme via 62 * a shared memory area in the IOP RAM. Each IOP has seven "channels"; each 63 * channel is connected to a specific software driver on the IOP. For example 64 * on the SCC IOP there is one channel for each serial port. Each channel has 65 * an incoming and and outgoing message queue with a depth of one. 66 * 67 * A message is 32 bytes plus a state byte for the channel (MSG_IDLE, MSG_NEW, 68 * MSG_RCVD, MSG_COMPLETE). To send a message you copy the message into the 69 * buffer, set the state to MSG_NEW and signal the IOP by setting the IRQ flag 70 * in the IOP control to 1. The IOP will move the state to MSG_RCVD when it 71 * receives the message and then to MSG_COMPLETE when the message processing 72 * has completed. It is the host's responsibility at that point to read the 73 * reply back out of the send channel buffer and reset the channel state back 74 * to MSG_IDLE. 75 * 76 * To receive message from the IOP the same procedure is used except the roles 77 * are reversed. That is, the IOP puts message in the channel with a state of 78 * MSG_NEW, and the host receives the message and move its state to MSG_RCVD 79 * and then to MSG_COMPLETE when processing is completed and the reply (if any) 80 * has been placed back in the receive channel. The IOP will then reset the 81 * channel state to MSG_IDLE. 82 * 83 * Two sets of host interrupts are provided, INT0 and INT1. Both appear on one 84 * interrupt level; they are distinguished by a pair of bits in the IOP status 85 * register. The IOP will raise INT0 when one or more messages in the send 86 * channels have gone to the MSG_COMPLETE state and it will raise INT1 when one 87 * or more messages on the receive channels have gone to the MSG_NEW state. 88 * 89 * Since each channel handles only one message we have to implement a small 90 * interrupt-driven queue on our end. Messages to be sent are placed on the 91 * queue for sending and contain a pointer to an optional callback function. 92 * The handler for a message is called when the message state goes to 93 * MSG_COMPLETE. 94 * 95 * For receiving message we maintain a list of handler functions to call when 96 * a message is received on that IOP/channel combination. The handlers are 97 * called much like an interrupt handler and are passed a copy of the message 98 * from the IOP. The message state will be in MSG_RCVD while the handler runs; 99 * it is the handler's responsibility to call iop_complete_message() when 100 * finished; this function moves the message state to MSG_COMPLETE and signals 101 * the IOP. This two-step process is provided to allow the handler to defer 102 * message processing to a bottom-half handler if the processing will take 103 * a significant amount of time (handlers are called at interrupt time so they 104 * should execute quickly.) 105 */ 106 107 #include <linux/types.h> 108 #include <linux/kernel.h> 109 #include <linux/mm.h> 110 #include <linux/delay.h> 111 #include <linux/init.h> 112 #include <linux/interrupt.h> 113 114 #include <asm/macintosh.h> 115 #include <asm/macints.h> 116 #include <asm/mac_iop.h> 117 118 #ifdef DEBUG 119 #define iop_pr_debug(fmt, ...) \ 120 printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__) 121 #define iop_pr_cont(fmt, ...) \ 122 printk(KERN_CONT fmt, ##__VA_ARGS__) 123 #else 124 #define iop_pr_debug(fmt, ...) \ 125 no_printk(KERN_DEBUG "%s: " fmt, __func__, ##__VA_ARGS__) 126 #define iop_pr_cont(fmt, ...) \ 127 no_printk(KERN_CONT fmt, ##__VA_ARGS__) 128 #endif 129 130 /* Non-zero if the IOPs are present */ 131 132 int iop_scc_present, iop_ism_present; 133 134 /* structure for tracking channel listeners */ 135 136 struct listener { 137 const char *devname; 138 void (*handler)(struct iop_msg *); 139 }; 140 141 /* 142 * IOP structures for the two IOPs 143 * 144 * The SCC IOP controls both serial ports (A and B) as its two functions. 145 * The ISM IOP controls the SWIM (floppy drive) and ADB. 146 */ 147 148 static volatile struct mac_iop *iop_base[NUM_IOPS]; 149 150 /* 151 * IOP message queues 152 */ 153 154 static struct iop_msg iop_msg_pool[NUM_IOP_MSGS]; 155 static struct iop_msg *iop_send_queue[NUM_IOPS][NUM_IOP_CHAN]; 156 static struct listener iop_listeners[NUM_IOPS][NUM_IOP_CHAN]; 157 158 irqreturn_t iop_ism_irq(int, void *); 159 160 /* 161 * Private access functions 162 */ 163 164 static __inline__ void iop_loadaddr(volatile struct mac_iop *iop, __u16 addr) 165 { 166 iop->ram_addr_lo = addr; 167 iop->ram_addr_hi = addr >> 8; 168 } 169 170 static __inline__ __u8 iop_readb(volatile struct mac_iop *iop, __u16 addr) 171 { 172 iop->ram_addr_lo = addr; 173 iop->ram_addr_hi = addr >> 8; 174 return iop->ram_data; 175 } 176 177 static __inline__ void iop_writeb(volatile struct mac_iop *iop, __u16 addr, __u8 data) 178 { 179 iop->ram_addr_lo = addr; 180 iop->ram_addr_hi = addr >> 8; 181 iop->ram_data = data; 182 } 183 184 static __inline__ void iop_stop(volatile struct mac_iop *iop) 185 { 186 iop->status_ctrl = IOP_AUTOINC; 187 } 188 189 static __inline__ void iop_start(volatile struct mac_iop *iop) 190 { 191 iop->status_ctrl = IOP_RUN | IOP_AUTOINC; 192 } 193 194 static __inline__ void iop_interrupt(volatile struct mac_iop *iop) 195 { 196 iop->status_ctrl = IOP_IRQ | IOP_RUN | IOP_AUTOINC; 197 } 198 199 static int iop_alive(volatile struct mac_iop *iop) 200 { 201 int retval; 202 203 retval = (iop_readb(iop, IOP_ADDR_ALIVE) == 0xFF); 204 iop_writeb(iop, IOP_ADDR_ALIVE, 0); 205 return retval; 206 } 207 208 static struct iop_msg *iop_get_unused_msg(void) 209 { 210 int i; 211 unsigned long flags; 212 213 local_irq_save(flags); 214 215 for (i = 0 ; i < NUM_IOP_MSGS ; i++) { 216 if (iop_msg_pool[i].status == IOP_MSGSTATUS_UNUSED) { 217 iop_msg_pool[i].status = IOP_MSGSTATUS_WAITING; 218 local_irq_restore(flags); 219 return &iop_msg_pool[i]; 220 } 221 } 222 223 local_irq_restore(flags); 224 return NULL; 225 } 226 227 /* 228 * This is called by the startup code before anything else. Its purpose 229 * is to find and initialize the IOPs early in the boot sequence, so that 230 * the serial IOP can be placed into bypass mode _before_ we try to 231 * initialize the serial console. 232 */ 233 234 void __init iop_preinit(void) 235 { 236 if (macintosh_config->scc_type == MAC_SCC_IOP) { 237 if (macintosh_config->ident == MAC_MODEL_IIFX) { 238 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_IIFX; 239 } else { 240 iop_base[IOP_NUM_SCC] = (struct mac_iop *) SCC_IOP_BASE_QUADRA; 241 } 242 iop_scc_present = 1; 243 } else { 244 iop_base[IOP_NUM_SCC] = NULL; 245 iop_scc_present = 0; 246 } 247 if (macintosh_config->adb_type == MAC_ADB_IOP) { 248 if (macintosh_config->ident == MAC_MODEL_IIFX) { 249 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_IIFX; 250 } else { 251 iop_base[IOP_NUM_ISM] = (struct mac_iop *) ISM_IOP_BASE_QUADRA; 252 } 253 iop_stop(iop_base[IOP_NUM_ISM]); 254 iop_ism_present = 1; 255 } else { 256 iop_base[IOP_NUM_ISM] = NULL; 257 iop_ism_present = 0; 258 } 259 } 260 261 /* 262 * Initialize the IOPs, if present. 263 */ 264 265 void __init iop_init(void) 266 { 267 int i; 268 269 if (iop_scc_present) { 270 pr_debug("SCC IOP detected at %p\n", iop_base[IOP_NUM_SCC]); 271 } 272 if (iop_ism_present) { 273 pr_debug("ISM IOP detected at %p\n", iop_base[IOP_NUM_ISM]); 274 iop_start(iop_base[IOP_NUM_ISM]); 275 iop_alive(iop_base[IOP_NUM_ISM]); /* clears the alive flag */ 276 } 277 278 /* Make the whole pool available and empty the queues */ 279 280 for (i = 0 ; i < NUM_IOP_MSGS ; i++) { 281 iop_msg_pool[i].status = IOP_MSGSTATUS_UNUSED; 282 } 283 284 for (i = 0 ; i < NUM_IOP_CHAN ; i++) { 285 iop_send_queue[IOP_NUM_SCC][i] = NULL; 286 iop_send_queue[IOP_NUM_ISM][i] = NULL; 287 iop_listeners[IOP_NUM_SCC][i].devname = NULL; 288 iop_listeners[IOP_NUM_SCC][i].handler = NULL; 289 iop_listeners[IOP_NUM_ISM][i].devname = NULL; 290 iop_listeners[IOP_NUM_ISM][i].handler = NULL; 291 } 292 } 293 294 /* 295 * Register the interrupt handler for the IOPs. 296 */ 297 298 void __init iop_register_interrupts(void) 299 { 300 if (iop_ism_present) { 301 if (macintosh_config->ident == MAC_MODEL_IIFX) { 302 if (request_irq(IRQ_MAC_ADB, iop_ism_irq, 0, 303 "ISM IOP", (void *)IOP_NUM_ISM)) 304 pr_err("Couldn't register ISM IOP interrupt\n"); 305 } else { 306 if (request_irq(IRQ_VIA2_0, iop_ism_irq, 0, "ISM IOP", 307 (void *)IOP_NUM_ISM)) 308 pr_err("Couldn't register ISM IOP interrupt\n"); 309 } 310 if (!iop_alive(iop_base[IOP_NUM_ISM])) { 311 pr_warn("IOP: oh my god, they killed the ISM IOP!\n"); 312 } else { 313 pr_warn("IOP: the ISM IOP seems to be alive.\n"); 314 } 315 } 316 } 317 318 /* 319 * Register or unregister a listener for a specific IOP and channel 320 * 321 * If the handler pointer is NULL the current listener (if any) is 322 * unregistered. Otherwise the new listener is registered provided 323 * there is no existing listener registered. 324 */ 325 326 int iop_listen(uint iop_num, uint chan, 327 void (*handler)(struct iop_msg *), 328 const char *devname) 329 { 330 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL; 331 if (chan >= NUM_IOP_CHAN) return -EINVAL; 332 if (iop_listeners[iop_num][chan].handler && handler) return -EINVAL; 333 iop_listeners[iop_num][chan].devname = devname; 334 iop_listeners[iop_num][chan].handler = handler; 335 return 0; 336 } 337 338 /* 339 * Complete reception of a message, which just means copying the reply 340 * into the buffer, setting the channel state to MSG_COMPLETE and 341 * notifying the IOP. 342 */ 343 344 void iop_complete_message(struct iop_msg *msg) 345 { 346 int iop_num = msg->iop_num; 347 int chan = msg->channel; 348 int i,offset; 349 350 iop_pr_debug("iop_num %d chan %d reply %*ph\n", 351 msg->iop_num, msg->channel, IOP_MSG_LEN, msg->reply); 352 353 offset = IOP_ADDR_RECV_MSG + (msg->channel * IOP_MSG_LEN); 354 355 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 356 iop_writeb(iop_base[iop_num], offset, msg->reply[i]); 357 } 358 359 iop_writeb(iop_base[iop_num], 360 IOP_ADDR_RECV_STATE + chan, IOP_MSG_COMPLETE); 361 iop_interrupt(iop_base[msg->iop_num]); 362 363 msg->status = IOP_MSGSTATUS_UNUSED; 364 } 365 366 /* 367 * Actually put a message into a send channel buffer 368 */ 369 370 static void iop_do_send(struct iop_msg *msg) 371 { 372 volatile struct mac_iop *iop = iop_base[msg->iop_num]; 373 int i,offset; 374 375 iop_pr_debug("iop_num %d chan %d message %*ph\n", 376 msg->iop_num, msg->channel, IOP_MSG_LEN, msg->message); 377 378 offset = IOP_ADDR_SEND_MSG + (msg->channel * IOP_MSG_LEN); 379 380 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 381 iop_writeb(iop, offset, msg->message[i]); 382 } 383 384 iop_writeb(iop, IOP_ADDR_SEND_STATE + msg->channel, IOP_MSG_NEW); 385 386 iop_interrupt(iop); 387 } 388 389 /* 390 * Handle sending a message on a channel that 391 * has gone into the IOP_MSG_COMPLETE state. 392 */ 393 394 static void iop_handle_send(uint iop_num, uint chan) 395 { 396 volatile struct mac_iop *iop = iop_base[iop_num]; 397 struct iop_msg *msg; 398 int i,offset; 399 400 iop_writeb(iop, IOP_ADDR_SEND_STATE + chan, IOP_MSG_IDLE); 401 402 if (!(msg = iop_send_queue[iop_num][chan])) return; 403 404 msg->status = IOP_MSGSTATUS_COMPLETE; 405 offset = IOP_ADDR_SEND_MSG + (chan * IOP_MSG_LEN); 406 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 407 msg->reply[i] = iop_readb(iop, offset); 408 } 409 iop_pr_debug("iop_num %d chan %d reply %*ph\n", 410 iop_num, chan, IOP_MSG_LEN, msg->reply); 411 412 if (msg->handler) (*msg->handler)(msg); 413 msg->status = IOP_MSGSTATUS_UNUSED; 414 msg = msg->next; 415 iop_send_queue[iop_num][chan] = msg; 416 if (msg && iop_readb(iop, IOP_ADDR_SEND_STATE + chan) == IOP_MSG_IDLE) 417 iop_do_send(msg); 418 } 419 420 /* 421 * Handle reception of a message on a channel that has 422 * gone into the IOP_MSG_NEW state. 423 */ 424 425 static void iop_handle_recv(uint iop_num, uint chan) 426 { 427 volatile struct mac_iop *iop = iop_base[iop_num]; 428 int i,offset; 429 struct iop_msg *msg; 430 431 msg = iop_get_unused_msg(); 432 msg->iop_num = iop_num; 433 msg->channel = chan; 434 msg->status = IOP_MSGSTATUS_UNSOL; 435 msg->handler = iop_listeners[iop_num][chan].handler; 436 437 offset = IOP_ADDR_RECV_MSG + (chan * IOP_MSG_LEN); 438 439 for (i = 0 ; i < IOP_MSG_LEN ; i++, offset++) { 440 msg->message[i] = iop_readb(iop, offset); 441 } 442 iop_pr_debug("iop_num %d chan %d message %*ph\n", 443 iop_num, chan, IOP_MSG_LEN, msg->message); 444 445 iop_writeb(iop, IOP_ADDR_RECV_STATE + chan, IOP_MSG_RCVD); 446 447 /* If there is a listener, call it now. Otherwise complete */ 448 /* the message ourselves to avoid possible stalls. */ 449 450 if (msg->handler) { 451 (*msg->handler)(msg); 452 } else { 453 memset(msg->reply, 0, IOP_MSG_LEN); 454 iop_complete_message(msg); 455 } 456 } 457 458 /* 459 * Send a message 460 * 461 * The message is placed at the end of the send queue. Afterwards if the 462 * channel is idle we force an immediate send of the next message in the 463 * queue. 464 */ 465 466 int iop_send_message(uint iop_num, uint chan, void *privdata, 467 uint msg_len, __u8 *msg_data, 468 void (*handler)(struct iop_msg *)) 469 { 470 struct iop_msg *msg, *q; 471 472 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return -EINVAL; 473 if (chan >= NUM_IOP_CHAN) return -EINVAL; 474 if (msg_len > IOP_MSG_LEN) return -EINVAL; 475 476 msg = iop_get_unused_msg(); 477 if (!msg) return -ENOMEM; 478 479 msg->next = NULL; 480 msg->status = IOP_MSGSTATUS_WAITING; 481 msg->iop_num = iop_num; 482 msg->channel = chan; 483 msg->caller_priv = privdata; 484 memcpy(msg->message, msg_data, msg_len); 485 msg->handler = handler; 486 487 if (!(q = iop_send_queue[iop_num][chan])) { 488 iop_send_queue[iop_num][chan] = msg; 489 iop_do_send(msg); 490 } else { 491 while (q->next) q = q->next; 492 q->next = msg; 493 } 494 495 return 0; 496 } 497 498 /* 499 * Upload code to the shared RAM of an IOP. 500 */ 501 502 void iop_upload_code(uint iop_num, __u8 *code_start, 503 uint code_len, __u16 shared_ram_start) 504 { 505 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return; 506 507 iop_loadaddr(iop_base[iop_num], shared_ram_start); 508 509 while (code_len--) { 510 iop_base[iop_num]->ram_data = *code_start++; 511 } 512 } 513 514 /* 515 * Download code from the shared RAM of an IOP. 516 */ 517 518 void iop_download_code(uint iop_num, __u8 *code_start, 519 uint code_len, __u16 shared_ram_start) 520 { 521 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return; 522 523 iop_loadaddr(iop_base[iop_num], shared_ram_start); 524 525 while (code_len--) { 526 *code_start++ = iop_base[iop_num]->ram_data; 527 } 528 } 529 530 /* 531 * Compare the code in the shared RAM of an IOP with a copy in system memory 532 * and return 0 on match or the first nonmatching system memory address on 533 * failure. 534 */ 535 536 __u8 *iop_compare_code(uint iop_num, __u8 *code_start, 537 uint code_len, __u16 shared_ram_start) 538 { 539 if ((iop_num >= NUM_IOPS) || !iop_base[iop_num]) return code_start; 540 541 iop_loadaddr(iop_base[iop_num], shared_ram_start); 542 543 while (code_len--) { 544 if (*code_start != iop_base[iop_num]->ram_data) { 545 return code_start; 546 } 547 code_start++; 548 } 549 return (__u8 *) 0; 550 } 551 552 /* 553 * Handle an ISM IOP interrupt 554 */ 555 556 irqreturn_t iop_ism_irq(int irq, void *dev_id) 557 { 558 uint iop_num = (uint) dev_id; 559 volatile struct mac_iop *iop = iop_base[iop_num]; 560 int i,state; 561 u8 events = iop->status_ctrl & (IOP_INT0 | IOP_INT1); 562 563 do { 564 iop_pr_debug("iop_num %d status %02X\n", iop_num, 565 iop->status_ctrl); 566 567 /* INT0 indicates state change on an outgoing message channel */ 568 if (events & IOP_INT0) { 569 iop->status_ctrl = IOP_INT0 | IOP_RUN | IOP_AUTOINC; 570 for (i = 0; i < NUM_IOP_CHAN; i++) { 571 state = iop_readb(iop, IOP_ADDR_SEND_STATE + i); 572 if (state == IOP_MSG_COMPLETE) 573 iop_handle_send(iop_num, i); 574 else if (state != IOP_MSG_IDLE) 575 iop_pr_debug("chan %d send state %02X\n", 576 i, state); 577 } 578 } 579 580 /* INT1 for incoming messages */ 581 if (events & IOP_INT1) { 582 iop->status_ctrl = IOP_INT1 | IOP_RUN | IOP_AUTOINC; 583 for (i = 0; i < NUM_IOP_CHAN; i++) { 584 state = iop_readb(iop, IOP_ADDR_RECV_STATE + i); 585 if (state == IOP_MSG_NEW) 586 iop_handle_recv(iop_num, i); 587 else if (state != IOP_MSG_IDLE) 588 iop_pr_debug("chan %d recv state %02X\n", 589 i, state); 590 } 591 } 592 593 events = iop->status_ctrl & (IOP_INT0 | IOP_INT1); 594 } while (events); 595 596 return IRQ_HANDLED; 597 } 598 599 void iop_ism_irq_poll(uint iop_num) 600 { 601 unsigned long flags; 602 603 local_irq_save(flags); 604 iop_ism_irq(0, (void *)iop_num); 605 local_irq_restore(flags); 606 } 607