1/* -*- mode: asm -*- 2** 3** head.S -- This file contains the initial boot code for the 4** Linux/68k kernel. 5** 6** Copyright 1993 by Hamish Macdonald 7** 8** 68040 fixes by Michael Rausch 9** 68060 fixes by Roman Hodek 10** MMU cleanup by Randy Thelen 11** Final MMU cleanup by Roman Zippel 12** 13** Atari support by Andreas Schwab, using ideas of Robert de Vries 14** and Bjoern Brauel 15** VME Support by Richard Hirst 16** 17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE 18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari 19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa 20** 95/11/18 Richard Hirst: Added MVME166 support 21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with 22** Magnum- and FX-alternate ram 23** 98/04/25 Phil Blundell: added HP300 support 24** 1998/08/30 David Kilzer: Added support for font_desc structures 25** for linux-2.1.115 26** 1999/02/11 Richard Zidlicky: added Q40 support (initial version 99/01/01) 27** 2004/05/13 Kars de Jong: Finalised HP300 support 28** 29** This file is subject to the terms and conditions of the GNU General Public 30** License. See the file README.legal in the main directory of this archive 31** for more details. 32** 33*/ 34 35/* 36 * Linux startup code. 37 * 38 * At this point, the boot loader has: 39 * Disabled interrupts 40 * Disabled caches 41 * Put us in supervisor state. 42 * 43 * The kernel setup code takes the following steps: 44 * . Raise interrupt level 45 * . Set up initial kernel memory mapping. 46 * . This sets up a mapping of the 4M of memory the kernel is located in. 47 * . It also does a mapping of any initial machine specific areas. 48 * . Enable the MMU 49 * . Enable cache memories 50 * . Jump to kernel startup 51 * 52 * Much of the file restructuring was to accomplish: 53 * 1) Remove register dependency through-out the file. 54 * 2) Increase use of subroutines to perform functions 55 * 3) Increase readability of the code 56 * 57 * Of course, readability is a subjective issue, so it will never be 58 * argued that that goal was accomplished. It was merely a goal. 59 * A key way to help make code more readable is to give good 60 * documentation. So, the first thing you will find is exaustive 61 * write-ups on the structure of the file, and the features of the 62 * functional subroutines. 63 * 64 * General Structure: 65 * ------------------ 66 * Without a doubt the single largest chunk of head.S is spent 67 * mapping the kernel and I/O physical space into the logical range 68 * for the kernel. 69 * There are new subroutines and data structures to make MMU 70 * support cleaner and easier to understand. 71 * First, you will find a routine call "mmu_map" which maps 72 * a logical to a physical region for some length given a cache 73 * type on behalf of the caller. This routine makes writing the 74 * actual per-machine specific code very simple. 75 * A central part of the code, but not a subroutine in itself, 76 * is the mmu_init code which is broken down into mapping the kernel 77 * (the same for all machines) and mapping machine-specific I/O 78 * regions. 79 * Also, there will be a description of engaging the MMU and 80 * caches. 81 * You will notice that there is a chunk of code which 82 * can emit the entire MMU mapping of the machine. This is present 83 * only in debug modes and can be very helpful. 84 * Further, there is a new console driver in head.S that is 85 * also only engaged in debug mode. Currently, it's only supported 86 * on the Macintosh class of machines. However, it is hoped that 87 * others will plug-in support for specific machines. 88 * 89 * ###################################################################### 90 * 91 * mmu_map 92 * ------- 93 * mmu_map was written for two key reasons. First, it was clear 94 * that it was very difficult to read the previous code for mapping 95 * regions of memory. Second, the Macintosh required such extensive 96 * memory allocations that it didn't make sense to propagate the 97 * existing code any further. 98 * mmu_map requires some parameters: 99 * 100 * mmu_map (logical, physical, length, cache_type) 101 * 102 * While this essentially describes the function in the abstract, you'll 103 * find more indepth description of other parameters at the implementation site. 104 * 105 * mmu_get_root_table_entry 106 * ------------------------ 107 * mmu_get_ptr_table_entry 108 * ----------------------- 109 * mmu_get_page_table_entry 110 * ------------------------ 111 * 112 * These routines are used by other mmu routines to get a pointer into 113 * a table, if necessary a new table is allocated. These routines are working 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root 115 * table needs of course only to be allocated once in mmu_get_root_table_entry, 116 * so that here also some mmu specific initialization is done. The second page 117 * at the start of the kernel (the first page is unmapped later) is used for 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used 119 * to initialize the init task struct) and since it needs special cache 120 * settings, it's the easiest to use this page, the rest of the page is used 121 * for further pointer tables. 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense 124 * to manage page tables in smaller pieces as nearly all mappings have that 125 * size. 126 * 127 * ###################################################################### 128 * 129 * 130 * ###################################################################### 131 * 132 * mmu_engage 133 * ---------- 134 * Thanks to a small helping routine enabling the mmu got quite simple 135 * and there is only one way left. mmu_engage makes a complete a new mapping 136 * that only includes the absolute necessary to be able to jump to the final 137 * position and to restore the original mapping. 138 * As this code doesn't need a transparent translation register anymore this 139 * means all registers are free to be used by machines that needs them for 140 * other purposes. 141 * 142 * ###################################################################### 143 * 144 * mmu_print 145 * --------- 146 * This algorithm will print out the page tables of the system as 147 * appropriate for an 030 or an 040. This is useful for debugging purposes 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses. 149 * 150 * ###################################################################### 151 * 152 * console_init 153 * ------------ 154 * The console is also able to be turned off. The console in head.S 155 * is specifically for debugging and can be very useful. It is surrounded by 156 * #ifdef / #endif clauses so it doesn't have to ship in known-good 157 * kernels. It's basic algorithm is to determine the size of the screen 158 * (in height/width and bit depth) and then use that information for 159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for 160 * debugging so I can see more good data. But it was trivial to add support 161 * for both fonts, so I included it. 162 * Also, the algorithm for plotting pixels is abstracted so that in 163 * theory other platforms could add support for different kinds of frame 164 * buffers. This could be very useful. 165 * 166 * console_put_penguin 167 * ------------------- 168 * An important part of any Linux bring up is the penguin and there's 169 * nothing like getting the Penguin on the screen! This algorithm will work 170 * on any machine for which there is a console_plot_pixel. 171 * 172 * console_scroll 173 * -------------- 174 * My hope is that the scroll algorithm does the right thing on the 175 * various platforms, but it wouldn't be hard to add the test conditions 176 * and new code if it doesn't. 177 * 178 * console_putc 179 * ------------- 180 * 181 * ###################################################################### 182 * 183 * Register usage has greatly simplified within head.S. Every subroutine 184 * saves and restores all registers that it modifies (except it returns a 185 * value in there of course). So the only register that needs to be initialized 186 * is the stack pointer. 187 * All other init code and data is now placed in the init section, so it will 188 * be automatically freed at the end of the kernel initialization. 189 * 190 * ###################################################################### 191 * 192 * options 193 * ------- 194 * There are many options available in a build of this file. I've 195 * taken the time to describe them here to save you the time of searching 196 * for them and trying to understand what they mean. 197 * 198 * CONFIG_xxx: These are the obvious machine configuration defines created 199 * during configuration. These are defined in autoconf.h. 200 * 201 * CONSOLE_DEBUG: Only supports a Mac frame buffer but could easily be 202 * extended to support other platforms. 203 * 204 * TEST_MMU: This is a test harness for running on any given machine but 205 * getting an MMU dump for another class of machine. The classes of machines 206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.) 207 * and any of the models (030, 040, 060, etc.). 208 * 209 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed 210 * When head.S boots on Atari, Amiga, Macintosh, and VME 211 * machines. At that point the underlying logic will be 212 * believed to be solid enough to be trusted, and TEST_MMU 213 * can be dropped. Do note that that will clean up the 214 * head.S code significantly as large blocks of #if/#else 215 * clauses can be removed. 216 * 217 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into 218 * determing why devices don't appear to work. A test case was to remove 219 * the cacheability of the kernel bits. 220 * 221 * MMU_PRINT: There is a routine built into head.S that can display the 222 * MMU data structures. It outputs its result through the serial_putc 223 * interface. So where ever that winds up driving data, that's where the 224 * mmu struct will appear. 225 * 226 * SERIAL_DEBUG: There are a series of putc() macro statements 227 * scattered through out the code to give progress of status to the 228 * person sitting at the console. This constant determines whether those 229 * are used. 230 * 231 * DEBUG: This is the standard DEBUG flag that can be set for building 232 * the kernel. It has the effect adding additional tests into 233 * the code. 234 * 235 * FONT_6x11: 236 * FONT_8x8: 237 * FONT_8x16: 238 * In theory these could be determined at run time or handed 239 * over by the booter. But, let's be real, it's a fine hard 240 * coded value. (But, you will notice the code is run-time 241 * flexible!) A pointer to the font's struct font_desc 242 * is kept locally in Lconsole_font. It is used to determine 243 * font size information dynamically. 244 * 245 * Atari constants: 246 * USE_PRINTER: Use the printer port for serial debug. 247 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug. 248 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug. 249 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug. 250 * 251 * Macintosh constants: 252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug. 253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug. 254 */ 255 256#include <linux/linkage.h> 257#include <linux/init.h> 258#include <linux/pgtable.h> 259#include <asm/bootinfo.h> 260#include <asm/bootinfo-amiga.h> 261#include <asm/bootinfo-atari.h> 262#include <asm/bootinfo-hp300.h> 263#include <asm/bootinfo-mac.h> 264#include <asm/bootinfo-q40.h> 265#include <asm/bootinfo-vme.h> 266#include <asm/setup.h> 267#include <asm/entry.h> 268#include <asm/page.h> 269#include <asm/asm-offsets.h> 270#ifdef CONFIG_MAC 271# include <asm/machw.h> 272#endif 273 274#ifdef CONFIG_EARLY_PRINTK 275# define SERIAL_DEBUG 276# if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT) 277# define CONSOLE_DEBUG 278# endif 279#endif 280 281#undef MMU_PRINT 282#undef MMU_NOCACHE_KERNEL 283#undef DEBUG 284 285/* 286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8. 287 * The 8x8 font is harder to read but fits more on the screen. 288 */ 289#define FONT_8x8 /* default */ 290/* #define FONT_8x16 */ /* 2nd choice */ 291/* #define FONT_6x11 */ /* 3rd choice */ 292 293.globl kernel_pg_dir 294.globl availmem 295.globl m68k_init_mapped_size 296.globl m68k_pgtable_cachemode 297.globl m68k_supervisor_cachemode 298#ifdef CONFIG_MVME16x 299.globl mvme_bdid 300#endif 301#ifdef CONFIG_Q40 302.globl q40_mem_cptr 303#endif 304 305CPUTYPE_040 = 1 /* indicates an 040 */ 306CPUTYPE_060 = 2 /* indicates an 060 */ 307CPUTYPE_0460 = 3 /* if either above are set, this is set */ 308CPUTYPE_020 = 4 /* indicates an 020 */ 309 310/* Translation control register */ 311TC_ENABLE = 0x8000 312TC_PAGE8K = 0x4000 313TC_PAGE4K = 0x0000 314 315/* Transparent translation registers */ 316TTR_ENABLE = 0x8000 /* enable transparent translation */ 317TTR_ANYMODE = 0x4000 /* user and kernel mode access */ 318TTR_KERNELMODE = 0x2000 /* only kernel mode access */ 319TTR_USERMODE = 0x0000 /* only user mode access */ 320TTR_CI = 0x0400 /* inhibit cache */ 321TTR_RW = 0x0200 /* read/write mode */ 322TTR_RWM = 0x0100 /* read/write mask */ 323TTR_FCB2 = 0x0040 /* function code base bit 2 */ 324TTR_FCB1 = 0x0020 /* function code base bit 1 */ 325TTR_FCB0 = 0x0010 /* function code base bit 0 */ 326TTR_FCM2 = 0x0004 /* function code mask bit 2 */ 327TTR_FCM1 = 0x0002 /* function code mask bit 1 */ 328TTR_FCM0 = 0x0001 /* function code mask bit 0 */ 329 330/* Cache Control registers */ 331CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */ 332CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */ 333CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */ 334CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */ 335CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */ 336CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */ 337CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */ 338CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */ 339CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */ 340CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */ 341CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */ 342CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */ 343CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */ 344CC3_CLR_D = 0x00000800 /* clear data cache (68030) */ 345CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */ 346CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */ 347CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */ 348CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */ 349CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */ 350CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */ 351CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */ 352CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */ 353 354/* Miscellaneous definitions */ 355PAGESIZE = 4096 356PAGESHIFT = 12 357 358ROOT_TABLE_SIZE = 128 359PTR_TABLE_SIZE = 128 360PAGE_TABLE_SIZE = 64 361ROOT_INDEX_SHIFT = 25 362PTR_INDEX_SHIFT = 18 363PAGE_INDEX_SHIFT = 12 364 365#ifdef DEBUG 366/* When debugging use readable names for labels */ 367#ifdef __STDC__ 368#define L(name) .head.S.##name 369#else 370#define L(name) .head.S./**/name 371#endif 372#else 373#ifdef __STDC__ 374#define L(name) .L##name 375#else 376#define L(name) .L/**/name 377#endif 378#endif 379 380/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */ 381#ifndef __INITDATA 382#define __INITDATA .data 383#define __FINIT .previous 384#endif 385 386/* Several macros to make the writing of subroutines easier: 387 * - func_start marks the beginning of the routine which setups the frame 388 * register and saves the registers, it also defines another macro 389 * to automatically restore the registers again. 390 * - func_return marks the end of the routine and simply calls the prepared 391 * macro to restore registers and jump back to the caller. 392 * - func_define generates another macro to automatically put arguments 393 * onto the stack call the subroutine and cleanup the stack again. 394 */ 395 396/* Within subroutines these macros can be used to access the arguments 397 * on the stack. With STACK some allocated memory on the stack can be 398 * accessed and ARG0 points to the return address (used by mmu_engage). 399 */ 400#define STACK %a6@(stackstart) 401#define ARG0 %a6@(4) 402#define ARG1 %a6@(8) 403#define ARG2 %a6@(12) 404#define ARG3 %a6@(16) 405#define ARG4 %a6@(20) 406 407.macro func_start name,saveregs,stack=0 408L(\name): 409 linkw %a6,#-\stack 410 moveml \saveregs,%sp@- 411.set stackstart,-\stack 412 413.macro func_return_\name 414 moveml %sp@+,\saveregs 415 unlk %a6 416 rts 417.endm 418.endm 419 420.macro func_return name 421 func_return_\name 422.endm 423 424.macro func_call name 425 jbsr L(\name) 426.endm 427 428.macro move_stack nr,arg1,arg2,arg3,arg4 429.if \nr 430 move_stack "(\nr-1)",\arg2,\arg3,\arg4 431 movel \arg1,%sp@- 432.endif 433.endm 434 435.macro func_define name,nr=0 436.macro \name arg1,arg2,arg3,arg4 437 move_stack \nr,\arg1,\arg2,\arg3,\arg4 438 func_call \name 439.if \nr 440 lea %sp@(\nr*4),%sp 441.endif 442.endm 443.endm 444 445func_define mmu_map,4 446func_define mmu_map_tt,4 447func_define mmu_fixup_page_mmu_cache,1 448func_define mmu_temp_map,2 449func_define mmu_engage 450func_define mmu_get_root_table_entry,1 451func_define mmu_get_ptr_table_entry,2 452func_define mmu_get_page_table_entry,2 453func_define mmu_print 454func_define get_new_page 455#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 456func_define set_leds 457#endif 458 459.macro mmu_map_eq arg1,arg2,arg3 460 mmu_map \arg1,\arg1,\arg2,\arg3 461.endm 462 463.macro get_bi_record record 464 pea \record 465 func_call get_bi_record 466 addql #4,%sp 467.endm 468 469func_define serial_putc,1 470func_define console_putc,1 471 472func_define console_init 473func_define console_put_penguin 474func_define console_plot_pixel,3 475func_define console_scroll 476 477.macro putc ch 478#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG) 479 pea \ch 480#endif 481#ifdef CONSOLE_DEBUG 482 func_call console_putc 483#endif 484#ifdef SERIAL_DEBUG 485 func_call serial_putc 486#endif 487#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG) 488 addql #4,%sp 489#endif 490.endm 491 492.macro dputc ch 493#ifdef DEBUG 494 putc \ch 495#endif 496.endm 497 498func_define putn,1 499 500.macro dputn nr 501#ifdef DEBUG 502 putn \nr 503#endif 504.endm 505 506.macro puts string 507#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG) 508 __INITDATA 509.Lstr\@: 510 .string "\string" 511 __FINIT 512 pea %pc@(.Lstr\@) 513 func_call puts 514 addql #4,%sp 515#endif 516.endm 517 518.macro dputs string 519#ifdef DEBUG 520 puts "\string" 521#endif 522.endm 523 524#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab 525#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab 526#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab 527#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab 528#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab 529#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab 530#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab 531#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab 532#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab 533#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab 534#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab 535#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab 536#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab 537 538#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \ 539 jeq 42f; \ 540 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \ 541 jne lab ;\ 542 42:\ 543 544#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab 545#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab 546#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab 547#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab 548#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab 549#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab 550#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab 551 552/* On the HP300 we use the on-board LEDs for debug output before 553 the console is running. Writing a 1 bit turns the corresponding LED 554 _off_ - on the 340 bit 7 is towards the back panel of the machine. */ 555.macro leds mask 556#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 557 hasnt_leds(.Lled\@) 558 pea \mask 559 func_call set_leds 560 addql #4,%sp 561.Lled\@: 562#endif 563.endm 564 565__HEAD 566ENTRY(_stext) 567/* 568 * Version numbers of the bootinfo interface 569 * The area from _stext to _start will later be used as kernel pointer table 570 */ 571 bras 1f /* Jump over bootinfo version numbers */ 572 573 .long BOOTINFOV_MAGIC 574 .long MACH_AMIGA, AMIGA_BOOTI_VERSION 575 .long MACH_ATARI, ATARI_BOOTI_VERSION 576 .long MACH_MVME147, MVME147_BOOTI_VERSION 577 .long MACH_MVME16x, MVME16x_BOOTI_VERSION 578 .long MACH_BVME6000, BVME6000_BOOTI_VERSION 579 .long MACH_MAC, MAC_BOOTI_VERSION 580 .long MACH_Q40, Q40_BOOTI_VERSION 581 .long MACH_HP300, HP300_BOOTI_VERSION 582 .long 0 5831: jra __start 584 585.equ kernel_pg_dir,_stext 586 587.equ .,_stext+PAGESIZE 588 589ENTRY(_start) 590 jra __start 591__INIT 592ENTRY(__start) 593/* 594 * Setup initial stack pointer 595 */ 596 lea %pc@(_stext),%sp 597 598/* 599 * Record the CPU and machine type. 600 */ 601 get_bi_record BI_MACHTYPE 602 lea %pc@(m68k_machtype),%a1 603 movel %a0@,%a1@ 604 605 get_bi_record BI_FPUTYPE 606 lea %pc@(m68k_fputype),%a1 607 movel %a0@,%a1@ 608 609 get_bi_record BI_MMUTYPE 610 lea %pc@(m68k_mmutype),%a1 611 movel %a0@,%a1@ 612 613 get_bi_record BI_CPUTYPE 614 lea %pc@(m68k_cputype),%a1 615 movel %a0@,%a1@ 616 617 leds 0x1 618 619#ifdef CONFIG_MAC 620/* 621 * For Macintosh, we need to determine the display parameters early (at least 622 * while debugging it). 623 */ 624 625 is_not_mac(L(test_notmac)) 626 627 get_bi_record BI_MAC_VADDR 628 lea %pc@(L(mac_videobase)),%a1 629 movel %a0@,%a1@ 630 631 get_bi_record BI_MAC_VDEPTH 632 lea %pc@(L(mac_videodepth)),%a1 633 movel %a0@,%a1@ 634 635 get_bi_record BI_MAC_VDIM 636 lea %pc@(L(mac_dimensions)),%a1 637 movel %a0@,%a1@ 638 639 get_bi_record BI_MAC_VROW 640 lea %pc@(L(mac_rowbytes)),%a1 641 movel %a0@,%a1@ 642 643 get_bi_record BI_MAC_SCCBASE 644 lea %pc@(L(mac_sccbase)),%a1 645 movel %a0@,%a1@ 646 647L(test_notmac): 648#endif /* CONFIG_MAC */ 649 650 651/* 652 * There are ultimately two pieces of information we want for all kinds of 653 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter 654 * and is converted here from a booter type definition to a separate bit 655 * number which allows for the standard is_0x0 macro tests. 656 */ 657 movel %pc@(m68k_cputype),%d0 658 /* 659 * Assume it's an 030 660 */ 661 clrl %d1 662 663 /* 664 * Test the BootInfo cputype for 060 665 */ 666 btst #CPUB_68060,%d0 667 jeq 1f 668 bset #CPUTYPE_060,%d1 669 bset #CPUTYPE_0460,%d1 670 jra 3f 6711: 672 /* 673 * Test the BootInfo cputype for 040 674 */ 675 btst #CPUB_68040,%d0 676 jeq 2f 677 bset #CPUTYPE_040,%d1 678 bset #CPUTYPE_0460,%d1 679 jra 3f 6802: 681 /* 682 * Test the BootInfo cputype for 020 683 */ 684 btst #CPUB_68020,%d0 685 jeq 3f 686 bset #CPUTYPE_020,%d1 687 jra 3f 6883: 689 /* 690 * Record the cpu type 691 */ 692 lea %pc@(L(cputype)),%a0 693 movel %d1,%a0@ 694 695 /* 696 * NOTE: 697 * 698 * Now the macros are valid: 699 * is_040_or_060 700 * is_not_040_or_060 701 * is_040 702 * is_060 703 * is_not_060 704 */ 705 706 /* 707 * Determine the cache mode for pages holding MMU tables 708 * and for supervisor mode, unused for '020 and '030 709 */ 710 clrl %d0 711 clrl %d1 712 713 is_not_040_or_060(L(save_cachetype)) 714 715 /* 716 * '040 or '060 717 * d1 := cacheable write-through 718 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables, 719 * but we have been using write-through since at least 2.0.29 so I 720 * guess it is OK. 721 */ 722#ifdef CONFIG_060_WRITETHROUGH 723 /* 724 * If this is a 68060 board using drivers with cache coherency 725 * problems, then supervisor memory accesses need to be write-through 726 * also; otherwise, we want copyback. 727 */ 728 729 is_not_060(1f) 730 movel #_PAGE_CACHE040W,%d0 731 jra L(save_cachetype) 732#endif /* CONFIG_060_WRITETHROUGH */ 7331: 734 movew #_PAGE_CACHE040,%d0 735 736 movel #_PAGE_CACHE040W,%d1 737 738L(save_cachetype): 739 /* Save cache mode for supervisor mode and page tables 740 */ 741 lea %pc@(m68k_supervisor_cachemode),%a0 742 movel %d0,%a0@ 743 lea %pc@(m68k_pgtable_cachemode),%a0 744 movel %d1,%a0@ 745 746/* 747 * raise interrupt level 748 */ 749 movew #0x2700,%sr 750 751/* 752 If running on an Atari, determine the I/O base of the 753 serial port and test if we are running on a Medusa or Hades. 754 This test is necessary here, because on the Hades the serial 755 port is only accessible in the high I/O memory area. 756 757 The test whether it is a Medusa is done by writing to the byte at 758 phys. 0x0. This should result in a bus error on all other machines. 759 760 ...should, but doesn't. The Afterburner040 for the Falcon has the 761 same behaviour (0x0..0x7 are no ROM shadow). So we have to do 762 another test to distinguish Medusa and AB040. This is a 763 read attempt for 0x00ff82fe phys. that should bus error on a Falcon 764 (+AB040), but is in the range where the Medusa always asserts DTACK. 765 766 The test for the Hades is done by reading address 0xb0000000. This 767 should give a bus error on the Medusa. 768 */ 769 770#ifdef CONFIG_ATARI 771 is_not_atari(L(notypetest)) 772 773 /* get special machine type (Medusa/Hades/AB40) */ 774 moveq #0,%d3 /* default if tag doesn't exist */ 775 get_bi_record BI_ATARI_MCH_TYPE 776 tstl %d0 777 jbmi 1f 778 movel %a0@,%d3 779 lea %pc@(atari_mch_type),%a0 780 movel %d3,%a0@ 7811: 782 /* On the Hades, the iobase must be set up before opening the 783 * serial port. There are no I/O regs at 0x00ffxxxx at all. */ 784 moveq #0,%d0 785 cmpl #ATARI_MACH_HADES,%d3 786 jbne 1f 787 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */ 7881: lea %pc@(L(iobase)),%a0 789 movel %d0,%a0@ 790 791L(notypetest): 792#endif 793 794#ifdef CONFIG_VME 795 is_mvme147(L(getvmetype)) 796 is_bvme6000(L(getvmetype)) 797 is_not_mvme16x(L(gvtdone)) 798 799 /* See if the loader has specified the BI_VME_TYPE tag. Recent 800 * versions of VMELILO and TFTPLILO do this. We have to do this 801 * early so we know how to handle console output. If the tag 802 * doesn't exist then we use the Bug for output on MVME16x. 803 */ 804L(getvmetype): 805 get_bi_record BI_VME_TYPE 806 tstl %d0 807 jbmi 1f 808 movel %a0@,%d3 809 lea %pc@(vme_brdtype),%a0 810 movel %d3,%a0@ 8111: 812#ifdef CONFIG_MVME16x 813 is_not_mvme16x(L(gvtdone)) 814 815 /* Need to get the BRD_ID info to differentiate between 162, 167, 816 * etc. This is available as a BI_VME_BRDINFO tag with later 817 * versions of VMELILO and TFTPLILO, otherwise we call the Bug. 818 */ 819 get_bi_record BI_VME_BRDINFO 820 tstl %d0 821 jpl 1f 822 823 /* Get pointer to board ID data from Bug */ 824 movel %d2,%sp@- 825 trap #15 826 .word 0x70 /* trap 0x70 - .BRD_ID */ 827 movel %sp@+,%a0 8281: 829 lea %pc@(mvme_bdid),%a1 830 /* Structure is 32 bytes long */ 831 movel %a0@+,%a1@+ 832 movel %a0@+,%a1@+ 833 movel %a0@+,%a1@+ 834 movel %a0@+,%a1@+ 835 movel %a0@+,%a1@+ 836 movel %a0@+,%a1@+ 837 movel %a0@+,%a1@+ 838 movel %a0@+,%a1@+ 839#endif 840 841L(gvtdone): 842 843#endif 844 845#ifdef CONFIG_HP300 846 is_not_hp300(L(nothp)) 847 848 /* Get the address of the UART for serial debugging */ 849 get_bi_record BI_HP300_UART_ADDR 850 tstl %d0 851 jbmi 1f 852 movel %a0@,%d3 853 lea %pc@(L(uartbase)),%a0 854 movel %d3,%a0@ 855 get_bi_record BI_HP300_UART_SCODE 856 tstl %d0 857 jbmi 1f 858 movel %a0@,%d3 859 lea %pc@(L(uart_scode)),%a0 860 movel %d3,%a0@ 8611: 862L(nothp): 863#endif 864 865/* 866 * Initialize serial port 867 */ 868 jbsr L(serial_init) 869 870/* 871 * Initialize console 872 */ 873#ifdef CONFIG_MAC 874 is_not_mac(L(nocon)) 875# ifdef CONSOLE_DEBUG 876 console_init 877# ifdef CONFIG_LOGO 878 console_put_penguin 879# endif /* CONFIG_LOGO */ 880# endif /* CONSOLE_DEBUG */ 881L(nocon): 882#endif /* CONFIG_MAC */ 883 884 885 putc '\n' 886 putc 'A' 887 leds 0x2 888 dputn %pc@(L(cputype)) 889 dputn %pc@(m68k_supervisor_cachemode) 890 dputn %pc@(m68k_pgtable_cachemode) 891 dputc '\n' 892 893/* 894 * Save physical start address of kernel 895 */ 896 lea %pc@(L(phys_kernel_start)),%a0 897 lea %pc@(_stext),%a1 898 subl #_stext,%a1 899 addl #PAGE_OFFSET,%a1 900 movel %a1,%a0@ 901 902 putc 'B' 903 904 leds 0x4 905 906/* 907 * mmu_init 908 * 909 * This block of code does what's necessary to map in the various kinds 910 * of machines for execution of Linux. 911 * First map the first 4, 8, or 16 MB of kernel code & data 912 */ 913 914 get_bi_record BI_MEMCHUNK 915 movel %a0@(4),%d0 916 movel #16*1024*1024,%d1 917 cmpl %d0,%d1 918 jls 1f 919 lsrl #1,%d1 920 cmpl %d0,%d1 921 jls 1f 922 lsrl #1,%d1 9231: 924 lea %pc@(m68k_init_mapped_size),%a0 925 movel %d1,%a0@ 926 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\ 927 %pc@(m68k_supervisor_cachemode) 928 929 putc 'C' 930 931#ifdef CONFIG_AMIGA 932 933L(mmu_init_amiga): 934 935 is_not_amiga(L(mmu_init_not_amiga)) 936/* 937 * mmu_init_amiga 938 */ 939 940 putc 'D' 941 942 is_not_040_or_060(1f) 943 944 /* 945 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000 946 */ 947 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S 948 /* 949 * Map the Zorro III I/O space with transparent translation 950 * for frame buffer memory etc. 951 */ 952 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S 953 954 jbra L(mmu_init_done) 955 9561: 957 /* 958 * 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000 959 */ 960 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 961 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030 962 963 jbra L(mmu_init_done) 964 965L(mmu_init_not_amiga): 966#endif 967 968#ifdef CONFIG_ATARI 969 970L(mmu_init_atari): 971 972 is_not_atari(L(mmu_init_not_atari)) 973 974 putc 'E' 975 976/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping 977 the last 16 MB of virtual address space to the first 16 MB (i.e. 978 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is 979 needed. I/O ranges are marked non-cachable. 980 981 For the Medusa it is better to map the I/O region transparently 982 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are 983 accessible only in the high area. 984 985 On the Hades all I/O registers are only accessible in the high 986 area. 987*/ 988 989 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */ 990 moveq #0,%d0 991 movel %pc@(atari_mch_type),%d3 992 cmpl #ATARI_MACH_MEDUSA,%d3 993 jbeq 2f 994 cmpl #ATARI_MACH_HADES,%d3 995 jbne 1f 9962: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */ 9971: movel %d0,%d3 998 999 is_040_or_060(L(spata68040)) 1000 1001 /* Map everything non-cacheable, though not all parts really 1002 * need to disable caches (crucial only for 0xff8000..0xffffff 1003 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder 1004 * isn't really used, except for sometimes peeking into the 1005 * ROMs (mirror at phys. 0x0), so caching isn't necessary for 1006 * this. */ 1007 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030 1008 1009 jbra L(mmu_init_done) 1010 1011L(spata68040): 1012 1013 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S 1014 1015 jbra L(mmu_init_done) 1016 1017L(mmu_init_not_atari): 1018#endif 1019 1020#ifdef CONFIG_Q40 1021 is_not_q40(L(notq40)) 1022 /* 1023 * add transparent mapping for 0xff00 0000 - 0xffff ffff 1024 * non-cached serialized etc.. 1025 * this includes master chip, DAC, RTC and ISA ports 1026 * 0xfe000000-0xfeffffff is for screen and ROM 1027 */ 1028 1029 putc 'Q' 1030 1031 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W 1032 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S 1033 1034 jbra L(mmu_init_done) 1035 1036L(notq40): 1037#endif 1038 1039#ifdef CONFIG_HP300 1040 is_not_hp300(L(nothp300)) 1041 1042 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx) 1043 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx). 1044 * The ROM mapping is needed because the LEDs are mapped there too. 1045 */ 1046 1047 is_040(1f) 1048 1049 /* 1050 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000 1051 */ 1052 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030 1053 1054 jbra L(mmu_init_done) 1055 10561: 1057 /* 1058 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000 1059 */ 1060 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S 1061 1062 jbra L(mmu_init_done) 1063 1064L(nothp300): 1065#endif /* CONFIG_HP300 */ 1066 1067#ifdef CONFIG_MVME147 1068 1069 is_not_mvme147(L(not147)) 1070 1071 /* 1072 * On MVME147 we have already created kernel page tables for 1073 * 4MB of RAM at address 0, so now need to do a transparent 1074 * mapping of the top of memory space. Make it 0.5GByte for now, 1075 * so we can access on-board i/o areas. 1076 */ 1077 1078 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030 1079 1080 jbra L(mmu_init_done) 1081 1082L(not147): 1083#endif /* CONFIG_MVME147 */ 1084 1085#ifdef CONFIG_MVME16x 1086 1087 is_not_mvme16x(L(not16x)) 1088 1089 /* 1090 * On MVME16x we have already created kernel page tables for 1091 * 4MB of RAM at address 0, so now need to do a transparent 1092 * mapping of the top of memory space. Make it 0.5GByte for now. 1093 * Supervisor only access, so transparent mapping doesn't 1094 * clash with User code virtual address space. 1095 * this covers IO devices, PROM and SRAM. The PROM and SRAM 1096 * mapping is needed to allow 167Bug to run. 1097 * IO is in the range 0xfff00000 to 0xfffeffff. 1098 * PROM is 0xff800000->0xffbfffff and SRAM is 1099 * 0xffe00000->0xffe1ffff. 1100 */ 1101 1102 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1103 1104 jbra L(mmu_init_done) 1105 1106L(not16x): 1107#endif /* CONFIG_MVME162 | CONFIG_MVME167 */ 1108 1109#ifdef CONFIG_BVME6000 1110 1111 is_not_bvme6000(L(not6000)) 1112 1113 /* 1114 * On BVME6000 we have already created kernel page tables for 1115 * 4MB of RAM at address 0, so now need to do a transparent 1116 * mapping of the top of memory space. Make it 0.5GByte for now, 1117 * so we can access on-board i/o areas. 1118 * Supervisor only access, so transparent mapping doesn't 1119 * clash with User code virtual address space. 1120 */ 1121 1122 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1123 1124 jbra L(mmu_init_done) 1125 1126L(not6000): 1127#endif /* CONFIG_BVME6000 */ 1128 1129/* 1130 * mmu_init_mac 1131 * 1132 * The Macintosh mappings are less clear. 1133 * 1134 * Even as of this writing, it is unclear how the 1135 * Macintosh mappings will be done. However, as 1136 * the first author of this code I'm proposing the 1137 * following model: 1138 * 1139 * Map the kernel (that's already done), 1140 * Map the I/O (on most machines that's the 1141 * 0x5000.0000 ... 0x5300.0000 range, 1142 * Map the video frame buffer using as few pages 1143 * as absolutely (this requirement mostly stems from 1144 * the fact that when the frame buffer is at 1145 * 0x0000.0000 then we know there is valid RAM just 1146 * above the screen that we don't want to waste!). 1147 * 1148 * By the way, if the frame buffer is at 0x0000.0000 1149 * then the Macintosh is known as an RBV based Mac. 1150 * 1151 * By the way 2, the code currently maps in a bunch of 1152 * regions. But I'd like to cut that out. (And move most 1153 * of the mappings up into the kernel proper ... or only 1154 * map what's necessary.) 1155 */ 1156 1157#ifdef CONFIG_MAC 1158 1159L(mmu_init_mac): 1160 1161 is_not_mac(L(mmu_init_not_mac)) 1162 1163 putc 'F' 1164 1165 is_not_040_or_060(1f) 1166 1167 moveq #_PAGE_NOCACHE_S,%d3 1168 jbra 2f 11691: 1170 moveq #_PAGE_NOCACHE030,%d3 11712: 1172 /* 1173 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical> 1174 * we simply map the 4MB that contains the videomem 1175 */ 1176 1177 movel #VIDEOMEMMASK,%d0 1178 andl %pc@(L(mac_videobase)),%d0 1179 1180 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3 1181 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */ 1182 mmu_map_eq #0x40000000,#0x02000000,%d3 1183 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */ 1184 mmu_map_eq #0x50000000,#0x03000000,%d3 1185 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */ 1186 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3 1187 1188 jbra L(mmu_init_done) 1189 1190L(mmu_init_not_mac): 1191#endif 1192 1193#ifdef CONFIG_SUN3X 1194 is_not_sun3x(L(notsun3x)) 1195 1196 /* oh, the pain.. We're gonna want the prom code after 1197 * starting the MMU, so we copy the mappings, translating 1198 * from 8k -> 4k pages as we go. 1199 */ 1200 1201 /* copy maps from 0xfee00000 to 0xff000000 */ 1202 movel #0xfee00000, %d0 1203 moveq #ROOT_INDEX_SHIFT, %d1 1204 lsrl %d1,%d0 1205 mmu_get_root_table_entry %d0 1206 1207 movel #0xfee00000, %d0 1208 moveq #PTR_INDEX_SHIFT, %d1 1209 lsrl %d1,%d0 1210 andl #PTR_TABLE_SIZE-1, %d0 1211 mmu_get_ptr_table_entry %a0,%d0 1212 1213 movel #0xfee00000, %d0 1214 moveq #PAGE_INDEX_SHIFT, %d1 1215 lsrl %d1,%d0 1216 andl #PAGE_TABLE_SIZE-1, %d0 1217 mmu_get_page_table_entry %a0,%d0 1218 1219 /* this is where the prom page table lives */ 1220 movel 0xfefe00d4, %a1 1221 movel %a1@, %a1 1222 1223 movel #((0x200000 >> 13)-1), %d1 1224 12251: 1226 movel %a1@+, %d3 1227 movel %d3,%a0@+ 1228 addl #0x1000,%d3 1229 movel %d3,%a0@+ 1230 1231 dbra %d1,1b 1232 1233 /* setup tt1 for I/O */ 1234 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S 1235 jbra L(mmu_init_done) 1236 1237L(notsun3x): 1238#endif 1239 1240#ifdef CONFIG_APOLLO 1241 is_not_apollo(L(notapollo)) 1242 1243 putc 'P' 1244 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 1245 1246L(notapollo): 1247 jbra L(mmu_init_done) 1248#endif 1249 1250L(mmu_init_done): 1251 1252 putc 'G' 1253 leds 0x8 1254 1255/* 1256 * mmu_fixup 1257 * 1258 * On the 040 class machines, all pages that are used for the 1259 * mmu have to be fixed up. According to Motorola, pages holding mmu 1260 * tables should be non-cacheable on a '040 and write-through on a 1261 * '060. But analysis of the reasons for this, and practical 1262 * experience, showed that write-through also works on a '040. 1263 * 1264 * Allocated memory so far goes from kernel_end to memory_start that 1265 * is used for all kind of tables, for that the cache attributes 1266 * are now fixed. 1267 */ 1268L(mmu_fixup): 1269 1270 is_not_040_or_060(L(mmu_fixup_done)) 1271 1272#ifdef MMU_NOCACHE_KERNEL 1273 jbra L(mmu_fixup_done) 1274#endif 1275 1276 /* first fix the page at the start of the kernel, that 1277 * contains also kernel_pg_dir. 1278 */ 1279 movel %pc@(L(phys_kernel_start)),%d0 1280 subl #PAGE_OFFSET,%d0 1281 lea %pc@(_stext),%a0 1282 subl %d0,%a0 1283 mmu_fixup_page_mmu_cache %a0 1284 1285 movel %pc@(L(kernel_end)),%a0 1286 subl %d0,%a0 1287 movel %pc@(L(memory_start)),%a1 1288 subl %d0,%a1 1289 bra 2f 12901: 1291 mmu_fixup_page_mmu_cache %a0 1292 addw #PAGESIZE,%a0 12932: 1294 cmpl %a0,%a1 1295 jgt 1b 1296 1297L(mmu_fixup_done): 1298 1299#ifdef MMU_PRINT 1300 mmu_print 1301#endif 1302 1303/* 1304 * mmu_engage 1305 * 1306 * This chunk of code performs the gruesome task of engaging the MMU. 1307 * The reason its gruesome is because when the MMU becomes engaged it 1308 * maps logical addresses to physical addresses. The Program Counter 1309 * register is then passed through the MMU before the next instruction 1310 * is fetched (the instruction following the engage MMU instruction). 1311 * This may mean one of two things: 1312 * 1. The Program Counter falls within the logical address space of 1313 * the kernel of which there are two sub-possibilities: 1314 * A. The PC maps to the correct instruction (logical PC == physical 1315 * code location), or 1316 * B. The PC does not map through and the processor will read some 1317 * data (or instruction) which is not the logically next instr. 1318 * As you can imagine, A is good and B is bad. 1319 * Alternatively, 1320 * 2. The Program Counter does not map through the MMU. The processor 1321 * will take a Bus Error. 1322 * Clearly, 2 is bad. 1323 * It doesn't take a wiz kid to figure you want 1.A. 1324 * This code creates that possibility. 1325 * There are two possible 1.A. states (we now ignore the other above states): 1326 * A. The kernel is located at physical memory addressed the same as 1327 * the logical memory for the kernel, i.e., 0x01000. 1328 * B. The kernel is located some where else. e.g., 0x0400.0000 1329 * 1330 * Under some conditions the Macintosh can look like A or B. 1331 * [A friend and I once noted that Apple hardware engineers should be 1332 * wacked twice each day: once when they show up at work (as in, Whack!, 1333 * "This is for the screwy hardware we know you're going to design today."), 1334 * and also at the end of the day (as in, Whack! "I don't know what 1335 * you designed today, but I'm sure it wasn't good."). -- rst] 1336 * 1337 * This code works on the following premise: 1338 * If the kernel start (%d5) is within the first 16 Meg of RAM, 1339 * then create a mapping for the kernel at logical 0x8000.0000 to 1340 * the physical location of the pc. And, create a transparent 1341 * translation register for the first 16 Meg. Then, after the MMU 1342 * is engaged, the PC can be moved up into the 0x8000.0000 range 1343 * and then the transparent translation can be turned off and then 1344 * the PC can jump to the correct logical location and it will be 1345 * home (finally). This is essentially the code that the Amiga used 1346 * to use. Now, it's generalized for all processors. Which means 1347 * that a fresh (but temporary) mapping has to be created. The mapping 1348 * is made in page 0 (an as of yet unused location -- except for the 1349 * stack!). This temporary mapping will only require 1 pointer table 1350 * and a single page table (it can map 256K). 1351 * 1352 * OK, alternatively, imagine that the Program Counter is not within 1353 * the first 16 Meg. Then, just use Transparent Translation registers 1354 * to do the right thing. 1355 * 1356 * Last, if _start is already at 0x01000, then there's nothing special 1357 * to do (in other words, in a degenerate case of the first case above, 1358 * do nothing). 1359 * 1360 * Let's do it. 1361 * 1362 * 1363 */ 1364 1365 putc 'H' 1366 1367 mmu_engage 1368 1369/* 1370 * After this point no new memory is allocated and 1371 * the start of available memory is stored in availmem. 1372 * (The bootmem allocator requires now the physicall address.) 1373 */ 1374 1375 movel L(memory_start),availmem 1376 1377#ifdef CONFIG_AMIGA 1378 is_not_amiga(1f) 1379 /* fixup the Amiga custom register location before printing */ 1380 clrl L(custom) 13811: 1382#endif 1383 1384#ifdef CONFIG_ATARI 1385 is_not_atari(1f) 1386 /* fixup the Atari iobase register location before printing */ 1387 movel #0xff000000,L(iobase) 13881: 1389#endif 1390 1391#ifdef CONFIG_MAC 1392 is_not_mac(1f) 1393 movel #~VIDEOMEMMASK,%d0 1394 andl L(mac_videobase),%d0 1395 addl #VIDEOMEMBASE,%d0 1396 movel %d0,L(mac_videobase) 1397#ifdef CONSOLE_DEBUG 1398 movel %pc@(L(phys_kernel_start)),%d0 1399 subl #PAGE_OFFSET,%d0 1400 subl %d0,L(console_font) 1401 subl %d0,L(console_font_data) 1402#endif 1403 orl #0x50000000,L(mac_sccbase) 14041: 1405#endif 1406 1407#ifdef CONFIG_HP300 1408 is_not_hp300(2f) 1409 /* 1410 * Fix up the iobase register to point to the new location of the LEDs. 1411 */ 1412 movel #0xf0000000,L(iobase) 1413 1414 /* 1415 * Energise the FPU and caches. 1416 */ 1417 is_040(1f) 1418 movel #0x60,0xf05f400c 1419 jbra 2f 1420 1421 /* 1422 * 040: slightly different, apparently. 1423 */ 14241: movew #0,0xf05f400e 1425 movew #0x64,0xf05f400e 14262: 1427#endif 1428 1429#ifdef CONFIG_SUN3X 1430 is_not_sun3x(1f) 1431 1432 /* enable copro */ 1433 oriw #0x4000,0x61000000 14341: 1435#endif 1436 1437#ifdef CONFIG_APOLLO 1438 is_not_apollo(1f) 1439 1440 /* 1441 * Fix up the iobase before printing 1442 */ 1443 movel #0x80000000,L(iobase) 14441: 1445#endif 1446 1447 putc 'I' 1448 leds 0x10 1449 1450/* 1451 * Enable caches 1452 */ 1453 1454 is_not_040_or_060(L(cache_not_680460)) 1455 1456L(cache680460): 1457 .chip 68040 1458 nop 1459 cpusha %bc 1460 nop 1461 1462 is_060(L(cache68060)) 1463 1464 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0 1465 /* MMU stuff works in copyback mode now, so enable the cache */ 1466 movec %d0,%cacr 1467 jra L(cache_done) 1468 1469L(cache68060): 1470 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0 1471 /* MMU stuff works in copyback mode now, so enable the cache */ 1472 movec %d0,%cacr 1473 /* enable superscalar dispatch in PCR */ 1474 moveq #1,%d0 1475 .chip 68060 1476 movec %d0,%pcr 1477 1478 jbra L(cache_done) 1479L(cache_not_680460): 1480L(cache68030): 1481 .chip 68030 1482 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0 1483 movec %d0,%cacr 1484 1485 jra L(cache_done) 1486 .chip 68k 1487L(cache_done): 1488 1489 putc 'J' 1490 1491/* 1492 * Setup initial stack pointer 1493 */ 1494 lea init_task,%curptr 1495 lea init_thread_union+THREAD_SIZE,%sp 1496 1497 putc 'K' 1498 1499 subl %a6,%a6 /* clear a6 for gdb */ 1500 1501/* 1502 * The new 64bit printf support requires an early exception initialization. 1503 */ 1504 jbsr base_trap_init 1505 1506/* jump to the kernel start */ 1507 1508 putc '\n' 1509 leds 0x55 1510 1511 jbsr start_kernel 1512 1513/* 1514 * Find a tag record in the bootinfo structure 1515 * The bootinfo structure is located right after the kernel 1516 * Returns: d0: size (-1 if not found) 1517 * a0: data pointer (end-of-records if not found) 1518 */ 1519func_start get_bi_record,%d1 1520 1521 movel ARG1,%d0 1522 lea %pc@(_end),%a0 15231: tstw %a0@(BIR_TAG) 1524 jeq 3f 1525 cmpw %a0@(BIR_TAG),%d0 1526 jeq 2f 1527 addw %a0@(BIR_SIZE),%a0 1528 jra 1b 15292: moveq #0,%d0 1530 movew %a0@(BIR_SIZE),%d0 1531 lea %a0@(BIR_DATA),%a0 1532 jra 4f 15333: moveq #-1,%d0 1534 lea %a0@(BIR_SIZE),%a0 15354: 1536func_return get_bi_record 1537 1538 1539/* 1540 * MMU Initialization Begins Here 1541 * 1542 * The structure of the MMU tables on the 68k machines 1543 * is thus: 1544 * Root Table 1545 * Logical addresses are translated through 1546 * a hierarchical translation mechanism where the high-order 1547 * seven bits of the logical address (LA) are used as an 1548 * index into the "root table." Each entry in the root 1549 * table has a bit which specifies if it's a valid pointer to a 1550 * pointer table. Each entry defines a 32KMeg range of memory. 1551 * If an entry is invalid then that logical range of 32M is 1552 * invalid and references to that range of memory (when the MMU 1553 * is enabled) will fault. If the entry is valid, then it does 1554 * one of two things. On 040/060 class machines, it points to 1555 * a pointer table which then describes more finely the memory 1556 * within that 32M range. On 020/030 class machines, a technique 1557 * called "early terminating descriptors" are used. This technique 1558 * allows an entire 32Meg to be described by a single entry in the 1559 * root table. Thus, this entry in the root table, contains the 1560 * physical address of the memory or I/O at the logical address 1561 * which the entry represents and it also contains the necessary 1562 * cache bits for this region. 1563 * 1564 * Pointer Tables 1565 * Per the Root Table, there will be one or more 1566 * pointer tables. Each pointer table defines a 32M range. 1567 * Not all of the 32M range need be defined. Again, the next 1568 * seven bits of the logical address are used an index into 1569 * the pointer table to point to page tables (if the pointer 1570 * is valid). There will undoubtedly be more than one 1571 * pointer table for the kernel because each pointer table 1572 * defines a range of only 32M. Valid pointer table entries 1573 * point to page tables, or are early terminating entries 1574 * themselves. 1575 * 1576 * Page Tables 1577 * Per the Pointer Tables, each page table entry points 1578 * to the physical page in memory that supports the logical 1579 * address that translates to the particular index. 1580 * 1581 * In short, the Logical Address gets translated as follows: 1582 * bits 31..26 - index into the Root Table 1583 * bits 25..18 - index into the Pointer Table 1584 * bits 17..12 - index into the Page Table 1585 * bits 11..0 - offset into a particular 4K page 1586 * 1587 * The algorithms which follows do one thing: they abstract 1588 * the MMU hardware. For example, there are three kinds of 1589 * cache settings that are relevant. Either, memory is 1590 * being mapped in which case it is either Kernel Code (or 1591 * the RamDisk) or it is MMU data. On the 030, the MMU data 1592 * option also describes the kernel. Or, I/O is being mapped 1593 * in which case it has its own kind of cache bits. There 1594 * are constants which abstract these notions from the code that 1595 * actually makes the call to map some range of memory. 1596 * 1597 * 1598 * 1599 */ 1600 1601#ifdef MMU_PRINT 1602/* 1603 * mmu_print 1604 * 1605 * This algorithm will print out the current MMU mappings. 1606 * 1607 * Input: 1608 * %a5 points to the root table. Everything else is calculated 1609 * from this. 1610 */ 1611 1612#define mmu_next_valid 0 1613#define mmu_start_logical 4 1614#define mmu_next_logical 8 1615#define mmu_start_physical 12 1616#define mmu_next_physical 16 1617 1618#define MMU_PRINT_INVALID -1 1619#define MMU_PRINT_VALID 1 1620#define MMU_PRINT_UNINITED 0 1621 1622#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2: 1623 1624func_start mmu_print,%a0-%a6/%d0-%d7 1625 1626 movel %pc@(L(kernel_pgdir_ptr)),%a5 1627 lea %pc@(L(mmu_print_data)),%a0 1628 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid) 1629 1630 is_not_040_or_060(mmu_030_print) 1631 1632mmu_040_print: 1633 puts "\nMMU040\n" 1634 puts "rp:" 1635 putn %a5 1636 putc '\n' 1637#if 0 1638 /* 1639 * The following #if/#endif block is a tight algorithm for dumping the 040 1640 * MMU Map in gory detail. It really isn't that practical unless the 1641 * MMU Map algorithm appears to go awry and you need to debug it at the 1642 * entry per entry level. 1643 */ 1644 movel #ROOT_TABLE_SIZE,%d5 1645#if 0 1646 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings, 1647 subql #1,%d5 | they (might) work 1648#endif 16491: tstl %d5 1650 jbeq mmu_print_done 1651 subq #1,%d5 1652 movel %a5@+,%d7 1653 btst #1,%d7 1654 jbeq 1b 1655 16562: putn %d7 1657 andil #0xFFFFFE00,%d7 1658 movel %d7,%a4 1659 movel #PTR_TABLE_SIZE,%d4 1660 putc ' ' 16613: tstl %d4 1662 jbeq 11f 1663 subq #1,%d4 1664 movel %a4@+,%d7 1665 btst #1,%d7 1666 jbeq 3b 1667 16684: putn %d7 1669 andil #0xFFFFFF00,%d7 1670 movel %d7,%a3 1671 movel #PAGE_TABLE_SIZE,%d3 16725: movel #8,%d2 16736: tstl %d3 1674 jbeq 31f 1675 subq #1,%d3 1676 movel %a3@+,%d6 1677 btst #0,%d6 1678 jbeq 6b 16797: tstl %d2 1680 jbeq 8f 1681 subq #1,%d2 1682 putc ' ' 1683 jbra 91f 16848: putc '\n' 1685 movel #8+1+8+1+1,%d2 16869: putc ' ' 1687 dbra %d2,9b 1688 movel #7,%d2 168991: putn %d6 1690 jbra 6b 1691 169231: putc '\n' 1693 movel #8+1,%d2 169432: putc ' ' 1695 dbra %d2,32b 1696 jbra 3b 1697 169811: putc '\n' 1699 jbra 1b 1700#endif /* MMU 040 Dumping code that's gory and detailed */ 1701 1702 lea %pc@(kernel_pg_dir),%a5 1703 movel %a5,%a0 /* a0 has the address of the root table ptr */ 1704 movel #0x00000000,%a4 /* logical address */ 1705 moveql #0,%d0 170640: 1707 /* Increment the logical address and preserve in d5 */ 1708 movel %a4,%d5 1709 addil #PAGESIZE<<13,%d5 1710 movel %a0@+,%d6 1711 btst #1,%d6 1712 jbne 41f 1713 jbsr mmu_print_tuple_invalidate 1714 jbra 48f 171541: 1716 movel #0,%d1 1717 andil #0xfffffe00,%d6 1718 movel %d6,%a1 171942: 1720 movel %a4,%d5 1721 addil #PAGESIZE<<6,%d5 1722 movel %a1@+,%d6 1723 btst #1,%d6 1724 jbne 43f 1725 jbsr mmu_print_tuple_invalidate 1726 jbra 47f 172743: 1728 movel #0,%d2 1729 andil #0xffffff00,%d6 1730 movel %d6,%a2 173144: 1732 movel %a4,%d5 1733 addil #PAGESIZE,%d5 1734 movel %a2@+,%d6 1735 btst #0,%d6 1736 jbne 45f 1737 jbsr mmu_print_tuple_invalidate 1738 jbra 46f 173945: 1740 moveml %d0-%d1,%sp@- 1741 movel %a4,%d0 1742 movel %d6,%d1 1743 andil #0xfffff4e0,%d1 1744 lea %pc@(mmu_040_print_flags),%a6 1745 jbsr mmu_print_tuple 1746 moveml %sp@+,%d0-%d1 174746: 1748 movel %d5,%a4 1749 addq #1,%d2 1750 cmpib #64,%d2 1751 jbne 44b 175247: 1753 movel %d5,%a4 1754 addq #1,%d1 1755 cmpib #128,%d1 1756 jbne 42b 175748: 1758 movel %d5,%a4 /* move to the next logical address */ 1759 addq #1,%d0 1760 cmpib #128,%d0 1761 jbne 40b 1762 1763 .chip 68040 1764 movec %dtt1,%d0 1765 movel %d0,%d1 1766 andiw #0x8000,%d1 /* is it valid ? */ 1767 jbeq 1f /* No, bail out */ 1768 1769 movel %d0,%d1 1770 andil #0xff000000,%d1 /* Get the address */ 1771 putn %d1 1772 puts "==" 1773 putn %d1 1774 1775 movel %d0,%d6 1776 jbsr mmu_040_print_flags_tt 17771: 1778 movec %dtt0,%d0 1779 movel %d0,%d1 1780 andiw #0x8000,%d1 /* is it valid ? */ 1781 jbeq 1f /* No, bail out */ 1782 1783 movel %d0,%d1 1784 andil #0xff000000,%d1 /* Get the address */ 1785 putn %d1 1786 puts "==" 1787 putn %d1 1788 1789 movel %d0,%d6 1790 jbsr mmu_040_print_flags_tt 17911: 1792 .chip 68k 1793 1794 jbra mmu_print_done 1795 1796mmu_040_print_flags: 1797 btstl #10,%d6 1798 putZc(' ','G') /* global bit */ 1799 btstl #7,%d6 1800 putZc(' ','S') /* supervisor bit */ 1801mmu_040_print_flags_tt: 1802 btstl #6,%d6 1803 jbne 3f 1804 putc 'C' 1805 btstl #5,%d6 1806 putZc('w','c') /* write through or copy-back */ 1807 jbra 4f 18083: 1809 putc 'N' 1810 btstl #5,%d6 1811 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */ 18124: 1813 rts 1814 1815mmu_030_print_flags: 1816 btstl #6,%d6 1817 putZc('C','I') /* write through or copy-back */ 1818 rts 1819 1820mmu_030_print: 1821 puts "\nMMU030\n" 1822 puts "\nrp:" 1823 putn %a5 1824 putc '\n' 1825 movel %a5,%d0 1826 andil #0xfffffff0,%d0 1827 movel %d0,%a0 1828 movel #0x00000000,%a4 /* logical address */ 1829 movel #0,%d0 183030: 1831 movel %a4,%d5 1832 addil #PAGESIZE<<13,%d5 1833 movel %a0@+,%d6 1834 btst #1,%d6 /* is it a table ptr? */ 1835 jbne 31f /* yes */ 1836 btst #0,%d6 /* is it early terminating? */ 1837 jbeq 1f /* no */ 1838 jbsr mmu_030_print_helper 1839 jbra 38f 18401: 1841 jbsr mmu_print_tuple_invalidate 1842 jbra 38f 184331: 1844 movel #0,%d1 1845 andil #0xfffffff0,%d6 1846 movel %d6,%a1 184732: 1848 movel %a4,%d5 1849 addil #PAGESIZE<<6,%d5 1850 movel %a1@+,%d6 1851 btst #1,%d6 /* is it a table ptr? */ 1852 jbne 33f /* yes */ 1853 btst #0,%d6 /* is it a page descriptor? */ 1854 jbeq 1f /* no */ 1855 jbsr mmu_030_print_helper 1856 jbra 37f 18571: 1858 jbsr mmu_print_tuple_invalidate 1859 jbra 37f 186033: 1861 movel #0,%d2 1862 andil #0xfffffff0,%d6 1863 movel %d6,%a2 186434: 1865 movel %a4,%d5 1866 addil #PAGESIZE,%d5 1867 movel %a2@+,%d6 1868 btst #0,%d6 1869 jbne 35f 1870 jbsr mmu_print_tuple_invalidate 1871 jbra 36f 187235: 1873 jbsr mmu_030_print_helper 187436: 1875 movel %d5,%a4 1876 addq #1,%d2 1877 cmpib #64,%d2 1878 jbne 34b 187937: 1880 movel %d5,%a4 1881 addq #1,%d1 1882 cmpib #128,%d1 1883 jbne 32b 188438: 1885 movel %d5,%a4 /* move to the next logical address */ 1886 addq #1,%d0 1887 cmpib #128,%d0 1888 jbne 30b 1889 1890mmu_print_done: 1891 puts "\n" 1892 1893func_return mmu_print 1894 1895 1896mmu_030_print_helper: 1897 moveml %d0-%d1,%sp@- 1898 movel %a4,%d0 1899 movel %d6,%d1 1900 lea %pc@(mmu_030_print_flags),%a6 1901 jbsr mmu_print_tuple 1902 moveml %sp@+,%d0-%d1 1903 rts 1904 1905mmu_print_tuple_invalidate: 1906 moveml %a0/%d7,%sp@- 1907 1908 lea %pc@(L(mmu_print_data)),%a0 1909 tstl %a0@(mmu_next_valid) 1910 jbmi mmu_print_tuple_invalidate_exit 1911 1912 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid) 1913 1914 putn %a4 1915 1916 puts "##\n" 1917 1918mmu_print_tuple_invalidate_exit: 1919 moveml %sp@+,%a0/%d7 1920 rts 1921 1922 1923mmu_print_tuple: 1924 moveml %d0-%d7/%a0,%sp@- 1925 1926 lea %pc@(L(mmu_print_data)),%a0 1927 1928 tstl %a0@(mmu_next_valid) 1929 jble mmu_print_tuple_print 1930 1931 cmpl %a0@(mmu_next_physical),%d1 1932 jbeq mmu_print_tuple_increment 1933 1934mmu_print_tuple_print: 1935 putn %d0 1936 puts "->" 1937 putn %d1 1938 1939 movel %d1,%d6 1940 jbsr %a6@ 1941 1942mmu_print_tuple_record: 1943 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid) 1944 1945 movel %d1,%a0@(mmu_next_physical) 1946 1947mmu_print_tuple_increment: 1948 movel %d5,%d7 1949 subl %a4,%d7 1950 addl %d7,%a0@(mmu_next_physical) 1951 1952mmu_print_tuple_exit: 1953 moveml %sp@+,%d0-%d7/%a0 1954 rts 1955 1956mmu_print_machine_cpu_types: 1957 puts "machine: " 1958 1959 is_not_amiga(1f) 1960 puts "amiga" 1961 jbra 9f 19621: 1963 is_not_atari(2f) 1964 puts "atari" 1965 jbra 9f 19662: 1967 is_not_mac(3f) 1968 puts "macintosh" 1969 jbra 9f 19703: puts "unknown" 19719: putc '\n' 1972 1973 puts "cputype: 0" 1974 is_not_060(1f) 1975 putc '6' 1976 jbra 9f 19771: 1978 is_not_040_or_060(2f) 1979 putc '4' 1980 jbra 9f 19812: putc '3' 19829: putc '0' 1983 putc '\n' 1984 1985 rts 1986#endif /* MMU_PRINT */ 1987 1988/* 1989 * mmu_map_tt 1990 * 1991 * This is a specific function which works on all 680x0 machines. 1992 * On 030, 040 & 060 it will attempt to use Transparent Translation 1993 * registers (tt1). 1994 * On 020 it will call the standard mmu_map which will use early 1995 * terminating descriptors. 1996 */ 1997func_start mmu_map_tt,%d0/%d1/%a0,4 1998 1999 dputs "mmu_map_tt:" 2000 dputn ARG1 2001 dputn ARG2 2002 dputn ARG3 2003 dputn ARG4 2004 dputc '\n' 2005 2006 is_020(L(do_map)) 2007 2008 /* Extract the highest bit set 2009 */ 2010 bfffo ARG3{#0,#32},%d1 2011 cmpw #8,%d1 2012 jcc L(do_map) 2013 2014 /* And get the mask 2015 */ 2016 moveq #-1,%d0 2017 lsrl %d1,%d0 2018 lsrl #1,%d0 2019 2020 /* Mask the address 2021 */ 2022 movel %d0,%d1 2023 notl %d1 2024 andl ARG2,%d1 2025 2026 /* Generate the upper 16bit of the tt register 2027 */ 2028 lsrl #8,%d0 2029 orl %d0,%d1 2030 clrw %d1 2031 2032 is_040_or_060(L(mmu_map_tt_040)) 2033 2034 /* set 030 specific bits (read/write access for supervisor mode 2035 * (highest function code set, lower two bits masked)) 2036 */ 2037 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1 2038 movel ARG4,%d0 2039 btst #6,%d0 2040 jeq 1f 2041 orw #TTR_CI,%d1 2042 20431: lea STACK,%a0 2044 dputn %d1 2045 movel %d1,%a0@ 2046 .chip 68030 2047 tstl ARG1 2048 jne 1f 2049 pmove %a0@,%tt0 2050 jra 2f 20511: pmove %a0@,%tt1 20522: .chip 68k 2053 jra L(mmu_map_tt_done) 2054 2055 /* set 040 specific bits 2056 */ 2057L(mmu_map_tt_040): 2058 orw #TTR_ENABLE+TTR_KERNELMODE,%d1 2059 orl ARG4,%d1 2060 dputn %d1 2061 2062 .chip 68040 2063 tstl ARG1 2064 jne 1f 2065 movec %d1,%itt0 2066 movec %d1,%dtt0 2067 jra 2f 20681: movec %d1,%itt1 2069 movec %d1,%dtt1 20702: .chip 68k 2071 2072 jra L(mmu_map_tt_done) 2073 2074L(do_map): 2075 mmu_map_eq ARG2,ARG3,ARG4 2076 2077L(mmu_map_tt_done): 2078 2079func_return mmu_map_tt 2080 2081/* 2082 * mmu_map 2083 * 2084 * This routine will map a range of memory using a pointer 2085 * table and allocating the pages on the fly from the kernel. 2086 * The pointer table does not have to be already linked into 2087 * the root table, this routine will do that if necessary. 2088 * 2089 * NOTE 2090 * This routine will assert failure and use the serial_putc 2091 * routines in the case of a run-time error. For example, 2092 * if the address is already mapped. 2093 * 2094 * NOTE-2 2095 * This routine will use early terminating descriptors 2096 * where possible for the 68020+68851 and 68030 type 2097 * processors. 2098 */ 2099func_start mmu_map,%d0-%d4/%a0-%a4 2100 2101 dputs "\nmmu_map:" 2102 dputn ARG1 2103 dputn ARG2 2104 dputn ARG3 2105 dputn ARG4 2106 dputc '\n' 2107 2108 /* Get logical address and round it down to 256KB 2109 */ 2110 movel ARG1,%d0 2111 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2112 movel %d0,%a3 2113 2114 /* Get the end address 2115 */ 2116 movel ARG1,%a4 2117 addl ARG3,%a4 2118 subql #1,%a4 2119 2120 /* Get physical address and round it down to 256KB 2121 */ 2122 movel ARG2,%d0 2123 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2124 movel %d0,%a2 2125 2126 /* Add page attributes to the physical address 2127 */ 2128 movel ARG4,%d0 2129 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2130 addw %d0,%a2 2131 2132 dputn %a2 2133 dputn %a3 2134 dputn %a4 2135 2136 is_not_040_or_060(L(mmu_map_030)) 2137 2138 addw #_PAGE_GLOBAL040,%a2 2139/* 2140 * MMU 040 & 060 Support 2141 * 2142 * The MMU usage for the 040 and 060 is different enough from 2143 * the 030 and 68851 that there is separate code. This comment 2144 * block describes the data structures and algorithms built by 2145 * this code. 2146 * 2147 * The 040 does not support early terminating descriptors, as 2148 * the 030 does. Therefore, a third level of table is needed 2149 * for the 040, and that would be the page table. In Linux, 2150 * page tables are allocated directly from the memory above the 2151 * kernel. 2152 * 2153 */ 2154 2155L(mmu_map_040): 2156 /* Calculate the offset into the root table 2157 */ 2158 movel %a3,%d0 2159 moveq #ROOT_INDEX_SHIFT,%d1 2160 lsrl %d1,%d0 2161 mmu_get_root_table_entry %d0 2162 2163 /* Calculate the offset into the pointer table 2164 */ 2165 movel %a3,%d0 2166 moveq #PTR_INDEX_SHIFT,%d1 2167 lsrl %d1,%d0 2168 andl #PTR_TABLE_SIZE-1,%d0 2169 mmu_get_ptr_table_entry %a0,%d0 2170 2171 /* Calculate the offset into the page table 2172 */ 2173 movel %a3,%d0 2174 moveq #PAGE_INDEX_SHIFT,%d1 2175 lsrl %d1,%d0 2176 andl #PAGE_TABLE_SIZE-1,%d0 2177 mmu_get_page_table_entry %a0,%d0 2178 2179 /* The page table entry must not no be busy 2180 */ 2181 tstl %a0@ 2182 jne L(mmu_map_error) 2183 2184 /* Do the mapping and advance the pointers 2185 */ 2186 movel %a2,%a0@ 21872: 2188 addw #PAGESIZE,%a2 2189 addw #PAGESIZE,%a3 2190 2191 /* Ready with mapping? 2192 */ 2193 lea %a3@(-1),%a0 2194 cmpl %a0,%a4 2195 jhi L(mmu_map_040) 2196 jra L(mmu_map_done) 2197 2198L(mmu_map_030): 2199 /* Calculate the offset into the root table 2200 */ 2201 movel %a3,%d0 2202 moveq #ROOT_INDEX_SHIFT,%d1 2203 lsrl %d1,%d0 2204 mmu_get_root_table_entry %d0 2205 2206 /* Check if logical address 32MB aligned, 2207 * so we can try to map it once 2208 */ 2209 movel %a3,%d0 2210 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0 2211 jne 1f 2212 2213 /* Is there enough to map for 32MB at once 2214 */ 2215 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1 2216 cmpl %a1,%a4 2217 jcs 1f 2218 2219 addql #1,%a1 2220 2221 /* The root table entry must not no be busy 2222 */ 2223 tstl %a0@ 2224 jne L(mmu_map_error) 2225 2226 /* Do the mapping and advance the pointers 2227 */ 2228 dputs "early term1" 2229 dputn %a2 2230 dputn %a3 2231 dputn %a1 2232 dputc '\n' 2233 movel %a2,%a0@ 2234 2235 movel %a1,%a3 2236 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2 2237 jra L(mmu_mapnext_030) 22381: 2239 /* Calculate the offset into the pointer table 2240 */ 2241 movel %a3,%d0 2242 moveq #PTR_INDEX_SHIFT,%d1 2243 lsrl %d1,%d0 2244 andl #PTR_TABLE_SIZE-1,%d0 2245 mmu_get_ptr_table_entry %a0,%d0 2246 2247 /* The pointer table entry must not no be busy 2248 */ 2249 tstl %a0@ 2250 jne L(mmu_map_error) 2251 2252 /* Do the mapping and advance the pointers 2253 */ 2254 dputs "early term2" 2255 dputn %a2 2256 dputn %a3 2257 dputc '\n' 2258 movel %a2,%a0@ 2259 2260 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2 2261 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3 2262 2263L(mmu_mapnext_030): 2264 /* Ready with mapping? 2265 */ 2266 lea %a3@(-1),%a0 2267 cmpl %a0,%a4 2268 jhi L(mmu_map_030) 2269 jra L(mmu_map_done) 2270 2271L(mmu_map_error): 2272 2273 dputs "mmu_map error:" 2274 dputn %a2 2275 dputn %a3 2276 dputc '\n' 2277 2278L(mmu_map_done): 2279 2280func_return mmu_map 2281 2282/* 2283 * mmu_fixup 2284 * 2285 * On the 040 class machines, all pages that are used for the 2286 * mmu have to be fixed up. 2287 */ 2288 2289func_start mmu_fixup_page_mmu_cache,%d0/%a0 2290 2291 dputs "mmu_fixup_page_mmu_cache" 2292 dputn ARG1 2293 2294 /* Calculate the offset into the root table 2295 */ 2296 movel ARG1,%d0 2297 moveq #ROOT_INDEX_SHIFT,%d1 2298 lsrl %d1,%d0 2299 mmu_get_root_table_entry %d0 2300 2301 /* Calculate the offset into the pointer table 2302 */ 2303 movel ARG1,%d0 2304 moveq #PTR_INDEX_SHIFT,%d1 2305 lsrl %d1,%d0 2306 andl #PTR_TABLE_SIZE-1,%d0 2307 mmu_get_ptr_table_entry %a0,%d0 2308 2309 /* Calculate the offset into the page table 2310 */ 2311 movel ARG1,%d0 2312 moveq #PAGE_INDEX_SHIFT,%d1 2313 lsrl %d1,%d0 2314 andl #PAGE_TABLE_SIZE-1,%d0 2315 mmu_get_page_table_entry %a0,%d0 2316 2317 movel %a0@,%d0 2318 andil #_CACHEMASK040,%d0 2319 orl %pc@(m68k_pgtable_cachemode),%d0 2320 movel %d0,%a0@ 2321 2322 dputc '\n' 2323 2324func_return mmu_fixup_page_mmu_cache 2325 2326/* 2327 * mmu_temp_map 2328 * 2329 * create a temporary mapping to enable the mmu, 2330 * this we don't need any transparation translation tricks. 2331 */ 2332 2333func_start mmu_temp_map,%d0/%d1/%a0/%a1 2334 2335 dputs "mmu_temp_map" 2336 dputn ARG1 2337 dputn ARG2 2338 dputc '\n' 2339 2340 lea %pc@(L(temp_mmap_mem)),%a1 2341 2342 /* Calculate the offset in the root table 2343 */ 2344 movel ARG2,%d0 2345 moveq #ROOT_INDEX_SHIFT,%d1 2346 lsrl %d1,%d0 2347 mmu_get_root_table_entry %d0 2348 2349 /* Check if the table is temporary allocated, so we have to reuse it 2350 */ 2351 movel %a0@,%d0 2352 cmpl %pc@(L(memory_start)),%d0 2353 jcc 1f 2354 2355 /* Temporary allocate a ptr table and insert it into the root table 2356 */ 2357 movel %a1@,%d0 2358 addl #PTR_TABLE_SIZE*4,%a1@ 2359 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2360 movel %d0,%a0@ 2361 dputs " (new)" 23621: 2363 dputn %d0 2364 /* Mask the root table entry for the ptr table 2365 */ 2366 andw #-ROOT_TABLE_SIZE,%d0 2367 movel %d0,%a0 2368 2369 /* Calculate the offset into the pointer table 2370 */ 2371 movel ARG2,%d0 2372 moveq #PTR_INDEX_SHIFT,%d1 2373 lsrl %d1,%d0 2374 andl #PTR_TABLE_SIZE-1,%d0 2375 lea %a0@(%d0*4),%a0 2376 dputn %a0 2377 2378 /* Check if a temporary page table is already allocated 2379 */ 2380 movel %a0@,%d0 2381 jne 1f 2382 2383 /* Temporary allocate a page table and insert it into the ptr table 2384 */ 2385 movel %a1@,%d0 2386 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the 2387 alignment restriction for pointer tables on the '0[46]0. */ 2388 addl #512,%a1@ 2389 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2390 movel %d0,%a0@ 2391 dputs " (new)" 23921: 2393 dputn %d0 2394 /* Mask the ptr table entry for the page table 2395 */ 2396 andw #-PTR_TABLE_SIZE,%d0 2397 movel %d0,%a0 2398 2399 /* Calculate the offset into the page table 2400 */ 2401 movel ARG2,%d0 2402 moveq #PAGE_INDEX_SHIFT,%d1 2403 lsrl %d1,%d0 2404 andl #PAGE_TABLE_SIZE-1,%d0 2405 lea %a0@(%d0*4),%a0 2406 dputn %a0 2407 2408 /* Insert the address into the page table 2409 */ 2410 movel ARG1,%d0 2411 andw #-PAGESIZE,%d0 2412 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2413 movel %d0,%a0@ 2414 dputn %d0 2415 2416 dputc '\n' 2417 2418func_return mmu_temp_map 2419 2420func_start mmu_engage,%d0-%d2/%a0-%a3 2421 2422 moveq #ROOT_TABLE_SIZE-1,%d0 2423 /* Temporarily use a different root table. */ 2424 lea %pc@(L(kernel_pgdir_ptr)),%a0 2425 movel %a0@,%a2 2426 movel %pc@(L(memory_start)),%a1 2427 movel %a1,%a0@ 2428 movel %a2,%a0 24291: 2430 movel %a0@+,%a1@+ 2431 dbra %d0,1b 2432 2433 lea %pc@(L(temp_mmap_mem)),%a0 2434 movel %a1,%a0@ 2435 2436 movew #PAGESIZE-1,%d0 24371: 2438 clrl %a1@+ 2439 dbra %d0,1b 2440 2441 lea %pc@(1b),%a0 2442 movel #1b,%a1 2443 /* Skip temp mappings if phys == virt */ 2444 cmpl %a0,%a1 2445 jeq 1f 2446 2447 mmu_temp_map %a0,%a0 2448 mmu_temp_map %a0,%a1 2449 2450 addw #PAGESIZE,%a0 2451 addw #PAGESIZE,%a1 2452 mmu_temp_map %a0,%a0 2453 mmu_temp_map %a0,%a1 24541: 2455 movel %pc@(L(memory_start)),%a3 2456 movel %pc@(L(phys_kernel_start)),%d2 2457 2458 is_not_040_or_060(L(mmu_engage_030)) 2459 2460L(mmu_engage_040): 2461 .chip 68040 2462 nop 2463 cinva %bc 2464 nop 2465 pflusha 2466 nop 2467 movec %a3,%srp 2468 movel #TC_ENABLE+TC_PAGE4K,%d0 2469 movec %d0,%tc /* enable the MMU */ 2470 jmp 1f:l 24711: nop 2472 movec %a2,%srp 2473 nop 2474 cinva %bc 2475 nop 2476 pflusha 2477 .chip 68k 2478 jra L(mmu_engage_cleanup) 2479 2480L(mmu_engage_030_temp): 2481 .space 12 2482L(mmu_engage_030): 2483 .chip 68030 2484 lea %pc@(L(mmu_engage_030_temp)),%a0 2485 movel #0x80000002,%a0@ 2486 movel %a3,%a0@(4) 2487 movel #0x0808,%d0 2488 movec %d0,%cacr 2489 pmove %a0@,%srp 2490 pflusha 2491 /* 2492 * enable,super root enable,4096 byte pages,7 bit root index, 2493 * 7 bit pointer index, 6 bit page table index. 2494 */ 2495 movel #0x82c07760,%a0@(8) 2496 pmove %a0@(8),%tc /* enable the MMU */ 2497 jmp 1f:l 24981: movel %a2,%a0@(4) 2499 movel #0x0808,%d0 2500 movec %d0,%cacr 2501 pmove %a0@,%srp 2502 pflusha 2503 .chip 68k 2504 2505L(mmu_engage_cleanup): 2506 subl #PAGE_OFFSET,%d2 2507 subl %d2,%a2 2508 movel %a2,L(kernel_pgdir_ptr) 2509 subl %d2,%fp 2510 subl %d2,%sp 2511 subl %d2,ARG0 2512 2513func_return mmu_engage 2514 2515func_start mmu_get_root_table_entry,%d0/%a1 2516 2517#if 0 2518 dputs "mmu_get_root_table_entry:" 2519 dputn ARG1 2520 dputs " =" 2521#endif 2522 2523 movel %pc@(L(kernel_pgdir_ptr)),%a0 2524 tstl %a0 2525 jne 2f 2526 2527 dputs "\nmmu_init:" 2528 2529 /* Find the start of free memory, get_bi_record does this for us, 2530 * as the bootinfo structure is located directly behind the kernel 2531 * and and we simply search for the last entry. 2532 */ 2533 get_bi_record BI_LAST 2534 addw #PAGESIZE-1,%a0 2535 movel %a0,%d0 2536 andw #-PAGESIZE,%d0 2537 2538 dputn %d0 2539 2540 lea %pc@(L(memory_start)),%a0 2541 movel %d0,%a0@ 2542 lea %pc@(L(kernel_end)),%a0 2543 movel %d0,%a0@ 2544 2545 /* we have to return the first page at _stext since the init code 2546 * in mm/init.c simply expects kernel_pg_dir there, the rest of 2547 * page is used for further ptr tables in get_ptr_table. 2548 */ 2549 lea %pc@(_stext),%a0 2550 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2551 movel %a0,%a1@ 2552 addl #ROOT_TABLE_SIZE*4,%a1@ 2553 2554 lea %pc@(L(mmu_num_pointer_tables)),%a1 2555 addql #1,%a1@ 2556 2557 /* clear the page 2558 */ 2559 movel %a0,%a1 2560 movew #PAGESIZE/4-1,%d0 25611: 2562 clrl %a1@+ 2563 dbra %d0,1b 2564 2565 lea %pc@(L(kernel_pgdir_ptr)),%a1 2566 movel %a0,%a1@ 2567 2568 dputn %a0 2569 dputc '\n' 25702: 2571 movel ARG1,%d0 2572 lea %a0@(%d0*4),%a0 2573 2574#if 0 2575 dputn %a0 2576 dputc '\n' 2577#endif 2578 2579func_return mmu_get_root_table_entry 2580 2581 2582 2583func_start mmu_get_ptr_table_entry,%d0/%a1 2584 2585#if 0 2586 dputs "mmu_get_ptr_table_entry:" 2587 dputn ARG1 2588 dputn ARG2 2589 dputs " =" 2590#endif 2591 2592 movel ARG1,%a0 2593 movel %a0@,%d0 2594 jne 2f 2595 2596 /* Keep track of the number of pointer tables we use 2597 */ 2598 dputs "\nmmu_get_new_ptr_table:" 2599 lea %pc@(L(mmu_num_pointer_tables)),%a0 2600 movel %a0@,%d0 2601 addql #1,%a0@ 2602 2603 /* See if there is a free pointer table in our cache of pointer tables 2604 */ 2605 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2606 andw #7,%d0 2607 jne 1f 2608 2609 /* Get a new pointer table page from above the kernel memory 2610 */ 2611 get_new_page 2612 movel %a0,%a1@ 26131: 2614 /* There is an unused pointer table in our cache... use it 2615 */ 2616 movel %a1@,%d0 2617 addl #PTR_TABLE_SIZE*4,%a1@ 2618 2619 dputn %d0 2620 dputc '\n' 2621 2622 /* Insert the new pointer table into the root table 2623 */ 2624 movel ARG1,%a0 2625 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2626 movel %d0,%a0@ 26272: 2628 /* Extract the pointer table entry 2629 */ 2630 andw #-PTR_TABLE_SIZE,%d0 2631 movel %d0,%a0 2632 movel ARG2,%d0 2633 lea %a0@(%d0*4),%a0 2634 2635#if 0 2636 dputn %a0 2637 dputc '\n' 2638#endif 2639 2640func_return mmu_get_ptr_table_entry 2641 2642 2643func_start mmu_get_page_table_entry,%d0/%a1 2644 2645#if 0 2646 dputs "mmu_get_page_table_entry:" 2647 dputn ARG1 2648 dputn ARG2 2649 dputs " =" 2650#endif 2651 2652 movel ARG1,%a0 2653 movel %a0@,%d0 2654 jne 2f 2655 2656 /* If the page table entry doesn't exist, we allocate a complete new 2657 * page and use it as one continues big page table which can cover 2658 * 4MB of memory, nearly almost all mappings have that alignment. 2659 */ 2660 get_new_page 2661 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0 2662 2663 /* align pointer table entry for a page of page tables 2664 */ 2665 movel ARG1,%d0 2666 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0 2667 movel %d0,%a1 2668 2669 /* Insert the page tables into the pointer entries 2670 */ 2671 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0 26721: 2673 movel %a0,%a1@+ 2674 lea %a0@(PAGE_TABLE_SIZE*4),%a0 2675 dbra %d0,1b 2676 2677 /* Now we can get the initialized pointer table entry 2678 */ 2679 movel ARG1,%a0 2680 movel %a0@,%d0 26812: 2682 /* Extract the page table entry 2683 */ 2684 andw #-PAGE_TABLE_SIZE,%d0 2685 movel %d0,%a0 2686 movel ARG2,%d0 2687 lea %a0@(%d0*4),%a0 2688 2689#if 0 2690 dputn %a0 2691 dputc '\n' 2692#endif 2693 2694func_return mmu_get_page_table_entry 2695 2696/* 2697 * get_new_page 2698 * 2699 * Return a new page from the memory start and clear it. 2700 */ 2701func_start get_new_page,%d0/%a1 2702 2703 dputs "\nget_new_page:" 2704 2705 /* allocate the page and adjust memory_start 2706 */ 2707 lea %pc@(L(memory_start)),%a0 2708 movel %a0@,%a1 2709 addl #PAGESIZE,%a0@ 2710 2711 /* clear the new page 2712 */ 2713 movel %a1,%a0 2714 movew #PAGESIZE/4-1,%d0 27151: 2716 clrl %a1@+ 2717 dbra %d0,1b 2718 2719 dputn %a0 2720 dputc '\n' 2721 2722func_return get_new_page 2723 2724 2725 2726/* 2727 * Debug output support 2728 * Atarians have a choice between the parallel port, the serial port 2729 * from the MFP or a serial port of the SCC 2730 */ 2731 2732#ifdef CONFIG_MAC 2733/* You may define either or both of these. */ 2734#define MAC_USE_SCC_A /* Modem port */ 2735#define MAC_USE_SCC_B /* Printer port */ 2736 2737#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B) 2738/* Initialisation table for SCC with 3.6864 MHz PCLK */ 2739L(scc_initable_mac): 2740 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2741 .byte 3,0xc0 /* receiver: 8 bpc */ 2742 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2743 .byte 10,0 /* NRZ */ 2744 .byte 11,0x50 /* use baud rate generator */ 2745 .byte 12,1,13,0 /* 38400 baud */ 2746 .byte 14,1 /* Baud rate generator enable */ 2747 .byte 3,0xc1 /* enable receiver */ 2748 .byte 5,0xea /* enable transmitter */ 2749 .byte -1 2750 .even 2751#endif 2752#endif /* CONFIG_MAC */ 2753 2754#ifdef CONFIG_ATARI 2755/* #define USE_PRINTER */ 2756/* #define USE_SCC_B */ 2757/* #define USE_SCC_A */ 2758#define USE_MFP 2759 2760#if defined(USE_SCC_A) || defined(USE_SCC_B) 2761/* Initialisation table for SCC with 7.9872 MHz PCLK */ 2762/* PCLK == 8.0539 gives baud == 9680.1 */ 2763L(scc_initable_atari): 2764 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2765 .byte 3,0xc0 /* receiver: 8 bpc */ 2766 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2767 .byte 10,0 /* NRZ */ 2768 .byte 11,0x50 /* use baud rate generator */ 2769 .byte 12,24,13,0 /* 9600 baud */ 2770 .byte 14,2,14,3 /* use master clock for BRG, enable */ 2771 .byte 3,0xc1 /* enable receiver */ 2772 .byte 5,0xea /* enable transmitter */ 2773 .byte -1 2774 .even 2775#endif 2776 2777#ifdef USE_PRINTER 2778 2779LPSG_SELECT = 0xff8800 2780LPSG_READ = 0xff8800 2781LPSG_WRITE = 0xff8802 2782LPSG_IO_A = 14 2783LPSG_IO_B = 15 2784LPSG_CONTROL = 7 2785LSTMFP_GPIP = 0xfffa01 2786LSTMFP_DDR = 0xfffa05 2787LSTMFP_IERB = 0xfffa09 2788 2789#elif defined(USE_SCC_B) 2790 2791LSCC_CTRL = 0xff8c85 2792LSCC_DATA = 0xff8c87 2793 2794#elif defined(USE_SCC_A) 2795 2796LSCC_CTRL = 0xff8c81 2797LSCC_DATA = 0xff8c83 2798 2799#elif defined(USE_MFP) 2800 2801LMFP_UCR = 0xfffa29 2802LMFP_TDCDR = 0xfffa1d 2803LMFP_TDDR = 0xfffa25 2804LMFP_TSR = 0xfffa2d 2805LMFP_UDR = 0xfffa2f 2806 2807#endif 2808#endif /* CONFIG_ATARI */ 2809 2810/* 2811 * Serial port output support. 2812 */ 2813 2814/* 2815 * Initialize serial port hardware 2816 */ 2817func_start serial_init,%d0/%d1/%a0/%a1 2818 /* 2819 * Some of the register usage that follows 2820 * CONFIG_AMIGA 2821 * a0 = pointer to boot info record 2822 * d0 = boot info offset 2823 * CONFIG_ATARI 2824 * a0 = address of SCC 2825 * a1 = Liobase address/address of scc_initable_atari 2826 * d0 = init data for serial port 2827 * CONFIG_MAC 2828 * a0 = address of SCC 2829 * a1 = address of scc_initable_mac 2830 * d0 = init data for serial port 2831 */ 2832 2833#ifdef CONFIG_AMIGA 2834#define SERIAL_DTR 7 2835#define SERIAL_CNTRL CIABBASE+C_PRA 2836 2837 is_not_amiga(1f) 2838 lea %pc@(L(custom)),%a0 2839 movel #-ZTWOBASE,%a0@ 2840 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE 2841 get_bi_record BI_AMIGA_SERPER 2842 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE 2843| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE 28441: 2845#endif 2846 2847#ifdef CONFIG_ATARI 2848 is_not_atari(4f) 2849 movel %pc@(L(iobase)),%a1 2850#if defined(USE_PRINTER) 2851 bclr #0,%a1@(LSTMFP_IERB) 2852 bclr #0,%a1@(LSTMFP_DDR) 2853 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT) 2854 moveb #0xff,%a1@(LPSG_WRITE) 2855 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 2856 clrb %a1@(LPSG_WRITE) 2857 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 2858 moveb %a1@(LPSG_READ),%d0 2859 bset #5,%d0 2860 moveb %d0,%a1@(LPSG_WRITE) 2861#elif defined(USE_SCC_A) || defined(USE_SCC_B) 2862 lea %a1@(LSCC_CTRL),%a0 2863 /* Reset SCC register pointer */ 2864 moveb %a0@,%d0 2865 /* Reset SCC device: write register pointer then register value */ 2866 moveb #9,%a0@ 2867 moveb #0xc0,%a0@ 2868 /* Wait for 5 PCLK cycles, which is about 63 CPU cycles */ 2869 /* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */ 2870 movel #32,%d0 28712: 2872 subq #1,%d0 2873 jne 2b 2874 /* Initialize channel */ 2875 lea %pc@(L(scc_initable_atari)),%a1 28762: moveb %a1@+,%d0 2877 jmi 3f 2878 moveb %d0,%a0@ 2879 moveb %a1@+,%a0@ 2880 jra 2b 28813: clrb %a0@ 2882#elif defined(USE_MFP) 2883 bclr #1,%a1@(LMFP_TSR) 2884 moveb #0x88,%a1@(LMFP_UCR) 2885 andb #0x70,%a1@(LMFP_TDCDR) 2886 moveb #2,%a1@(LMFP_TDDR) 2887 orb #1,%a1@(LMFP_TDCDR) 2888 bset #1,%a1@(LMFP_TSR) 2889#endif 2890 jra L(serial_init_done) 28914: 2892#endif 2893 2894#ifdef CONFIG_MAC 2895 is_not_mac(L(serial_init_not_mac)) 2896#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B) 2897#define mac_scc_cha_b_ctrl_offset 0x0 2898#define mac_scc_cha_a_ctrl_offset 0x2 2899#define mac_scc_cha_b_data_offset 0x4 2900#define mac_scc_cha_a_data_offset 0x6 2901 movel %pc@(L(mac_sccbase)),%a0 2902 /* Reset SCC register pointer */ 2903 moveb %a0@(mac_scc_cha_a_ctrl_offset),%d0 2904 /* Reset SCC device: write register pointer then register value */ 2905 moveb #9,%a0@(mac_scc_cha_a_ctrl_offset) 2906 moveb #0xc0,%a0@(mac_scc_cha_a_ctrl_offset) 2907 /* Wait for 5 PCLK cycles, which is about 68 CPU cycles */ 2908 /* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */ 2909 movel #35,%d0 29105: 2911 subq #1,%d0 2912 jne 5b 2913#endif 2914#ifdef MAC_USE_SCC_A 2915 /* Initialize channel A */ 2916 lea %pc@(L(scc_initable_mac)),%a1 29175: moveb %a1@+,%d0 2918 jmi 6f 2919 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset) 2920 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset) 2921 jra 5b 29226: 2923#endif /* MAC_USE_SCC_A */ 2924#ifdef MAC_USE_SCC_B 2925 /* Initialize channel B */ 2926 lea %pc@(L(scc_initable_mac)),%a1 29277: moveb %a1@+,%d0 2928 jmi 8f 2929 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset) 2930 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset) 2931 jra 7b 29328: 2933#endif /* MAC_USE_SCC_B */ 2934 jra L(serial_init_done) 2935L(serial_init_not_mac): 2936#endif /* CONFIG_MAC */ 2937 2938#ifdef CONFIG_Q40 2939 is_not_q40(2f) 2940/* debug output goes into SRAM, so we don't do it unless requested 2941 - check for '%LX$' signature in SRAM */ 2942 lea %pc@(q40_mem_cptr),%a1 2943 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */ 2944 move.l #0xff020000,%a1 2945 cmp.b #'%',%a1@ 2946 bne 2f /*nodbg*/ 2947 addq.w #4,%a1 2948 cmp.b #'L',%a1@ 2949 bne 2f /*nodbg*/ 2950 addq.w #4,%a1 2951 cmp.b #'X',%a1@ 2952 bne 2f /*nodbg*/ 2953 addq.w #4,%a1 2954 cmp.b #'$',%a1@ 2955 bne 2f /*nodbg*/ 2956 /* signature OK */ 2957 lea %pc@(L(q40_do_debug)),%a1 2958 tas %a1@ 2959/*nodbg: q40_do_debug is 0 by default*/ 29602: 2961#endif 2962 2963#ifdef CONFIG_MVME16x 2964 is_not_mvme16x(L(serial_init_not_mvme16x)) 2965 moveb #0x10,M167_PCSCCMICR 2966 moveb #0x10,M167_PCSCCTICR 2967 moveb #0x10,M167_PCSCCRICR 2968 jra L(serial_init_done) 2969L(serial_init_not_mvme16x): 2970#endif 2971 2972#ifdef CONFIG_APOLLO 2973/* We count on the PROM initializing SIO1 */ 2974#endif 2975 2976#ifdef CONFIG_HP300 2977/* We count on the boot loader initialising the UART */ 2978#endif 2979 2980L(serial_init_done): 2981func_return serial_init 2982 2983/* 2984 * Output character on serial port. 2985 */ 2986func_start serial_putc,%d0/%d1/%a0/%a1 2987 2988 movel ARG1,%d0 2989 cmpib #'\n',%d0 2990 jbne 1f 2991 2992 /* A little safe recursion is good for the soul */ 2993 serial_putc #'\r' 29941: 2995 2996#ifdef CONFIG_AMIGA 2997 is_not_amiga(2f) 2998 andw #0x00ff,%d0 2999 oriw #0x0100,%d0 3000 movel %pc@(L(custom)),%a0 3001 movew %d0,%a0@(CUSTOMBASE+C_SERDAT) 30021: movew %a0@(CUSTOMBASE+C_SERDATR),%d0 3003 andw #0x2000,%d0 3004 jeq 1b 3005 jra L(serial_putc_done) 30062: 3007#endif 3008 3009#ifdef CONFIG_MAC 3010 is_not_mac(5f) 3011#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B) 3012 movel %pc@(L(mac_sccbase)),%a1 3013#endif 3014#ifdef MAC_USE_SCC_A 30153: btst #2,%a1@(mac_scc_cha_a_ctrl_offset) 3016 jeq 3b 3017 moveb %d0,%a1@(mac_scc_cha_a_data_offset) 3018#endif /* MAC_USE_SCC_A */ 3019#ifdef MAC_USE_SCC_B 30204: btst #2,%a1@(mac_scc_cha_b_ctrl_offset) 3021 jeq 4b 3022 moveb %d0,%a1@(mac_scc_cha_b_data_offset) 3023#endif /* MAC_USE_SCC_B */ 3024 jra L(serial_putc_done) 30255: 3026#endif /* CONFIG_MAC */ 3027 3028#ifdef CONFIG_ATARI 3029 is_not_atari(4f) 3030 movel %pc@(L(iobase)),%a1 3031#if defined(USE_PRINTER) 30323: btst #0,%a1@(LSTMFP_GPIP) 3033 jne 3b 3034 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 3035 moveb %d0,%a1@(LPSG_WRITE) 3036 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 3037 moveb %a1@(LPSG_READ),%d0 3038 bclr #5,%d0 3039 moveb %d0,%a1@(LPSG_WRITE) 3040 nop 3041 nop 3042 bset #5,%d0 3043 moveb %d0,%a1@(LPSG_WRITE) 3044#elif defined(USE_SCC_A) || defined(USE_SCC_B) 30453: btst #2,%a1@(LSCC_CTRL) 3046 jeq 3b 3047 moveb %d0,%a1@(LSCC_DATA) 3048#elif defined(USE_MFP) 30493: btst #7,%a1@(LMFP_TSR) 3050 jeq 3b 3051 moveb %d0,%a1@(LMFP_UDR) 3052#endif 3053 jra L(serial_putc_done) 30544: 3055#endif /* CONFIG_ATARI */ 3056 3057#ifdef CONFIG_MVME147 3058 is_not_mvme147(2f) 30591: btst #2,M147_SCC_CTRL_A 3060 jeq 1b 3061 moveb %d0,M147_SCC_DATA_A 3062 jbra L(serial_putc_done) 30632: 3064#endif 3065 3066#ifdef CONFIG_MVME16x 3067 is_not_mvme16x(2f) 3068 /* 3069 * If the loader gave us a board type then we can use that to 3070 * select an appropriate output routine; otherwise we just use 3071 * the Bug code. If we have to use the Bug that means the Bug 3072 * workspace has to be valid, which means the Bug has to use 3073 * the SRAM, which is non-standard. 3074 */ 3075 moveml %d0-%d7/%a2-%a6,%sp@- 3076 movel vme_brdtype,%d1 3077 jeq 1f | No tag - use the Bug 3078 cmpi #VME_TYPE_MVME162,%d1 3079 jeq 6f 3080 cmpi #VME_TYPE_MVME172,%d1 3081 jne 5f 3082 /* 162/172; it's an SCC */ 30836: btst #2,M162_SCC_CTRL_A 3084 nop 3085 nop 3086 nop 3087 jeq 6b 3088 moveb #8,M162_SCC_CTRL_A 3089 nop 3090 nop 3091 nop 3092 moveb %d0,M162_SCC_CTRL_A 3093 jra 3f 30945: 3095 /* 166/167/177; it's a CD2401 */ 3096 moveb #0,M167_CYCAR 3097 moveb M167_CYIER,%d2 3098 moveb #0x02,M167_CYIER 30997: 3100 btst #5,M167_PCSCCTICR 3101 jeq 7b 3102 moveb M167_PCTPIACKR,%d1 3103 moveb M167_CYLICR,%d1 3104 jeq 8f 3105 moveb #0x08,M167_CYTEOIR 3106 jra 7b 31078: 3108 moveb %d0,M167_CYTDR 3109 moveb #0,M167_CYTEOIR 3110 moveb %d2,M167_CYIER 3111 jra 3f 31121: 3113 moveb %d0,%sp@- 3114 trap #15 3115 .word 0x0020 /* TRAP 0x020 */ 31163: 3117 moveml %sp@+,%d0-%d7/%a2-%a6 3118 jbra L(serial_putc_done) 31192: 3120#endif /* CONFIG_MVME16x */ 3121 3122#ifdef CONFIG_BVME6000 3123 is_not_bvme6000(2f) 3124 /* 3125 * The BVME6000 machine has a serial port ... 3126 */ 31271: btst #2,BVME_SCC_CTRL_A 3128 jeq 1b 3129 moveb %d0,BVME_SCC_DATA_A 3130 jbra L(serial_putc_done) 31312: 3132#endif 3133 3134#ifdef CONFIG_SUN3X 3135 is_not_sun3x(2f) 3136 movel %d0,-(%sp) 3137 movel 0xFEFE0018,%a1 3138 jbsr (%a1) 3139 addq #4,%sp 3140 jbra L(serial_putc_done) 31412: 3142#endif 3143 3144#ifdef CONFIG_Q40 3145 is_not_q40(2f) 3146 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */ 3147 beq 2f 3148 lea %pc@(q40_mem_cptr),%a1 3149 move.l %a1@,%a0 3150 move.b %d0,%a0@ 3151 addq.l #4,%a0 3152 move.l %a0,%a1@ 3153 jbra L(serial_putc_done) 31542: 3155#endif 3156 3157#ifdef CONFIG_APOLLO 3158 is_not_apollo(2f) 3159 movl %pc@(L(iobase)),%a1 3160 moveb %d0,%a1@(LTHRB0) 31611: moveb %a1@(LSRB0),%d0 3162 andb #0x4,%d0 3163 beq 1b 3164 jbra L(serial_putc_done) 31652: 3166#endif 3167 3168#ifdef CONFIG_HP300 3169 is_not_hp300(3f) 3170 movl %pc@(L(iobase)),%a1 3171 addl %pc@(L(uartbase)),%a1 3172 movel %pc@(L(uart_scode)),%d1 /* Check the scode */ 3173 jmi 3f /* Unset? Exit */ 3174 cmpi #256,%d1 /* APCI scode? */ 3175 jeq 2f 31761: moveb %a1@(DCALSR),%d1 /* Output to DCA */ 3177 andb #0x20,%d1 3178 beq 1b 3179 moveb %d0,%a1@(DCADATA) 3180 jbra L(serial_putc_done) 31812: moveb %a1@(APCILSR),%d1 /* Output to APCI */ 3182 andb #0x20,%d1 3183 beq 2b 3184 moveb %d0,%a1@(APCIDATA) 3185 jbra L(serial_putc_done) 31863: 3187#endif 3188 3189L(serial_putc_done): 3190func_return serial_putc 3191 3192/* 3193 * Output a string. 3194 */ 3195func_start puts,%d0/%a0 3196 3197 movel ARG1,%a0 3198 jra 2f 31991: 3200#ifdef CONSOLE_DEBUG 3201 console_putc %d0 3202#endif 3203#ifdef SERIAL_DEBUG 3204 serial_putc %d0 3205#endif 32062: moveb %a0@+,%d0 3207 jne 1b 3208 3209func_return puts 3210 3211/* 3212 * Output number in hex notation. 3213 */ 3214 3215func_start putn,%d0-%d2 3216 3217 putc ' ' 3218 3219 movel ARG1,%d0 3220 moveq #7,%d1 32211: roll #4,%d0 3222 move %d0,%d2 3223 andb #0x0f,%d2 3224 addb #'0',%d2 3225 cmpb #'9',%d2 3226 jls 2f 3227 addb #'A'-('9'+1),%d2 32282: 3229#ifdef CONSOLE_DEBUG 3230 console_putc %d2 3231#endif 3232#ifdef SERIAL_DEBUG 3233 serial_putc %d2 3234#endif 3235 dbra %d1,1b 3236 3237func_return putn 3238 3239#ifdef CONFIG_EARLY_PRINTK 3240/* 3241 * This routine takes its parameters on the stack. It then 3242 * turns around and calls the internal routines. This routine 3243 * is used by the boot console. 3244 * 3245 * The calling parameters are: 3246 * void debug_cons_nputs(const char *str, unsigned length) 3247 * 3248 * This routine does NOT understand variable arguments only 3249 * simple strings! 3250 */ 3251ENTRY(debug_cons_nputs) 3252 moveml %d0/%d1/%a0,%sp@- 3253 movew %sr,%sp@- 3254 ori #0x0700,%sr 3255 movel %sp@(18),%a0 /* fetch parameter */ 3256 movel %sp@(22),%d1 /* fetch parameter */ 3257 jra 2f 32581: 3259#ifdef CONSOLE_DEBUG 3260 console_putc %d0 3261#endif 3262#ifdef SERIAL_DEBUG 3263 serial_putc %d0 3264#endif 3265 subq #1,%d1 32662: jeq 3f 3267 moveb %a0@+,%d0 3268 jne 1b 32693: 3270 movew %sp@+,%sr 3271 moveml %sp@+,%d0/%d1/%a0 3272 rts 3273#endif /* CONFIG_EARLY_PRINTK */ 3274 3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3276func_start set_leds,%d0/%a0 3277 movel ARG1,%d0 3278#ifdef CONFIG_HP300 3279 is_not_hp300(1f) 3280 movel %pc@(L(iobase)),%a0 3281 moveb %d0,%a0@(0x1ffff) 3282 jra 2f 3283#endif 32841: 3285#ifdef CONFIG_APOLLO 3286 movel %pc@(L(iobase)),%a0 3287 lsll #8,%d0 3288 eorw #0xff00,%d0 3289 moveb %d0,%a0@(LCPUCTRL) 3290#endif 32912: 3292func_return set_leds 3293#endif 3294 3295#ifdef CONSOLE_DEBUG 3296/* 3297 * For continuity, see the data alignment 3298 * to which this structure is tied. 3299 */ 3300#define Lconsole_struct_cur_column 0 3301#define Lconsole_struct_cur_row 4 3302#define Lconsole_struct_num_columns 8 3303#define Lconsole_struct_num_rows 12 3304#define Lconsole_struct_left_edge 16 3305 3306func_start console_init,%a0-%a4/%d0-%d7 3307 /* 3308 * Some of the register usage that follows 3309 * a0 = pointer to boot_info 3310 * a1 = pointer to screen 3311 * a2 = pointer to console_globals 3312 * d3 = pixel width of screen 3313 * d4 = pixel height of screen 3314 * (d3,d4) ~= (x,y) of a point just below 3315 * and to the right of the screen 3316 * NOT on the screen! 3317 * d5 = number of bytes per scan line 3318 * d6 = number of bytes on the entire screen 3319 */ 3320 3321 lea %pc@(L(console_globals)),%a2 3322 movel %pc@(L(mac_videobase)),%a1 3323 movel %pc@(L(mac_rowbytes)),%d5 3324 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */ 3325 movel %d3,%d4 3326 swap %d4 /* -> high byte */ 3327 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3328 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3329 3330 movel %d5,%d6 3331| subl #20,%d6 3332 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3333 divul #8,%d6 /* we'll clear 8 bytes at a time */ 3334 moveq #-1,%d0 /* Mac_black */ 3335 subq #1,%d6 3336 3337L(console_clear_loop): 3338 movel %d0,%a1@+ 3339 movel %d0,%a1@+ 3340 dbra %d6,L(console_clear_loop) 3341 3342 /* Calculate font size */ 3343 3344#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8) 3345 lea %pc@(font_vga_8x8),%a0 3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16) 3347 lea %pc@(font_vga_8x16),%a0 3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11) 3349 lea %pc@(font_vga_6x11),%a0 3350#elif defined(CONFIG_FONT_8x8) /* default */ 3351 lea %pc@(font_vga_8x8),%a0 3352#else /* no compiled-in font */ 3353 lea 0,%a0 3354#endif 3355 3356 /* 3357 * At this point we make a shift in register usage 3358 * a1 = address of console_font pointer 3359 */ 3360 lea %pc@(L(console_font)),%a1 3361 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */ 3362 tstl %a0 3363 jeq 1f 3364 lea %pc@(L(console_font_data)),%a4 3365 movel %a0@(FONT_DESC_DATA),%d0 3366 subl #L(console_font),%a1 3367 addl %a1,%d0 3368 movel %d0,%a4@ 3369 3370 /* 3371 * Calculate global maxs 3372 * Note - we can use either an 3373 * 8 x 16 or 8 x 8 character font 3374 * 6 x 11 also supported 3375 */ 3376 /* ASSERT: a0 = contents of Lconsole_font */ 3377 movel %d3,%d0 /* screen width in pixels */ 3378 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */ 3379 3380 movel %d4,%d1 /* screen height in pixels */ 3381 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */ 3382 3383 movel %d0,%a2@(Lconsole_struct_num_columns) 3384 movel %d1,%a2@(Lconsole_struct_num_rows) 3385 3386 /* 3387 * Clear the current row and column 3388 */ 3389 clrl %a2@(Lconsole_struct_cur_column) 3390 clrl %a2@(Lconsole_struct_cur_row) 3391 clrl %a2@(Lconsole_struct_left_edge) 3392 3393 /* 3394 * Initialization is complete 3395 */ 33961: 3397func_return console_init 3398 3399#ifdef CONFIG_LOGO 3400func_start console_put_penguin,%a0-%a1/%d0-%d7 3401 /* 3402 * Get 'that_penguin' onto the screen in the upper right corner 3403 * penguin is 64 x 74 pixels, align against right edge of screen 3404 */ 3405 lea %pc@(L(mac_dimensions)),%a0 3406 movel %a0@,%d0 3407 andil #0xffff,%d0 3408 subil #64,%d0 /* snug up against the right edge */ 3409 clrl %d1 /* start at the top */ 3410 movel #73,%d7 3411 lea %pc@(L(that_penguin)),%a1 3412L(console_penguin_row): 3413 movel #31,%d6 3414L(console_penguin_pixel_pair): 3415 moveb %a1@,%d2 3416 lsrb #4,%d2 3417 console_plot_pixel %d0,%d1,%d2 3418 addq #1,%d0 3419 moveb %a1@+,%d2 3420 console_plot_pixel %d0,%d1,%d2 3421 addq #1,%d0 3422 dbra %d6,L(console_penguin_pixel_pair) 3423 3424 subil #64,%d0 3425 addq #1,%d1 3426 dbra %d7,L(console_penguin_row) 3427 3428func_return console_put_penguin 3429 3430/* include penguin bitmap */ 3431L(that_penguin): 3432#include "../mac/mac_penguin.S" 3433#endif 3434 3435 /* 3436 * Calculate source and destination addresses 3437 * output a1 = dest 3438 * a2 = source 3439 */ 3440 3441func_start console_scroll,%a0-%a4/%d0-%d7 3442 lea %pc@(L(mac_videobase)),%a0 3443 movel %a0@,%a1 3444 movel %a1,%a2 3445 lea %pc@(L(mac_rowbytes)),%a0 3446 movel %a0@,%d5 3447 movel %pc@(L(console_font)),%a0 3448 tstl %a0 3449 jeq 1f 3450 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */ 3451 addal %d5,%a2 3452 3453 /* 3454 * Get dimensions 3455 */ 3456 lea %pc@(L(mac_dimensions)),%a0 3457 movel %a0@,%d3 3458 movel %d3,%d4 3459 swap %d4 3460 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3461 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3462 3463 /* 3464 * Calculate number of bytes to move 3465 */ 3466 lea %pc@(L(mac_rowbytes)),%a0 3467 movel %a0@,%d6 3468 movel %pc@(L(console_font)),%a0 3469 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */ 3470 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3471 divul #32,%d6 /* we'll move 8 longs at a time */ 3472 subq #1,%d6 3473 3474L(console_scroll_loop): 3475 movel %a2@+,%a1@+ 3476 movel %a2@+,%a1@+ 3477 movel %a2@+,%a1@+ 3478 movel %a2@+,%a1@+ 3479 movel %a2@+,%a1@+ 3480 movel %a2@+,%a1@+ 3481 movel %a2@+,%a1@+ 3482 movel %a2@+,%a1@+ 3483 dbra %d6,L(console_scroll_loop) 3484 3485 lea %pc@(L(mac_rowbytes)),%a0 3486 movel %a0@,%d6 3487 movel %pc@(L(console_font)),%a0 3488 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */ 3489 divul #32,%d6 /* we'll move 8 words at a time */ 3490 subq #1,%d6 3491 3492 moveq #-1,%d0 3493L(console_scroll_clear_loop): 3494 movel %d0,%a1@+ 3495 movel %d0,%a1@+ 3496 movel %d0,%a1@+ 3497 movel %d0,%a1@+ 3498 movel %d0,%a1@+ 3499 movel %d0,%a1@+ 3500 movel %d0,%a1@+ 3501 movel %d0,%a1@+ 3502 dbra %d6,L(console_scroll_clear_loop) 3503 35041: 3505func_return console_scroll 3506 3507 3508func_start console_putc,%a0/%a1/%d0-%d7 3509 3510 is_not_mac(L(console_exit)) 3511 tstl %pc@(L(console_font)) 3512 jeq L(console_exit) 3513 3514 /* Output character in d7 on console. 3515 */ 3516 movel ARG1,%d7 3517 cmpib #'\n',%d7 3518 jbne 1f 3519 3520 /* A little safe recursion is good for the soul */ 3521 console_putc #'\r' 35221: 3523 lea %pc@(L(console_globals)),%a0 3524 3525 cmpib #10,%d7 3526 jne L(console_not_lf) 3527 movel %a0@(Lconsole_struct_cur_row),%d0 3528 addil #1,%d0 3529 movel %d0,%a0@(Lconsole_struct_cur_row) 3530 movel %a0@(Lconsole_struct_num_rows),%d1 3531 cmpl %d1,%d0 3532 jcs 1f 3533 subil #1,%d0 3534 movel %d0,%a0@(Lconsole_struct_cur_row) 3535 console_scroll 35361: 3537 jra L(console_exit) 3538 3539L(console_not_lf): 3540 cmpib #13,%d7 3541 jne L(console_not_cr) 3542 clrl %a0@(Lconsole_struct_cur_column) 3543 jra L(console_exit) 3544 3545L(console_not_cr): 3546 cmpib #1,%d7 3547 jne L(console_not_home) 3548 clrl %a0@(Lconsole_struct_cur_row) 3549 clrl %a0@(Lconsole_struct_cur_column) 3550 jra L(console_exit) 3551 3552/* 3553 * At this point we know that the %d7 character is going to be 3554 * rendered on the screen. Register usage is - 3555 * a0 = pointer to console globals 3556 * a1 = font data 3557 * d0 = cursor column 3558 * d1 = cursor row to draw the character 3559 * d7 = character number 3560 */ 3561L(console_not_home): 3562 movel %a0@(Lconsole_struct_cur_column),%d0 3563 addql #1,%a0@(Lconsole_struct_cur_column) 3564 movel %a0@(Lconsole_struct_num_columns),%d1 3565 cmpl %d1,%d0 3566 jcs 1f 3567 console_putc #'\n' /* recursion is OK! */ 35681: 3569 movel %a0@(Lconsole_struct_cur_row),%d1 3570 3571 /* 3572 * At this point we make a shift in register usage 3573 * a0 = address of pointer to font data (fbcon_font_desc) 3574 */ 3575 movel %pc@(L(console_font)),%a0 3576 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */ 3577 andl #0x000000ff,%d7 3578 /* ASSERT: a0 = contents of Lconsole_font */ 3579 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */ 3580 addl %d7,%a1 /* a1 = points to char image */ 3581 3582 /* 3583 * At this point we make a shift in register usage 3584 * d0 = pixel coordinate, x 3585 * d1 = pixel coordinate, y 3586 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen 3587 * d3 = font scan line data (8 pixels) 3588 * d6 = count down for the font's pixel width (8) 3589 * d7 = count down for the font's pixel count in height 3590 */ 3591 /* ASSERT: a0 = contents of Lconsole_font */ 3592 mulul %a0@(FONT_DESC_WIDTH),%d0 3593 mulul %a0@(FONT_DESC_HEIGHT),%d1 3594 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */ 3595 subq #1,%d7 3596L(console_read_char_scanline): 3597 moveb %a1@+,%d3 3598 3599 /* ASSERT: a0 = contents of Lconsole_font */ 3600 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */ 3601 subql #1,%d6 3602 3603L(console_do_font_scanline): 3604 lslb #1,%d3 3605 scsb %d2 /* convert 1 bit into a byte */ 3606 console_plot_pixel %d0,%d1,%d2 3607 addq #1,%d0 3608 dbra %d6,L(console_do_font_scanline) 3609 3610 /* ASSERT: a0 = contents of Lconsole_font */ 3611 subl %a0@(FONT_DESC_WIDTH),%d0 3612 addq #1,%d1 3613 dbra %d7,L(console_read_char_scanline) 3614 3615L(console_exit): 3616func_return console_putc 3617 3618 /* 3619 * Input: 3620 * d0 = x coordinate 3621 * d1 = y coordinate 3622 * d2 = (bit 0) 1/0 for white/black (!) 3623 * All registers are preserved 3624 */ 3625func_start console_plot_pixel,%a0-%a1/%d0-%d4 3626 3627 movel %pc@(L(mac_videobase)),%a1 3628 movel %pc@(L(mac_videodepth)),%d3 3629 movel ARG1,%d0 3630 movel ARG2,%d1 3631 mulul %pc@(L(mac_rowbytes)),%d1 3632 movel ARG3,%d2 3633 3634 /* 3635 * Register usage: 3636 * d0 = x coord becomes byte offset into frame buffer 3637 * d1 = y coord 3638 * d2 = black or white (0/1) 3639 * d3 = video depth 3640 * d4 = temp of x (d0) for many bit depths 3641 */ 3642L(test_1bit): 3643 cmpb #1,%d3 3644 jbne L(test_2bit) 3645 movel %d0,%d4 /* we need the low order 3 bits! */ 3646 divul #8,%d0 3647 addal %d0,%a1 3648 addal %d1,%a1 3649 andb #7,%d4 3650 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3651 andb #1,%d2 3652 jbne L(white_1) 3653 bsetb %d4,%a1@ 3654 jbra L(console_plot_pixel_exit) 3655L(white_1): 3656 bclrb %d4,%a1@ 3657 jbra L(console_plot_pixel_exit) 3658 3659L(test_2bit): 3660 cmpb #2,%d3 3661 jbne L(test_4bit) 3662 movel %d0,%d4 /* we need the low order 2 bits! */ 3663 divul #4,%d0 3664 addal %d0,%a1 3665 addal %d1,%a1 3666 andb #3,%d4 3667 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3668 lsll #1,%d4 /* ! */ 3669 andb #1,%d2 3670 jbne L(white_2) 3671 bsetb %d4,%a1@ 3672 addq #1,%d4 3673 bsetb %d4,%a1@ 3674 jbra L(console_plot_pixel_exit) 3675L(white_2): 3676 bclrb %d4,%a1@ 3677 addq #1,%d4 3678 bclrb %d4,%a1@ 3679 jbra L(console_plot_pixel_exit) 3680 3681L(test_4bit): 3682 cmpb #4,%d3 3683 jbne L(test_8bit) 3684 movel %d0,%d4 /* we need the low order bit! */ 3685 divul #2,%d0 3686 addal %d0,%a1 3687 addal %d1,%a1 3688 andb #1,%d4 3689 eorb #1,%d4 3690 lsll #2,%d4 /* ! */ 3691 andb #1,%d2 3692 jbne L(white_4) 3693 bsetb %d4,%a1@ 3694 addq #1,%d4 3695 bsetb %d4,%a1@ 3696 addq #1,%d4 3697 bsetb %d4,%a1@ 3698 addq #1,%d4 3699 bsetb %d4,%a1@ 3700 jbra L(console_plot_pixel_exit) 3701L(white_4): 3702 bclrb %d4,%a1@ 3703 addq #1,%d4 3704 bclrb %d4,%a1@ 3705 addq #1,%d4 3706 bclrb %d4,%a1@ 3707 addq #1,%d4 3708 bclrb %d4,%a1@ 3709 jbra L(console_plot_pixel_exit) 3710 3711L(test_8bit): 3712 cmpb #8,%d3 3713 jbne L(test_16bit) 3714 addal %d0,%a1 3715 addal %d1,%a1 3716 andb #1,%d2 3717 jbne L(white_8) 3718 moveb #0xff,%a1@ 3719 jbra L(console_plot_pixel_exit) 3720L(white_8): 3721 clrb %a1@ 3722 jbra L(console_plot_pixel_exit) 3723 3724L(test_16bit): 3725 cmpb #16,%d3 3726 jbne L(console_plot_pixel_exit) 3727 addal %d0,%a1 3728 addal %d0,%a1 3729 addal %d1,%a1 3730 andb #1,%d2 3731 jbne L(white_16) 3732 clrw %a1@ 3733 jbra L(console_plot_pixel_exit) 3734L(white_16): 3735 movew #0x0fff,%a1@ 3736 jbra L(console_plot_pixel_exit) 3737 3738L(console_plot_pixel_exit): 3739func_return console_plot_pixel 3740#endif /* CONSOLE_DEBUG */ 3741 3742 3743__INITDATA 3744 .align 4 3745 3746m68k_init_mapped_size: 3747 .long 0 3748 3749#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \ 3750 defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3751L(custom): 3752L(iobase): 3753 .long 0 3754#endif 3755 3756#ifdef CONSOLE_DEBUG 3757L(console_globals): 3758 .long 0 /* cursor column */ 3759 .long 0 /* cursor row */ 3760 .long 0 /* max num columns */ 3761 .long 0 /* max num rows */ 3762 .long 0 /* left edge */ 3763L(console_font): 3764 .long 0 /* pointer to console font (struct font_desc) */ 3765L(console_font_data): 3766 .long 0 /* pointer to console font data */ 3767#endif /* CONSOLE_DEBUG */ 3768 3769#if defined(MMU_PRINT) 3770L(mmu_print_data): 3771 .long 0 /* valid flag */ 3772 .long 0 /* start logical */ 3773 .long 0 /* next logical */ 3774 .long 0 /* start physical */ 3775 .long 0 /* next physical */ 3776#endif /* MMU_PRINT */ 3777 3778L(cputype): 3779 .long 0 3780L(mmu_cached_pointer_tables): 3781 .long 0 3782L(mmu_num_pointer_tables): 3783 .long 0 3784L(phys_kernel_start): 3785 .long 0 3786L(kernel_end): 3787 .long 0 3788L(memory_start): 3789 .long 0 3790L(kernel_pgdir_ptr): 3791 .long 0 3792L(temp_mmap_mem): 3793 .long 0 3794 3795#if defined (CONFIG_MVME147) 3796M147_SCC_CTRL_A = 0xfffe3002 3797M147_SCC_DATA_A = 0xfffe3003 3798#endif 3799 3800#if defined (CONFIG_MVME16x) 3801M162_SCC_CTRL_A = 0xfff45005 3802M167_CYCAR = 0xfff450ee 3803M167_CYIER = 0xfff45011 3804M167_CYLICR = 0xfff45026 3805M167_CYTEOIR = 0xfff45085 3806M167_CYTDR = 0xfff450f8 3807M167_PCSCCMICR = 0xfff4201d 3808M167_PCSCCTICR = 0xfff4201e 3809M167_PCSCCRICR = 0xfff4201f 3810M167_PCTPIACKR = 0xfff42025 3811#endif 3812 3813#if defined (CONFIG_BVME6000) 3814BVME_SCC_CTRL_A = 0xffb0000b 3815BVME_SCC_DATA_A = 0xffb0000f 3816#endif 3817 3818#if defined(CONFIG_MAC) 3819L(mac_videobase): 3820 .long 0 3821L(mac_videodepth): 3822 .long 0 3823L(mac_dimensions): 3824 .long 0 3825L(mac_rowbytes): 3826 .long 0 3827L(mac_sccbase): 3828 .long 0 3829#endif /* CONFIG_MAC */ 3830 3831#if defined (CONFIG_APOLLO) 3832LSRB0 = 0x10412 3833LTHRB0 = 0x10416 3834LCPUCTRL = 0x10100 3835#endif 3836 3837#if defined(CONFIG_HP300) 3838DCADATA = 0x11 3839DCALSR = 0x1b 3840APCIDATA = 0x00 3841APCILSR = 0x14 3842L(uartbase): 3843 .long 0 3844L(uart_scode): 3845 .long -1 3846#endif 3847 3848__FINIT 3849 .data 3850 .align 4 3851 3852availmem: 3853 .long 0 3854m68k_pgtable_cachemode: 3855 .long 0 3856m68k_supervisor_cachemode: 3857 .long 0 3858#if defined(CONFIG_MVME16x) 3859mvme_bdid: 3860 .long 0,0,0,0,0,0,0,0 3861#endif 3862#if defined(CONFIG_Q40) 3863q40_mem_cptr: 3864 .long 0 3865L(q40_do_debug): 3866 .long 0 3867#endif 3868