xref: /openbmc/linux/arch/m68k/kernel/head.S (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exhaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
203 *
204 * TEST_MMU:	This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine.  The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
208 *
209 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
210 *		When head.S boots on Atari, Amiga, Macintosh, and VME
211 *		machines.  At that point the underlying logic will be
212 *		believed to be solid enough to be trusted, and TEST_MMU
213 *		can be dropped.  Do note that that will clean up the
214 *		head.S code significantly as large blocks of #if/#else
215 *		clauses can be removed.
216 *
217 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work.  A test case was to remove
219 * the cacheability of the kernel bits.
220 *
221 * MMU_PRINT:	There is a routine built into head.S that can display the
222 * MMU data structures.  It outputs its result through the serial_putc
223 * interface.  So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
225 *
226 * SERIAL_DEBUG:	There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console.  This constant determines whether those
229 * are used.
230 *
231 * DEBUG:	This is the standard DEBUG flag that can be set for building
232 *		the kernel.  It has the effect adding additional tests into
233 *		the code.
234 *
235 * FONT_6x11:
236 * FONT_8x8:
237 * FONT_8x16:
238 *		In theory these could be determined at run time or handed
239 *		over by the booter.  But, let's be real, it's a fine hard
240 *		coded value.  (But, you will notice the code is run-time
241 *		flexible!)  A pointer to the font's struct font_desc
242 *		is kept locally in Lconsole_font.  It is used to determine
243 *		font size information dynamically.
244 *
245 * Atari constants:
246 * USE_PRINTER:	Use the printer port for serial debug.
247 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
250 *
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
254 */
255
256#include <linux/linkage.h>
257#include <linux/init.h>
258#include <linux/pgtable.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-vme.h>
266#include <asm/setup.h>
267#include <asm/entry.h>
268#include <asm/page.h>
269#include <asm/asm-offsets.h>
270#ifdef CONFIG_MAC
271#  include <asm/machw.h>
272#endif
273
274#ifdef CONFIG_EARLY_PRINTK
275#  define SERIAL_DEBUG
276#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
277#    define CONSOLE_DEBUG
278#  endif
279#endif
280
281#undef MMU_PRINT
282#undef MMU_NOCACHE_KERNEL
283#undef DEBUG
284
285/*
286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
287 * The 8x8 font is harder to read but fits more on the screen.
288 */
289#define FONT_8x8	/* default */
290/* #define FONT_8x16 */	/* 2nd choice */
291/* #define FONT_6x11 */	/* 3rd choice */
292
293.globl kernel_pg_dir
294.globl availmem
295.globl m68k_init_mapped_size
296.globl m68k_pgtable_cachemode
297.globl m68k_supervisor_cachemode
298#ifdef CONFIG_MVME16x
299.globl mvme_bdid
300#endif
301#ifdef CONFIG_Q40
302.globl q40_mem_cptr
303#endif
304
305CPUTYPE_040	= 1	/* indicates an 040 */
306CPUTYPE_060	= 2	/* indicates an 060 */
307CPUTYPE_0460	= 3	/* if either above are set, this is set */
308CPUTYPE_020	= 4	/* indicates an 020 */
309
310/* Translation control register */
311TC_ENABLE = 0x8000
312TC_PAGE8K = 0x4000
313TC_PAGE4K = 0x0000
314
315/* Transparent translation registers */
316TTR_ENABLE	= 0x8000	/* enable transparent translation */
317TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
318TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
319TTR_USERMODE	= 0x0000	/* only user mode access */
320TTR_CI		= 0x0400	/* inhibit cache */
321TTR_RW		= 0x0200	/* read/write mode */
322TTR_RWM		= 0x0100	/* read/write mask */
323TTR_FCB2	= 0x0040	/* function code base bit 2 */
324TTR_FCB1	= 0x0020	/* function code base bit 1 */
325TTR_FCB0	= 0x0010	/* function code base bit 0 */
326TTR_FCM2	= 0x0004	/* function code mask bit 2 */
327TTR_FCM1	= 0x0002	/* function code mask bit 1 */
328TTR_FCM0	= 0x0001	/* function code mask bit 0 */
329
330/* Cache Control registers */
331CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
332CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
333CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
334CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
335CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
336CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
337CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
338CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
339CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
340CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
341CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
342CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
343CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
344CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
345CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
346CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
347CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
348CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
349CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
350CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
351CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
352CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
353
354/* Miscellaneous definitions */
355PAGESIZE	= 4096
356PAGESHIFT	= 12
357
358ROOT_TABLE_SIZE	= 128
359PTR_TABLE_SIZE	= 128
360PAGE_TABLE_SIZE	= 64
361ROOT_INDEX_SHIFT = 25
362PTR_INDEX_SHIFT  = 18
363PAGE_INDEX_SHIFT = 12
364
365#ifdef DEBUG
366/* When debugging use readable names for labels */
367#ifdef __STDC__
368#define L(name) .head.S.##name
369#else
370#define L(name) .head.S./**/name
371#endif
372#else
373#ifdef __STDC__
374#define L(name) .L##name
375#else
376#define L(name) .L/**/name
377#endif
378#endif
379
380/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
381#ifndef __INITDATA
382#define __INITDATA	.data
383#define __FINIT		.previous
384#endif
385
386/* Several macros to make the writing of subroutines easier:
387 * - func_start marks the beginning of the routine which setups the frame
388 *   register and saves the registers, it also defines another macro
389 *   to automatically restore the registers again.
390 * - func_return marks the end of the routine and simply calls the prepared
391 *   macro to restore registers and jump back to the caller.
392 * - func_define generates another macro to automatically put arguments
393 *   onto the stack call the subroutine and cleanup the stack again.
394 */
395
396/* Within subroutines these macros can be used to access the arguments
397 * on the stack. With STACK some allocated memory on the stack can be
398 * accessed and ARG0 points to the return address (used by mmu_engage).
399 */
400#define	STACK	%a6@(stackstart)
401#define ARG0	%a6@(4)
402#define ARG1	%a6@(8)
403#define ARG2	%a6@(12)
404#define ARG3	%a6@(16)
405#define ARG4	%a6@(20)
406
407.macro	func_start	name,saveregs,stack=0
408L(\name):
409	linkw	%a6,#-\stack
410	moveml	\saveregs,%sp@-
411.set	stackstart,-\stack
412
413.macro	func_return_\name
414	moveml	%sp@+,\saveregs
415	unlk	%a6
416	rts
417.endm
418.endm
419
420.macro	func_return	name
421	func_return_\name
422.endm
423
424.macro	func_call	name
425	jbsr	L(\name)
426.endm
427
428.macro	move_stack	nr,arg1,arg2,arg3,arg4
429.if	\nr
430	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
431	movel	\arg1,%sp@-
432.endif
433.endm
434
435.macro	func_define	name,nr=0
436.macro	\name	arg1,arg2,arg3,arg4
437	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
438	func_call	\name
439.if	\nr
440	lea	%sp@(\nr*4),%sp
441.endif
442.endm
443.endm
444
445func_define	mmu_map,4
446func_define	mmu_map_tt,4
447func_define	mmu_fixup_page_mmu_cache,1
448func_define	mmu_temp_map,2
449func_define	mmu_engage
450func_define	mmu_get_root_table_entry,1
451func_define	mmu_get_ptr_table_entry,2
452func_define	mmu_get_page_table_entry,2
453func_define	mmu_print
454func_define	get_new_page
455#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
456func_define	set_leds
457#endif
458
459.macro	mmu_map_eq	arg1,arg2,arg3
460	mmu_map	\arg1,\arg1,\arg2,\arg3
461.endm
462
463.macro	get_bi_record	record
464	pea	\record
465	func_call	get_bi_record
466	addql	#4,%sp
467.endm
468
469func_define	serial_putc,1
470func_define	console_putc,1
471
472func_define	console_init
473func_define	console_put_penguin
474func_define	console_plot_pixel,3
475func_define	console_scroll
476
477.macro	putc	ch
478#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
479	pea	\ch
480#endif
481#ifdef CONSOLE_DEBUG
482	func_call	console_putc
483#endif
484#ifdef SERIAL_DEBUG
485	func_call	serial_putc
486#endif
487#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
488	addql	#4,%sp
489#endif
490.endm
491
492.macro	dputc	ch
493#ifdef DEBUG
494	putc	\ch
495#endif
496.endm
497
498func_define	putn,1
499
500.macro	dputn	nr
501#ifdef DEBUG
502	putn	\nr
503#endif
504.endm
505
506.macro	puts		string
507#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
508	__INITDATA
509.Lstr\@:
510	.string	"\string"
511	__FINIT
512	pea	%pc@(.Lstr\@)
513	func_call	puts
514	addql	#4,%sp
515#endif
516.endm
517
518.macro	dputs	string
519#ifdef DEBUG
520	puts	"\string"
521#endif
522.endm
523
524#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
525#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
526#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
527#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
528#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
529#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
530#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
531#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
532#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
533#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
534#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
535#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
536#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
537
538#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
539			jeq 42f; \
540			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
541			jne lab ;\
542		42:\
543
544#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
545#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
546#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
547#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
548#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
549#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
550#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
551
552/* On the HP300 we use the on-board LEDs for debug output before
553   the console is running.  Writing a 1 bit turns the corresponding LED
554   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
555.macro	leds	mask
556#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
557	hasnt_leds(.Lled\@)
558	pea	\mask
559	func_call	set_leds
560	addql	#4,%sp
561.Lled\@:
562#endif
563.endm
564
565__HEAD
566ENTRY(_stext)
567/*
568 * Version numbers of the bootinfo interface
569 * The area from _stext to _start will later be used as kernel pointer table
570 */
571	bras	1f	/* Jump over bootinfo version numbers */
572
573	.long	BOOTINFOV_MAGIC
574	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
575	.long	MACH_ATARI, ATARI_BOOTI_VERSION
576	.long	MACH_MVME147, MVME147_BOOTI_VERSION
577	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
578	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
579	.long	MACH_MAC, MAC_BOOTI_VERSION
580	.long	MACH_Q40, Q40_BOOTI_VERSION
581	.long	MACH_HP300, HP300_BOOTI_VERSION
582	.long	0
5831:	jra	__start
584
585.equ	kernel_pg_dir,_stext
586
587.equ	.,_stext+PAGESIZE
588
589ENTRY(_start)
590	jra	__start
591__INIT
592ENTRY(__start)
593/*
594 * Setup initial stack pointer
595 */
596	lea	%pc@(_stext),%sp
597
598/*
599 * Record the CPU and machine type.
600 */
601	get_bi_record	BI_MACHTYPE
602	lea	%pc@(m68k_machtype),%a1
603	movel	%a0@,%a1@
604
605	get_bi_record	BI_FPUTYPE
606	lea	%pc@(m68k_fputype),%a1
607	movel	%a0@,%a1@
608
609	get_bi_record	BI_MMUTYPE
610	lea	%pc@(m68k_mmutype),%a1
611	movel	%a0@,%a1@
612
613	get_bi_record	BI_CPUTYPE
614	lea	%pc@(m68k_cputype),%a1
615	movel	%a0@,%a1@
616
617	leds	0x1
618
619#ifdef CONFIG_MAC
620/*
621 * For Macintosh, we need to determine the display parameters early (at least
622 * while debugging it).
623 */
624
625	is_not_mac(L(test_notmac))
626
627	get_bi_record	BI_MAC_VADDR
628	lea	%pc@(L(mac_videobase)),%a1
629	movel	%a0@,%a1@
630
631	get_bi_record	BI_MAC_VDEPTH
632	lea	%pc@(L(mac_videodepth)),%a1
633	movel	%a0@,%a1@
634
635	get_bi_record	BI_MAC_VDIM
636	lea	%pc@(L(mac_dimensions)),%a1
637	movel	%a0@,%a1@
638
639	get_bi_record	BI_MAC_VROW
640	lea	%pc@(L(mac_rowbytes)),%a1
641	movel	%a0@,%a1@
642
643	get_bi_record	BI_MAC_SCCBASE
644	lea	%pc@(L(mac_sccbase)),%a1
645	movel	%a0@,%a1@
646
647L(test_notmac):
648#endif /* CONFIG_MAC */
649
650
651/*
652 * There are ultimately two pieces of information we want for all kinds of
653 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
654 * and is converted here from a booter type definition to a separate bit
655 * number which allows for the standard is_0x0 macro tests.
656 */
657	movel	%pc@(m68k_cputype),%d0
658	/*
659	 * Assume it's an 030
660	 */
661	clrl	%d1
662
663	/*
664	 * Test the BootInfo cputype for 060
665	 */
666	btst	#CPUB_68060,%d0
667	jeq	1f
668	bset	#CPUTYPE_060,%d1
669	bset	#CPUTYPE_0460,%d1
670	jra	3f
6711:
672	/*
673	 * Test the BootInfo cputype for 040
674	 */
675	btst	#CPUB_68040,%d0
676	jeq	2f
677	bset	#CPUTYPE_040,%d1
678	bset	#CPUTYPE_0460,%d1
679	jra	3f
6802:
681	/*
682	 * Test the BootInfo cputype for 020
683	 */
684	btst	#CPUB_68020,%d0
685	jeq	3f
686	bset	#CPUTYPE_020,%d1
687	jra	3f
6883:
689	/*
690	 * Record the cpu type
691	 */
692	lea	%pc@(L(cputype)),%a0
693	movel	%d1,%a0@
694
695	/*
696	 * NOTE:
697	 *
698	 * Now the macros are valid:
699	 *	is_040_or_060
700	 *	is_not_040_or_060
701	 *	is_040
702	 *	is_060
703	 *	is_not_060
704	 */
705
706	/*
707	 * Determine the cache mode for pages holding MMU tables
708	 * and for supervisor mode, unused for '020 and '030
709	 */
710	clrl	%d0
711	clrl	%d1
712
713	is_not_040_or_060(L(save_cachetype))
714
715	/*
716	 * '040 or '060
717	 * d1 := cacheable write-through
718	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
719	 * but we have been using write-through since at least 2.0.29 so I
720	 * guess it is OK.
721	 */
722#ifdef CONFIG_060_WRITETHROUGH
723	/*
724	 * If this is a 68060 board using drivers with cache coherency
725	 * problems, then supervisor memory accesses need to be write-through
726	 * also; otherwise, we want copyback.
727	 */
728
729	is_not_060(1f)
730	movel	#_PAGE_CACHE040W,%d0
731	jra	L(save_cachetype)
732#endif /* CONFIG_060_WRITETHROUGH */
7331:
734	movew	#_PAGE_CACHE040,%d0
735
736	movel	#_PAGE_CACHE040W,%d1
737
738L(save_cachetype):
739	/* Save cache mode for supervisor mode and page tables
740	 */
741	lea	%pc@(m68k_supervisor_cachemode),%a0
742	movel	%d0,%a0@
743	lea	%pc@(m68k_pgtable_cachemode),%a0
744	movel	%d1,%a0@
745
746/*
747 * raise interrupt level
748 */
749	movew	#0x2700,%sr
750
751/*
752   If running on an Atari, determine the I/O base of the
753   serial port and test if we are running on a Medusa or Hades.
754   This test is necessary here, because on the Hades the serial
755   port is only accessible in the high I/O memory area.
756
757   The test whether it is a Medusa is done by writing to the byte at
758   phys. 0x0. This should result in a bus error on all other machines.
759
760   ...should, but doesn't. The Afterburner040 for the Falcon has the
761   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
762   another test to distinguish Medusa and AB040. This is a
763   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
764   (+AB040), but is in the range where the Medusa always asserts DTACK.
765
766   The test for the Hades is done by reading address 0xb0000000. This
767   should give a bus error on the Medusa.
768 */
769
770#ifdef CONFIG_ATARI
771	is_not_atari(L(notypetest))
772
773	/* get special machine type (Medusa/Hades/AB40) */
774	moveq	#0,%d3 /* default if tag doesn't exist */
775	get_bi_record	BI_ATARI_MCH_TYPE
776	tstl	%d0
777	jbmi	1f
778	movel	%a0@,%d3
779	lea	%pc@(atari_mch_type),%a0
780	movel	%d3,%a0@
7811:
782	/* On the Hades, the iobase must be set up before opening the
783	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
784	moveq	#0,%d0
785	cmpl	#ATARI_MACH_HADES,%d3
786	jbne	1f
787	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
7881:	lea     %pc@(L(iobase)),%a0
789	movel   %d0,%a0@
790
791L(notypetest):
792#endif
793
794#ifdef CONFIG_VME
795	is_mvme147(L(getvmetype))
796	is_bvme6000(L(getvmetype))
797	is_not_mvme16x(L(gvtdone))
798
799	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
800	 * versions of VMELILO and TFTPLILO do this.  We have to do this
801	 * early so we know how to handle console output.  If the tag
802	 * doesn't exist then we use the Bug for output on MVME16x.
803	 */
804L(getvmetype):
805	get_bi_record	BI_VME_TYPE
806	tstl	%d0
807	jbmi	1f
808	movel	%a0@,%d3
809	lea	%pc@(vme_brdtype),%a0
810	movel	%d3,%a0@
8111:
812#ifdef CONFIG_MVME16x
813	is_not_mvme16x(L(gvtdone))
814
815	/* Need to get the BRD_ID info to differentiate between 162, 167,
816	 * etc.  This is available as a BI_VME_BRDINFO tag with later
817	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
818	 */
819	get_bi_record	BI_VME_BRDINFO
820	tstl	%d0
821	jpl	1f
822
823	/* Get pointer to board ID data from Bug */
824	movel	%d2,%sp@-
825	trap	#15
826	.word	0x70		/* trap 0x70 - .BRD_ID */
827	movel	%sp@+,%a0
8281:
829	lea	%pc@(mvme_bdid),%a1
830	/* Structure is 32 bytes long */
831	movel	%a0@+,%a1@+
832	movel	%a0@+,%a1@+
833	movel	%a0@+,%a1@+
834	movel	%a0@+,%a1@+
835	movel	%a0@+,%a1@+
836	movel	%a0@+,%a1@+
837	movel	%a0@+,%a1@+
838	movel	%a0@+,%a1@+
839#endif
840
841L(gvtdone):
842
843#endif
844
845#ifdef CONFIG_HP300
846	is_not_hp300(L(nothp))
847
848	/* Get the address of the UART for serial debugging */
849	get_bi_record	BI_HP300_UART_ADDR
850	tstl	%d0
851	jbmi	1f
852	movel	%a0@,%d3
853	lea	%pc@(L(uartbase)),%a0
854	movel	%d3,%a0@
855	get_bi_record	BI_HP300_UART_SCODE
856	tstl	%d0
857	jbmi	1f
858	movel	%a0@,%d3
859	lea	%pc@(L(uart_scode)),%a0
860	movel	%d3,%a0@
8611:
862L(nothp):
863#endif
864
865/*
866 * Initialize serial port
867 */
868	jbsr	L(serial_init)
869
870/*
871 * Initialize console
872 */
873#ifdef CONFIG_MAC
874	is_not_mac(L(nocon))
875#  ifdef CONSOLE_DEBUG
876	console_init
877#    ifdef CONFIG_LOGO
878	console_put_penguin
879#    endif /* CONFIG_LOGO */
880#  endif /* CONSOLE_DEBUG */
881L(nocon):
882#endif /* CONFIG_MAC */
883
884
885	putc	'\n'
886	putc	'A'
887	leds	0x2
888	dputn	%pc@(L(cputype))
889	dputn	%pc@(m68k_supervisor_cachemode)
890	dputn	%pc@(m68k_pgtable_cachemode)
891	dputc	'\n'
892
893/*
894 * Save physical start address of kernel
895 */
896	lea	%pc@(L(phys_kernel_start)),%a0
897	lea	%pc@(_stext),%a1
898	subl	#_stext,%a1
899	addl	#PAGE_OFFSET,%a1
900	movel	%a1,%a0@
901
902	putc	'B'
903
904	leds	0x4
905
906/*
907 *	mmu_init
908 *
909 *	This block of code does what's necessary to map in the various kinds
910 *	of machines for execution of Linux.
911 *	First map the first 4, 8, or 16 MB of kernel code & data
912 */
913
914	get_bi_record BI_MEMCHUNK
915	movel	%a0@(4),%d0
916	movel	#16*1024*1024,%d1
917	cmpl	%d0,%d1
918	jls	1f
919	lsrl	#1,%d1
920	cmpl	%d0,%d1
921	jls	1f
922	lsrl	#1,%d1
9231:
924	lea	%pc@(m68k_init_mapped_size),%a0
925	movel	%d1,%a0@
926	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
927		%pc@(m68k_supervisor_cachemode)
928
929	putc	'C'
930
931#ifdef CONFIG_AMIGA
932
933L(mmu_init_amiga):
934
935	is_not_amiga(L(mmu_init_not_amiga))
936/*
937 * mmu_init_amiga
938 */
939
940	putc	'D'
941
942	is_not_040_or_060(1f)
943
944	/*
945	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
946	 */
947	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
948	/*
949	 * Map the Zorro III I/O space with transparent translation
950	 * for frame buffer memory etc.
951	 */
952	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
953
954	jbra	L(mmu_init_done)
955
9561:
957	/*
958	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
959	 */
960	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
961	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
962
963	jbra	L(mmu_init_done)
964
965L(mmu_init_not_amiga):
966#endif
967
968#ifdef CONFIG_ATARI
969
970L(mmu_init_atari):
971
972	is_not_atari(L(mmu_init_not_atari))
973
974	putc	'E'
975
976/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
977   the last 16 MB of virtual address space to the first 16 MB (i.e.
978   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
979   needed. I/O ranges are marked non-cachable.
980
981   For the Medusa it is better to map the I/O region transparently
982   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
983   accessible only in the high area.
984
985   On the Hades all I/O registers are only accessible in the high
986   area.
987*/
988
989	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
990	moveq	#0,%d0
991	movel	%pc@(atari_mch_type),%d3
992	cmpl	#ATARI_MACH_MEDUSA,%d3
993	jbeq	2f
994	cmpl	#ATARI_MACH_HADES,%d3
995	jbne	1f
9962:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
9971:	movel	%d0,%d3
998
999	is_040_or_060(L(spata68040))
1000
1001	/* Map everything non-cacheable, though not all parts really
1002	 * need to disable caches (crucial only for 0xff8000..0xffffff
1003	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1004	 * isn't really used, except for sometimes peeking into the
1005	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1006	 * this. */
1007	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1008
1009	jbra	L(mmu_init_done)
1010
1011L(spata68040):
1012
1013	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1014
1015	jbra	L(mmu_init_done)
1016
1017L(mmu_init_not_atari):
1018#endif
1019
1020#ifdef CONFIG_Q40
1021	is_not_q40(L(notq40))
1022	/*
1023	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1024	 * non-cached serialized etc..
1025	 * this includes master chip, DAC, RTC and ISA ports
1026	 * 0xfe000000-0xfeffffff is for screen and ROM
1027	 */
1028
1029	putc    'Q'
1030
1031	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1032	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1033
1034	jbra	L(mmu_init_done)
1035
1036L(notq40):
1037#endif
1038
1039#ifdef CONFIG_HP300
1040	is_not_hp300(L(nothp300))
1041
1042	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1043	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1044	 * The ROM mapping is needed because the LEDs are mapped there too.
1045	 */
1046
1047	is_040(1f)
1048
1049	/*
1050	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1051	 */
1052	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1053
1054	jbra	L(mmu_init_done)
1055
10561:
1057	/*
1058	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1059	 */
1060	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1061
1062	jbra	L(mmu_init_done)
1063
1064L(nothp300):
1065#endif /* CONFIG_HP300 */
1066
1067#ifdef CONFIG_MVME147
1068
1069	is_not_mvme147(L(not147))
1070
1071	/*
1072	 * On MVME147 we have already created kernel page tables for
1073	 * 4MB of RAM at address 0, so now need to do a transparent
1074	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1075	 * so we can access on-board i/o areas.
1076	 */
1077
1078	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1079
1080	jbra	L(mmu_init_done)
1081
1082L(not147):
1083#endif /* CONFIG_MVME147 */
1084
1085#ifdef CONFIG_MVME16x
1086
1087	is_not_mvme16x(L(not16x))
1088
1089	/*
1090	 * On MVME16x we have already created kernel page tables for
1091	 * 4MB of RAM at address 0, so now need to do a transparent
1092	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1093	 * Supervisor only access, so transparent mapping doesn't
1094	 * clash with User code virtual address space.
1095	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1096	 * mapping is needed to allow 167Bug to run.
1097	 * IO is in the range 0xfff00000 to 0xfffeffff.
1098	 * PROM is 0xff800000->0xffbfffff and SRAM is
1099	 * 0xffe00000->0xffe1ffff.
1100	 */
1101
1102	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1103
1104	jbra	L(mmu_init_done)
1105
1106L(not16x):
1107#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1108
1109#ifdef CONFIG_BVME6000
1110
1111	is_not_bvme6000(L(not6000))
1112
1113	/*
1114	 * On BVME6000 we have already created kernel page tables for
1115	 * 4MB of RAM at address 0, so now need to do a transparent
1116	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1117	 * so we can access on-board i/o areas.
1118	 * Supervisor only access, so transparent mapping doesn't
1119	 * clash with User code virtual address space.
1120	 */
1121
1122	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1123
1124	jbra	L(mmu_init_done)
1125
1126L(not6000):
1127#endif /* CONFIG_BVME6000 */
1128
1129/*
1130 * mmu_init_mac
1131 *
1132 * The Macintosh mappings are less clear.
1133 *
1134 * Even as of this writing, it is unclear how the
1135 * Macintosh mappings will be done.  However, as
1136 * the first author of this code I'm proposing the
1137 * following model:
1138 *
1139 * Map the kernel (that's already done),
1140 * Map the I/O (on most machines that's the
1141 * 0x5000.0000 ... 0x5300.0000 range,
1142 * Map the video frame buffer using as few pages
1143 * as absolutely (this requirement mostly stems from
1144 * the fact that when the frame buffer is at
1145 * 0x0000.0000 then we know there is valid RAM just
1146 * above the screen that we don't want to waste!).
1147 *
1148 * By the way, if the frame buffer is at 0x0000.0000
1149 * then the Macintosh is known as an RBV based Mac.
1150 *
1151 * By the way 2, the code currently maps in a bunch of
1152 * regions.  But I'd like to cut that out.  (And move most
1153 * of the mappings up into the kernel proper ... or only
1154 * map what's necessary.)
1155 */
1156
1157#ifdef CONFIG_MAC
1158
1159L(mmu_init_mac):
1160
1161	is_not_mac(L(mmu_init_not_mac))
1162
1163	putc	'F'
1164
1165	is_not_040_or_060(1f)
1166
1167	moveq	#_PAGE_NOCACHE_S,%d3
1168	jbra	2f
11691:
1170	moveq	#_PAGE_NOCACHE030,%d3
11712:
1172	/*
1173	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1174	 *	     we simply map the 4MB that contains the videomem
1175	 */
1176
1177	movel	#VIDEOMEMMASK,%d0
1178	andl	%pc@(L(mac_videobase)),%d0
1179
1180	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1181	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1182	mmu_map_eq	#0x40000000,#0x02000000,%d3
1183	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1184	mmu_map_eq	#0x50000000,#0x03000000,%d3
1185	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1186	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1187
1188	jbra	L(mmu_init_done)
1189
1190L(mmu_init_not_mac):
1191#endif
1192
1193#ifdef CONFIG_SUN3X
1194	is_not_sun3x(L(notsun3x))
1195
1196	/* oh, the pain..  We're gonna want the prom code after
1197	 * starting the MMU, so we copy the mappings, translating
1198	 * from 8k -> 4k pages as we go.
1199	 */
1200
1201	/* copy maps from 0xfee00000 to 0xff000000 */
1202	movel	#0xfee00000, %d0
1203	moveq	#ROOT_INDEX_SHIFT, %d1
1204	lsrl	%d1,%d0
1205	mmu_get_root_table_entry	%d0
1206
1207	movel	#0xfee00000, %d0
1208	moveq	#PTR_INDEX_SHIFT, %d1
1209	lsrl	%d1,%d0
1210	andl	#PTR_TABLE_SIZE-1, %d0
1211	mmu_get_ptr_table_entry		%a0,%d0
1212
1213	movel	#0xfee00000, %d0
1214	moveq	#PAGE_INDEX_SHIFT, %d1
1215	lsrl	%d1,%d0
1216	andl	#PAGE_TABLE_SIZE-1, %d0
1217	mmu_get_page_table_entry	%a0,%d0
1218
1219	/* this is where the prom page table lives */
1220	movel	0xfefe00d4, %a1
1221	movel	%a1@, %a1
1222
1223	movel	#((0x200000 >> 13)-1), %d1
1224
12251:
1226	movel	%a1@+, %d3
1227	movel	%d3,%a0@+
1228	addl	#0x1000,%d3
1229	movel	%d3,%a0@+
1230
1231	dbra	%d1,1b
1232
1233	/* setup tt1 for I/O */
1234	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1235	jbra	L(mmu_init_done)
1236
1237L(notsun3x):
1238#endif
1239
1240#ifdef CONFIG_APOLLO
1241	is_not_apollo(L(notapollo))
1242
1243	putc	'P'
1244	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1245
1246L(notapollo):
1247	jbra	L(mmu_init_done)
1248#endif
1249
1250L(mmu_init_done):
1251
1252	putc	'G'
1253	leds	0x8
1254
1255/*
1256 * mmu_fixup
1257 *
1258 * On the 040 class machines, all pages that are used for the
1259 * mmu have to be fixed up. According to Motorola, pages holding mmu
1260 * tables should be non-cacheable on a '040 and write-through on a
1261 * '060. But analysis of the reasons for this, and practical
1262 * experience, showed that write-through also works on a '040.
1263 *
1264 * Allocated memory so far goes from kernel_end to memory_start that
1265 * is used for all kind of tables, for that the cache attributes
1266 * are now fixed.
1267 */
1268L(mmu_fixup):
1269
1270	is_not_040_or_060(L(mmu_fixup_done))
1271
1272#ifdef MMU_NOCACHE_KERNEL
1273	jbra	L(mmu_fixup_done)
1274#endif
1275
1276	/* first fix the page at the start of the kernel, that
1277	 * contains also kernel_pg_dir.
1278	 */
1279	movel	%pc@(L(phys_kernel_start)),%d0
1280	subl	#PAGE_OFFSET,%d0
1281	lea	%pc@(_stext),%a0
1282	subl	%d0,%a0
1283	mmu_fixup_page_mmu_cache	%a0
1284
1285	movel	%pc@(L(kernel_end)),%a0
1286	subl	%d0,%a0
1287	movel	%pc@(L(memory_start)),%a1
1288	subl	%d0,%a1
1289	bra	2f
12901:
1291	mmu_fixup_page_mmu_cache	%a0
1292	addw	#PAGESIZE,%a0
12932:
1294	cmpl	%a0,%a1
1295	jgt	1b
1296
1297L(mmu_fixup_done):
1298
1299#ifdef MMU_PRINT
1300	mmu_print
1301#endif
1302
1303/*
1304 * mmu_engage
1305 *
1306 * This chunk of code performs the gruesome task of engaging the MMU.
1307 * The reason it's gruesome is because when the MMU becomes engaged it
1308 * maps logical addresses to physical addresses.  The Program Counter
1309 * register is then passed through the MMU before the next instruction
1310 * is fetched (the instruction following the engage MMU instruction).
1311 * This may mean one of two things:
1312 * 1. The Program Counter falls within the logical address space of
1313 *    the kernel of which there are two sub-possibilities:
1314 *    A. The PC maps to the correct instruction (logical PC == physical
1315 *       code location), or
1316 *    B. The PC does not map through and the processor will read some
1317 *       data (or instruction) which is not the logically next instr.
1318 *    As you can imagine, A is good and B is bad.
1319 * Alternatively,
1320 * 2. The Program Counter does not map through the MMU.  The processor
1321 *    will take a Bus Error.
1322 * Clearly, 2 is bad.
1323 * It doesn't take a wiz kid to figure you want 1.A.
1324 * This code creates that possibility.
1325 * There are two possible 1.A. states (we now ignore the other above states):
1326 * A. The kernel is located at physical memory addressed the same as
1327 *    the logical memory for the kernel, i.e., 0x01000.
1328 * B. The kernel is located some where else.  e.g., 0x0400.0000
1329 *
1330 *    Under some conditions the Macintosh can look like A or B.
1331 * [A friend and I once noted that Apple hardware engineers should be
1332 * wacked twice each day: once when they show up at work (as in, Whack!,
1333 * "This is for the screwy hardware we know you're going to design today."),
1334 * and also at the end of the day (as in, Whack! "I don't know what
1335 * you designed today, but I'm sure it wasn't good."). -- rst]
1336 *
1337 * This code works on the following premise:
1338 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1339 * then create a mapping for the kernel at logical 0x8000.0000 to
1340 * the physical location of the pc.  And, create a transparent
1341 * translation register for the first 16 Meg.  Then, after the MMU
1342 * is engaged, the PC can be moved up into the 0x8000.0000 range
1343 * and then the transparent translation can be turned off and then
1344 * the PC can jump to the correct logical location and it will be
1345 * home (finally).  This is essentially the code that the Amiga used
1346 * to use.  Now, it's generalized for all processors.  Which means
1347 * that a fresh (but temporary) mapping has to be created.  The mapping
1348 * is made in page 0 (an as of yet unused location -- except for the
1349 * stack!).  This temporary mapping will only require 1 pointer table
1350 * and a single page table (it can map 256K).
1351 *
1352 * OK, alternatively, imagine that the Program Counter is not within
1353 * the first 16 Meg.  Then, just use Transparent Translation registers
1354 * to do the right thing.
1355 *
1356 * Last, if _start is already at 0x01000, then there's nothing special
1357 * to do (in other words, in a degenerate case of the first case above,
1358 * do nothing).
1359 *
1360 * Let's do it.
1361 *
1362 *
1363 */
1364
1365	putc	'H'
1366
1367	mmu_engage
1368
1369/*
1370 * After this point no new memory is allocated and
1371 * the start of available memory is stored in availmem.
1372 * (The bootmem allocator requires now the physical address.)
1373 */
1374
1375	movel	L(memory_start),availmem
1376
1377#ifdef CONFIG_AMIGA
1378	is_not_amiga(1f)
1379	/* fixup the Amiga custom register location before printing */
1380	clrl	L(custom)
13811:
1382#endif
1383
1384#ifdef CONFIG_ATARI
1385	is_not_atari(1f)
1386	/* fixup the Atari iobase register location before printing */
1387	movel	#0xff000000,L(iobase)
13881:
1389#endif
1390
1391#ifdef CONFIG_MAC
1392	is_not_mac(1f)
1393	movel	#~VIDEOMEMMASK,%d0
1394	andl	L(mac_videobase),%d0
1395	addl	#VIDEOMEMBASE,%d0
1396	movel	%d0,L(mac_videobase)
1397#ifdef CONSOLE_DEBUG
1398	movel	%pc@(L(phys_kernel_start)),%d0
1399	subl	#PAGE_OFFSET,%d0
1400	subl	%d0,L(console_font)
1401	subl	%d0,L(console_font_data)
1402#endif
1403	orl	#0x50000000,L(mac_sccbase)
14041:
1405#endif
1406
1407#ifdef CONFIG_HP300
1408	is_not_hp300(2f)
1409	/*
1410	 * Fix up the iobase register to point to the new location of the LEDs.
1411	 */
1412	movel	#0xf0000000,L(iobase)
1413
1414	/*
1415	 * Energise the FPU and caches.
1416	 */
1417	is_040(1f)
1418	movel	#0x60,0xf05f400c
1419	jbra	2f
1420
1421	/*
1422	 * 040: slightly different, apparently.
1423	 */
14241:	movew	#0,0xf05f400e
1425	movew	#0x64,0xf05f400e
14262:
1427#endif
1428
1429#ifdef CONFIG_SUN3X
1430	is_not_sun3x(1f)
1431
1432	/* enable copro */
1433	oriw	#0x4000,0x61000000
14341:
1435#endif
1436
1437#ifdef CONFIG_APOLLO
1438	is_not_apollo(1f)
1439
1440	/*
1441	 * Fix up the iobase before printing
1442	 */
1443	movel	#0x80000000,L(iobase)
14441:
1445#endif
1446
1447	putc	'I'
1448	leds	0x10
1449
1450/*
1451 * Enable caches
1452 */
1453
1454	is_not_040_or_060(L(cache_not_680460))
1455
1456L(cache680460):
1457	.chip	68040
1458	nop
1459	cpusha	%bc
1460	nop
1461
1462	is_060(L(cache68060))
1463
1464	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1465	/* MMU stuff works in copyback mode now, so enable the cache */
1466	movec	%d0,%cacr
1467	jra	L(cache_done)
1468
1469L(cache68060):
1470	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1471	/* MMU stuff works in copyback mode now, so enable the cache */
1472	movec	%d0,%cacr
1473	/* enable superscalar dispatch in PCR */
1474	moveq	#1,%d0
1475	.chip	68060
1476	movec	%d0,%pcr
1477
1478	jbra	L(cache_done)
1479L(cache_not_680460):
1480L(cache68030):
1481	.chip	68030
1482	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1483	movec	%d0,%cacr
1484
1485	jra	L(cache_done)
1486	.chip	68k
1487L(cache_done):
1488
1489	putc	'J'
1490
1491/*
1492 * Setup initial stack pointer
1493 */
1494	lea	init_task,%curptr
1495	lea	init_thread_union+THREAD_SIZE,%sp
1496
1497	putc	'K'
1498
1499	subl	%a6,%a6		/* clear a6 for gdb */
1500
1501/*
1502 * The new 64bit printf support requires an early exception initialization.
1503 */
1504	jbsr	base_trap_init
1505
1506/* jump to the kernel start */
1507
1508	putc	'\n'
1509	leds	0x55
1510
1511	jbsr	start_kernel
1512
1513/*
1514 * Find a tag record in the bootinfo structure
1515 * The bootinfo structure is located right after the kernel
1516 * Returns: d0: size (-1 if not found)
1517 *          a0: data pointer (end-of-records if not found)
1518 */
1519func_start	get_bi_record,%d1
1520
1521	movel	ARG1,%d0
1522	lea	%pc@(_end),%a0
15231:	tstw	%a0@(BIR_TAG)
1524	jeq	3f
1525	cmpw	%a0@(BIR_TAG),%d0
1526	jeq	2f
1527	addw	%a0@(BIR_SIZE),%a0
1528	jra	1b
15292:	moveq	#0,%d0
1530	movew	%a0@(BIR_SIZE),%d0
1531	lea	%a0@(BIR_DATA),%a0
1532	jra	4f
15333:	moveq	#-1,%d0
1534	lea	%a0@(BIR_SIZE),%a0
15354:
1536func_return	get_bi_record
1537
1538
1539/*
1540 *	MMU Initialization Begins Here
1541 *
1542 *	The structure of the MMU tables on the 68k machines
1543 *	is thus:
1544 *	Root Table
1545 *		Logical addresses are translated through
1546 *	a hierarchical translation mechanism where the high-order
1547 *	seven bits of the logical address (LA) are used as an
1548 *	index into the "root table."  Each entry in the root
1549 *	table has a bit which specifies if it's a valid pointer to a
1550 *	pointer table.  Each entry defines a 32Meg range of memory.
1551 *	If an entry is invalid then that logical range of 32M is
1552 *	invalid and references to that range of memory (when the MMU
1553 *	is enabled) will fault.  If the entry is valid, then it does
1554 *	one of two things.  On 040/060 class machines, it points to
1555 *	a pointer table which then describes more finely the memory
1556 *	within that 32M range.  On 020/030 class machines, a technique
1557 *	called "early terminating descriptors" are used.  This technique
1558 *	allows an entire 32Meg to be described by a single entry in the
1559 *	root table.  Thus, this entry in the root table, contains the
1560 *	physical address of the memory or I/O at the logical address
1561 *	which the entry represents and it also contains the necessary
1562 *	cache bits for this region.
1563 *
1564 *	Pointer Tables
1565 *		Per the Root Table, there will be one or more
1566 *	pointer tables.  Each pointer table defines a 32M range.
1567 *	Not all of the 32M range need be defined.  Again, the next
1568 *	seven bits of the logical address are used an index into
1569 *	the pointer table to point to page tables (if the pointer
1570 *	is valid).  There will undoubtedly be more than one
1571 *	pointer table for the kernel because each pointer table
1572 *	defines a range of only 32M.  Valid pointer table entries
1573 *	point to page tables, or are early terminating entries
1574 *	themselves.
1575 *
1576 *	Page Tables
1577 *		Per the Pointer Tables, each page table entry points
1578 *	to the physical page in memory that supports the logical
1579 *	address that translates to the particular index.
1580 *
1581 *	In short, the Logical Address gets translated as follows:
1582 *		bits 31..26 - index into the Root Table
1583 *		bits 25..18 - index into the Pointer Table
1584 *		bits 17..12 - index into the Page Table
1585 *		bits 11..0  - offset into a particular 4K page
1586 *
1587 *	The algorithms which follow do one thing: they abstract
1588 *	the MMU hardware.  For example, there are three kinds of
1589 *	cache settings that are relevant.  Either, memory is
1590 *	being mapped in which case it is either Kernel Code (or
1591 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1592 *	option also describes the kernel.  Or, I/O is being mapped
1593 *	in which case it has its own kind of cache bits.  There
1594 *	are constants which abstract these notions from the code that
1595 *	actually makes the call to map some range of memory.
1596 *
1597 *
1598 *
1599 */
1600
1601#ifdef MMU_PRINT
1602/*
1603 *	mmu_print
1604 *
1605 *	This algorithm will print out the current MMU mappings.
1606 *
1607 *	Input:
1608 *		%a5 points to the root table.  Everything else is calculated
1609 *			from this.
1610 */
1611
1612#define mmu_next_valid		0
1613#define mmu_start_logical	4
1614#define mmu_next_logical	8
1615#define mmu_start_physical	12
1616#define mmu_next_physical	16
1617
1618#define MMU_PRINT_INVALID		-1
1619#define MMU_PRINT_VALID			1
1620#define MMU_PRINT_UNINITED		0
1621
1622#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1623
1624func_start	mmu_print,%a0-%a6/%d0-%d7
1625
1626	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1627	lea	%pc@(L(mmu_print_data)),%a0
1628	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1629
1630	is_not_040_or_060(mmu_030_print)
1631
1632mmu_040_print:
1633	puts	"\nMMU040\n"
1634	puts	"rp:"
1635	putn	%a5
1636	putc	'\n'
1637#if 0
1638	/*
1639	 * The following #if/#endif block is a tight algorithm for dumping the 040
1640	 * MMU Map in gory detail.  It really isn't that practical unless the
1641	 * MMU Map algorithm appears to go awry and you need to debug it at the
1642	 * entry per entry level.
1643	 */
1644	movel	#ROOT_TABLE_SIZE,%d5
1645#if 0
1646	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1647	subql	#1,%d5			| they (might) work
1648#endif
16491:	tstl	%d5
1650	jbeq	mmu_print_done
1651	subq	#1,%d5
1652	movel	%a5@+,%d7
1653	btst	#1,%d7
1654	jbeq	1b
1655
16562:	putn	%d7
1657	andil	#0xFFFFFE00,%d7
1658	movel	%d7,%a4
1659	movel	#PTR_TABLE_SIZE,%d4
1660	putc	' '
16613:	tstl	%d4
1662	jbeq	11f
1663	subq	#1,%d4
1664	movel	%a4@+,%d7
1665	btst	#1,%d7
1666	jbeq	3b
1667
16684:	putn	%d7
1669	andil	#0xFFFFFF00,%d7
1670	movel	%d7,%a3
1671	movel	#PAGE_TABLE_SIZE,%d3
16725:	movel	#8,%d2
16736:	tstl	%d3
1674	jbeq	31f
1675	subq	#1,%d3
1676	movel	%a3@+,%d6
1677	btst	#0,%d6
1678	jbeq	6b
16797:	tstl	%d2
1680	jbeq	8f
1681	subq	#1,%d2
1682	putc	' '
1683	jbra	91f
16848:	putc	'\n'
1685	movel	#8+1+8+1+1,%d2
16869:	putc	' '
1687	dbra	%d2,9b
1688	movel	#7,%d2
168991:	putn	%d6
1690	jbra	6b
1691
169231:	putc	'\n'
1693	movel	#8+1,%d2
169432:	putc	' '
1695	dbra	%d2,32b
1696	jbra	3b
1697
169811:	putc	'\n'
1699	jbra	1b
1700#endif /* MMU 040 Dumping code that's gory and detailed */
1701
1702	lea	%pc@(kernel_pg_dir),%a5
1703	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1704	movel	#0x00000000,%a4		/* logical address */
1705	moveql	#0,%d0
170640:
1707	/* Increment the logical address and preserve in d5 */
1708	movel	%a4,%d5
1709	addil	#PAGESIZE<<13,%d5
1710	movel	%a0@+,%d6
1711	btst	#1,%d6
1712	jbne	41f
1713	jbsr	mmu_print_tuple_invalidate
1714	jbra	48f
171541:
1716	movel	#0,%d1
1717	andil	#0xfffffe00,%d6
1718	movel	%d6,%a1
171942:
1720	movel	%a4,%d5
1721	addil	#PAGESIZE<<6,%d5
1722	movel	%a1@+,%d6
1723	btst	#1,%d6
1724	jbne	43f
1725	jbsr	mmu_print_tuple_invalidate
1726	jbra	47f
172743:
1728	movel	#0,%d2
1729	andil	#0xffffff00,%d6
1730	movel	%d6,%a2
173144:
1732	movel	%a4,%d5
1733	addil	#PAGESIZE,%d5
1734	movel	%a2@+,%d6
1735	btst	#0,%d6
1736	jbne	45f
1737	jbsr	mmu_print_tuple_invalidate
1738	jbra	46f
173945:
1740	moveml	%d0-%d1,%sp@-
1741	movel	%a4,%d0
1742	movel	%d6,%d1
1743	andil	#0xfffff4e0,%d1
1744	lea	%pc@(mmu_040_print_flags),%a6
1745	jbsr	mmu_print_tuple
1746	moveml	%sp@+,%d0-%d1
174746:
1748	movel	%d5,%a4
1749	addq	#1,%d2
1750	cmpib	#64,%d2
1751	jbne	44b
175247:
1753	movel	%d5,%a4
1754	addq	#1,%d1
1755	cmpib	#128,%d1
1756	jbne	42b
175748:
1758	movel	%d5,%a4			/* move to the next logical address */
1759	addq	#1,%d0
1760	cmpib	#128,%d0
1761	jbne	40b
1762
1763	.chip	68040
1764	movec	%dtt1,%d0
1765	movel	%d0,%d1
1766	andiw	#0x8000,%d1		/* is it valid ? */
1767	jbeq	1f			/* No, bail out */
1768
1769	movel	%d0,%d1
1770	andil	#0xff000000,%d1		/* Get the address */
1771	putn	%d1
1772	puts	"=="
1773	putn	%d1
1774
1775	movel	%d0,%d6
1776	jbsr	mmu_040_print_flags_tt
17771:
1778	movec	%dtt0,%d0
1779	movel	%d0,%d1
1780	andiw	#0x8000,%d1		/* is it valid ? */
1781	jbeq	1f			/* No, bail out */
1782
1783	movel	%d0,%d1
1784	andil	#0xff000000,%d1		/* Get the address */
1785	putn	%d1
1786	puts	"=="
1787	putn	%d1
1788
1789	movel	%d0,%d6
1790	jbsr	mmu_040_print_flags_tt
17911:
1792	.chip	68k
1793
1794	jbra	mmu_print_done
1795
1796mmu_040_print_flags:
1797	btstl	#10,%d6
1798	putZc(' ','G')	/* global bit */
1799	btstl	#7,%d6
1800	putZc(' ','S')	/* supervisor bit */
1801mmu_040_print_flags_tt:
1802	btstl	#6,%d6
1803	jbne	3f
1804	putc	'C'
1805	btstl	#5,%d6
1806	putZc('w','c')	/* write through or copy-back */
1807	jbra	4f
18083:
1809	putc	'N'
1810	btstl	#5,%d6
1811	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18124:
1813	rts
1814
1815mmu_030_print_flags:
1816	btstl	#6,%d6
1817	putZc('C','I')	/* write through or copy-back */
1818	rts
1819
1820mmu_030_print:
1821	puts	"\nMMU030\n"
1822	puts	"\nrp:"
1823	putn	%a5
1824	putc	'\n'
1825	movel	%a5,%d0
1826	andil	#0xfffffff0,%d0
1827	movel	%d0,%a0
1828	movel	#0x00000000,%a4		/* logical address */
1829	movel	#0,%d0
183030:
1831	movel	%a4,%d5
1832	addil	#PAGESIZE<<13,%d5
1833	movel	%a0@+,%d6
1834	btst	#1,%d6			/* is it a table ptr? */
1835	jbne	31f			/* yes */
1836	btst	#0,%d6			/* is it early terminating? */
1837	jbeq	1f			/* no */
1838	jbsr	mmu_030_print_helper
1839	jbra	38f
18401:
1841	jbsr	mmu_print_tuple_invalidate
1842	jbra	38f
184331:
1844	movel	#0,%d1
1845	andil	#0xfffffff0,%d6
1846	movel	%d6,%a1
184732:
1848	movel	%a4,%d5
1849	addil	#PAGESIZE<<6,%d5
1850	movel	%a1@+,%d6
1851	btst	#1,%d6			/* is it a table ptr? */
1852	jbne	33f			/* yes */
1853	btst	#0,%d6			/* is it a page descriptor? */
1854	jbeq	1f			/* no */
1855	jbsr	mmu_030_print_helper
1856	jbra	37f
18571:
1858	jbsr	mmu_print_tuple_invalidate
1859	jbra	37f
186033:
1861	movel	#0,%d2
1862	andil	#0xfffffff0,%d6
1863	movel	%d6,%a2
186434:
1865	movel	%a4,%d5
1866	addil	#PAGESIZE,%d5
1867	movel	%a2@+,%d6
1868	btst	#0,%d6
1869	jbne	35f
1870	jbsr	mmu_print_tuple_invalidate
1871	jbra	36f
187235:
1873	jbsr	mmu_030_print_helper
187436:
1875	movel	%d5,%a4
1876	addq	#1,%d2
1877	cmpib	#64,%d2
1878	jbne	34b
187937:
1880	movel	%d5,%a4
1881	addq	#1,%d1
1882	cmpib	#128,%d1
1883	jbne	32b
188438:
1885	movel	%d5,%a4			/* move to the next logical address */
1886	addq	#1,%d0
1887	cmpib	#128,%d0
1888	jbne	30b
1889
1890mmu_print_done:
1891	puts	"\n"
1892
1893func_return	mmu_print
1894
1895
1896mmu_030_print_helper:
1897	moveml	%d0-%d1,%sp@-
1898	movel	%a4,%d0
1899	movel	%d6,%d1
1900	lea	%pc@(mmu_030_print_flags),%a6
1901	jbsr	mmu_print_tuple
1902	moveml	%sp@+,%d0-%d1
1903	rts
1904
1905mmu_print_tuple_invalidate:
1906	moveml	%a0/%d7,%sp@-
1907
1908	lea	%pc@(L(mmu_print_data)),%a0
1909	tstl	%a0@(mmu_next_valid)
1910	jbmi	mmu_print_tuple_invalidate_exit
1911
1912	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1913
1914	putn	%a4
1915
1916	puts	"##\n"
1917
1918mmu_print_tuple_invalidate_exit:
1919	moveml	%sp@+,%a0/%d7
1920	rts
1921
1922
1923mmu_print_tuple:
1924	moveml	%d0-%d7/%a0,%sp@-
1925
1926	lea	%pc@(L(mmu_print_data)),%a0
1927
1928	tstl	%a0@(mmu_next_valid)
1929	jble	mmu_print_tuple_print
1930
1931	cmpl	%a0@(mmu_next_physical),%d1
1932	jbeq	mmu_print_tuple_increment
1933
1934mmu_print_tuple_print:
1935	putn	%d0
1936	puts	"->"
1937	putn	%d1
1938
1939	movel	%d1,%d6
1940	jbsr	%a6@
1941
1942mmu_print_tuple_record:
1943	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1944
1945	movel	%d1,%a0@(mmu_next_physical)
1946
1947mmu_print_tuple_increment:
1948	movel	%d5,%d7
1949	subl	%a4,%d7
1950	addl	%d7,%a0@(mmu_next_physical)
1951
1952mmu_print_tuple_exit:
1953	moveml	%sp@+,%d0-%d7/%a0
1954	rts
1955
1956mmu_print_machine_cpu_types:
1957	puts	"machine: "
1958
1959	is_not_amiga(1f)
1960	puts	"amiga"
1961	jbra	9f
19621:
1963	is_not_atari(2f)
1964	puts	"atari"
1965	jbra	9f
19662:
1967	is_not_mac(3f)
1968	puts	"macintosh"
1969	jbra	9f
19703:	puts	"unknown"
19719:	putc	'\n'
1972
1973	puts	"cputype: 0"
1974	is_not_060(1f)
1975	putc	'6'
1976	jbra	9f
19771:
1978	is_not_040_or_060(2f)
1979	putc	'4'
1980	jbra	9f
19812:	putc	'3'
19829:	putc	'0'
1983	putc	'\n'
1984
1985	rts
1986#endif /* MMU_PRINT */
1987
1988/*
1989 * mmu_map_tt
1990 *
1991 * This is a specific function which works on all 680x0 machines.
1992 * On 030, 040 & 060 it will attempt to use Transparent Translation
1993 * registers (tt1).
1994 * On 020 it will call the standard mmu_map which will use early
1995 * terminating descriptors.
1996 */
1997func_start	mmu_map_tt,%d0/%d1/%a0,4
1998
1999	dputs	"mmu_map_tt:"
2000	dputn	ARG1
2001	dputn	ARG2
2002	dputn	ARG3
2003	dputn	ARG4
2004	dputc	'\n'
2005
2006	is_020(L(do_map))
2007
2008	/* Extract the highest bit set
2009	 */
2010	bfffo	ARG3{#0,#32},%d1
2011	cmpw	#8,%d1
2012	jcc	L(do_map)
2013
2014	/* And get the mask
2015	 */
2016	moveq	#-1,%d0
2017	lsrl	%d1,%d0
2018	lsrl	#1,%d0
2019
2020	/* Mask the address
2021	 */
2022	movel	%d0,%d1
2023	notl	%d1
2024	andl	ARG2,%d1
2025
2026	/* Generate the upper 16bit of the tt register
2027	 */
2028	lsrl	#8,%d0
2029	orl	%d0,%d1
2030	clrw	%d1
2031
2032	is_040_or_060(L(mmu_map_tt_040))
2033
2034	/* set 030 specific bits (read/write access for supervisor mode
2035	 * (highest function code set, lower two bits masked))
2036	 */
2037	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2038	movel	ARG4,%d0
2039	btst	#6,%d0
2040	jeq	1f
2041	orw	#TTR_CI,%d1
2042
20431:	lea	STACK,%a0
2044	dputn	%d1
2045	movel	%d1,%a0@
2046	.chip	68030
2047	tstl	ARG1
2048	jne	1f
2049	pmove	%a0@,%tt0
2050	jra	2f
20511:	pmove	%a0@,%tt1
20522:	.chip	68k
2053	jra	L(mmu_map_tt_done)
2054
2055	/* set 040 specific bits
2056	 */
2057L(mmu_map_tt_040):
2058	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2059	orl	ARG4,%d1
2060	dputn	%d1
2061
2062	.chip	68040
2063	tstl	ARG1
2064	jne	1f
2065	movec	%d1,%itt0
2066	movec	%d1,%dtt0
2067	jra	2f
20681:	movec	%d1,%itt1
2069	movec	%d1,%dtt1
20702:	.chip	68k
2071
2072	jra	L(mmu_map_tt_done)
2073
2074L(do_map):
2075	mmu_map_eq	ARG2,ARG3,ARG4
2076
2077L(mmu_map_tt_done):
2078
2079func_return	mmu_map_tt
2080
2081/*
2082 *	mmu_map
2083 *
2084 *	This routine will map a range of memory using a pointer
2085 *	table and allocate the pages on the fly from the kernel.
2086 *	The pointer table does not have to be already linked into
2087 *	the root table, this routine will do that if necessary.
2088 *
2089 *	NOTE
2090 *	This routine will assert failure and use the serial_putc
2091 *	routines in the case of a run-time error.  For example,
2092 *	if the address is already mapped.
2093 *
2094 *	NOTE-2
2095 *	This routine will use early terminating descriptors
2096 *	where possible for the 68020+68851 and 68030 type
2097 *	processors.
2098 */
2099func_start	mmu_map,%d0-%d4/%a0-%a4
2100
2101	dputs	"\nmmu_map:"
2102	dputn	ARG1
2103	dputn	ARG2
2104	dputn	ARG3
2105	dputn	ARG4
2106	dputc	'\n'
2107
2108	/* Get logical address and round it down to 256KB
2109	 */
2110	movel	ARG1,%d0
2111	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2112	movel	%d0,%a3
2113
2114	/* Get the end address
2115	 */
2116	movel	ARG1,%a4
2117	addl	ARG3,%a4
2118	subql	#1,%a4
2119
2120	/* Get physical address and round it down to 256KB
2121	 */
2122	movel	ARG2,%d0
2123	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2124	movel	%d0,%a2
2125
2126	/* Add page attributes to the physical address
2127	 */
2128	movel	ARG4,%d0
2129	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2130	addw	%d0,%a2
2131
2132	dputn	%a2
2133	dputn	%a3
2134	dputn	%a4
2135
2136	is_not_040_or_060(L(mmu_map_030))
2137
2138	addw	#_PAGE_GLOBAL040,%a2
2139/*
2140 *	MMU 040 & 060 Support
2141 *
2142 *	The MMU usage for the 040 and 060 is different enough from
2143 *	the 030 and 68851 that there is separate code.  This comment
2144 *	block describes the data structures and algorithms built by
2145 *	this code.
2146 *
2147 *	The 040 does not support early terminating descriptors, as
2148 *	the 030 does.  Therefore, a third level of table is needed
2149 *	for the 040, and that would be the page table.  In Linux,
2150 *	page tables are allocated directly from the memory above the
2151 *	kernel.
2152 *
2153 */
2154
2155L(mmu_map_040):
2156	/* Calculate the offset into the root table
2157	 */
2158	movel	%a3,%d0
2159	moveq	#ROOT_INDEX_SHIFT,%d1
2160	lsrl	%d1,%d0
2161	mmu_get_root_table_entry	%d0
2162
2163	/* Calculate the offset into the pointer table
2164	 */
2165	movel	%a3,%d0
2166	moveq	#PTR_INDEX_SHIFT,%d1
2167	lsrl	%d1,%d0
2168	andl	#PTR_TABLE_SIZE-1,%d0
2169	mmu_get_ptr_table_entry		%a0,%d0
2170
2171	/* Calculate the offset into the page table
2172	 */
2173	movel	%a3,%d0
2174	moveq	#PAGE_INDEX_SHIFT,%d1
2175	lsrl	%d1,%d0
2176	andl	#PAGE_TABLE_SIZE-1,%d0
2177	mmu_get_page_table_entry	%a0,%d0
2178
2179	/* The page table entry must not no be busy
2180	 */
2181	tstl	%a0@
2182	jne	L(mmu_map_error)
2183
2184	/* Do the mapping and advance the pointers
2185	 */
2186	movel	%a2,%a0@
21872:
2188	addw	#PAGESIZE,%a2
2189	addw	#PAGESIZE,%a3
2190
2191	/* Ready with mapping?
2192	 */
2193	lea	%a3@(-1),%a0
2194	cmpl	%a0,%a4
2195	jhi	L(mmu_map_040)
2196	jra	L(mmu_map_done)
2197
2198L(mmu_map_030):
2199	/* Calculate the offset into the root table
2200	 */
2201	movel	%a3,%d0
2202	moveq	#ROOT_INDEX_SHIFT,%d1
2203	lsrl	%d1,%d0
2204	mmu_get_root_table_entry	%d0
2205
2206	/* Check if logical address 32MB aligned,
2207	 * so we can try to map it once
2208	 */
2209	movel	%a3,%d0
2210	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2211	jne	1f
2212
2213	/* Is there enough to map for 32MB at once
2214	 */
2215	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2216	cmpl	%a1,%a4
2217	jcs	1f
2218
2219	addql	#1,%a1
2220
2221	/* The root table entry must not no be busy
2222	 */
2223	tstl	%a0@
2224	jne	L(mmu_map_error)
2225
2226	/* Do the mapping and advance the pointers
2227	 */
2228	dputs	"early term1"
2229	dputn	%a2
2230	dputn	%a3
2231	dputn	%a1
2232	dputc	'\n'
2233	movel	%a2,%a0@
2234
2235	movel	%a1,%a3
2236	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2237	jra	L(mmu_mapnext_030)
22381:
2239	/* Calculate the offset into the pointer table
2240	 */
2241	movel	%a3,%d0
2242	moveq	#PTR_INDEX_SHIFT,%d1
2243	lsrl	%d1,%d0
2244	andl	#PTR_TABLE_SIZE-1,%d0
2245	mmu_get_ptr_table_entry		%a0,%d0
2246
2247	/* The pointer table entry must not no be busy
2248	 */
2249	tstl	%a0@
2250	jne	L(mmu_map_error)
2251
2252	/* Do the mapping and advance the pointers
2253	 */
2254	dputs	"early term2"
2255	dputn	%a2
2256	dputn	%a3
2257	dputc	'\n'
2258	movel	%a2,%a0@
2259
2260	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2261	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2262
2263L(mmu_mapnext_030):
2264	/* Ready with mapping?
2265	 */
2266	lea	%a3@(-1),%a0
2267	cmpl	%a0,%a4
2268	jhi	L(mmu_map_030)
2269	jra	L(mmu_map_done)
2270
2271L(mmu_map_error):
2272
2273	dputs	"mmu_map error:"
2274	dputn	%a2
2275	dputn	%a3
2276	dputc	'\n'
2277
2278L(mmu_map_done):
2279
2280func_return	mmu_map
2281
2282/*
2283 *	mmu_fixup
2284 *
2285 *	On the 040 class machines, all pages that are used for the
2286 *	mmu have to be fixed up.
2287 */
2288
2289func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2290
2291	dputs	"mmu_fixup_page_mmu_cache"
2292	dputn	ARG1
2293
2294	/* Calculate the offset into the root table
2295	 */
2296	movel	ARG1,%d0
2297	moveq	#ROOT_INDEX_SHIFT,%d1
2298	lsrl	%d1,%d0
2299	mmu_get_root_table_entry	%d0
2300
2301	/* Calculate the offset into the pointer table
2302	 */
2303	movel	ARG1,%d0
2304	moveq	#PTR_INDEX_SHIFT,%d1
2305	lsrl	%d1,%d0
2306	andl	#PTR_TABLE_SIZE-1,%d0
2307	mmu_get_ptr_table_entry		%a0,%d0
2308
2309	/* Calculate the offset into the page table
2310	 */
2311	movel	ARG1,%d0
2312	moveq	#PAGE_INDEX_SHIFT,%d1
2313	lsrl	%d1,%d0
2314	andl	#PAGE_TABLE_SIZE-1,%d0
2315	mmu_get_page_table_entry	%a0,%d0
2316
2317	movel	%a0@,%d0
2318	andil	#_CACHEMASK040,%d0
2319	orl	%pc@(m68k_pgtable_cachemode),%d0
2320	movel	%d0,%a0@
2321
2322	dputc	'\n'
2323
2324func_return	mmu_fixup_page_mmu_cache
2325
2326/*
2327 *	mmu_temp_map
2328 *
2329 *	create a temporary mapping to enable the mmu,
2330 *	this we don't need any transparation translation tricks.
2331 */
2332
2333func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2334
2335	dputs	"mmu_temp_map"
2336	dputn	ARG1
2337	dputn	ARG2
2338	dputc	'\n'
2339
2340	lea	%pc@(L(temp_mmap_mem)),%a1
2341
2342	/* Calculate the offset in the root table
2343	 */
2344	movel	ARG2,%d0
2345	moveq	#ROOT_INDEX_SHIFT,%d1
2346	lsrl	%d1,%d0
2347	mmu_get_root_table_entry	%d0
2348
2349	/* Check if the table is temporary allocated, so we have to reuse it
2350	 */
2351	movel	%a0@,%d0
2352	cmpl	%pc@(L(memory_start)),%d0
2353	jcc	1f
2354
2355	/* Temporary allocate a ptr table and insert it into the root table
2356	 */
2357	movel	%a1@,%d0
2358	addl	#PTR_TABLE_SIZE*4,%a1@
2359	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2360	movel	%d0,%a0@
2361	dputs	" (new)"
23621:
2363	dputn	%d0
2364	/* Mask the root table entry for the ptr table
2365	 */
2366	andw	#-ROOT_TABLE_SIZE,%d0
2367	movel	%d0,%a0
2368
2369	/* Calculate the offset into the pointer table
2370	 */
2371	movel	ARG2,%d0
2372	moveq	#PTR_INDEX_SHIFT,%d1
2373	lsrl	%d1,%d0
2374	andl	#PTR_TABLE_SIZE-1,%d0
2375	lea	%a0@(%d0*4),%a0
2376	dputn	%a0
2377
2378	/* Check if a temporary page table is already allocated
2379	 */
2380	movel	%a0@,%d0
2381	jne	1f
2382
2383	/* Temporary allocate a page table and insert it into the ptr table
2384	 */
2385	movel	%a1@,%d0
2386	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2387	   alignment restriction for pointer tables on the '0[46]0.  */
2388	addl	#512,%a1@
2389	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2390	movel	%d0,%a0@
2391	dputs	" (new)"
23921:
2393	dputn	%d0
2394	/* Mask the ptr table entry for the page table
2395	 */
2396	andw	#-PTR_TABLE_SIZE,%d0
2397	movel	%d0,%a0
2398
2399	/* Calculate the offset into the page table
2400	 */
2401	movel	ARG2,%d0
2402	moveq	#PAGE_INDEX_SHIFT,%d1
2403	lsrl	%d1,%d0
2404	andl	#PAGE_TABLE_SIZE-1,%d0
2405	lea	%a0@(%d0*4),%a0
2406	dputn	%a0
2407
2408	/* Insert the address into the page table
2409	 */
2410	movel	ARG1,%d0
2411	andw	#-PAGESIZE,%d0
2412	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2413	movel	%d0,%a0@
2414	dputn	%d0
2415
2416	dputc	'\n'
2417
2418func_return	mmu_temp_map
2419
2420func_start	mmu_engage,%d0-%d2/%a0-%a3
2421
2422	moveq	#ROOT_TABLE_SIZE-1,%d0
2423	/* Temporarily use a different root table.  */
2424	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2425	movel	%a0@,%a2
2426	movel	%pc@(L(memory_start)),%a1
2427	movel	%a1,%a0@
2428	movel	%a2,%a0
24291:
2430	movel	%a0@+,%a1@+
2431	dbra	%d0,1b
2432
2433	lea	%pc@(L(temp_mmap_mem)),%a0
2434	movel	%a1,%a0@
2435
2436	movew	#PAGESIZE-1,%d0
24371:
2438	clrl	%a1@+
2439	dbra	%d0,1b
2440
2441	lea	%pc@(1b),%a0
2442	movel	#1b,%a1
2443	/* Skip temp mappings if phys == virt */
2444	cmpl	%a0,%a1
2445	jeq	1f
2446
2447	mmu_temp_map	%a0,%a0
2448	mmu_temp_map	%a0,%a1
2449
2450	addw	#PAGESIZE,%a0
2451	addw	#PAGESIZE,%a1
2452	mmu_temp_map	%a0,%a0
2453	mmu_temp_map	%a0,%a1
24541:
2455	movel	%pc@(L(memory_start)),%a3
2456	movel	%pc@(L(phys_kernel_start)),%d2
2457
2458	is_not_040_or_060(L(mmu_engage_030))
2459
2460L(mmu_engage_040):
2461	.chip	68040
2462	nop
2463	cinva	%bc
2464	nop
2465	pflusha
2466	nop
2467	movec	%a3,%srp
2468	movel	#TC_ENABLE+TC_PAGE4K,%d0
2469	movec	%d0,%tc		/* enable the MMU */
2470	jmp	1f:l
24711:	nop
2472	movec	%a2,%srp
2473	nop
2474	cinva	%bc
2475	nop
2476	pflusha
2477	.chip	68k
2478	jra	L(mmu_engage_cleanup)
2479
2480L(mmu_engage_030_temp):
2481	.space	12
2482L(mmu_engage_030):
2483	.chip	68030
2484	lea	%pc@(L(mmu_engage_030_temp)),%a0
2485	movel	#0x80000002,%a0@
2486	movel	%a3,%a0@(4)
2487	movel	#0x0808,%d0
2488	movec	%d0,%cacr
2489	pmove	%a0@,%srp
2490	pflusha
2491	/*
2492	 * enable,super root enable,4096 byte pages,7 bit root index,
2493	 * 7 bit pointer index, 6 bit page table index.
2494	 */
2495	movel	#0x82c07760,%a0@(8)
2496	pmove	%a0@(8),%tc	/* enable the MMU */
2497	jmp	1f:l
24981:	movel	%a2,%a0@(4)
2499	movel	#0x0808,%d0
2500	movec	%d0,%cacr
2501	pmove	%a0@,%srp
2502	pflusha
2503	.chip	68k
2504
2505L(mmu_engage_cleanup):
2506	subl	#PAGE_OFFSET,%d2
2507	subl	%d2,%a2
2508	movel	%a2,L(kernel_pgdir_ptr)
2509	subl	%d2,%fp
2510	subl	%d2,%sp
2511	subl	%d2,ARG0
2512
2513func_return	mmu_engage
2514
2515func_start	mmu_get_root_table_entry,%d0/%a1
2516
2517#if 0
2518	dputs	"mmu_get_root_table_entry:"
2519	dputn	ARG1
2520	dputs	" ="
2521#endif
2522
2523	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2524	tstl	%a0
2525	jne	2f
2526
2527	dputs	"\nmmu_init:"
2528
2529	/* Find the start of free memory, get_bi_record does this for us,
2530	 * as the bootinfo structure is located directly behind the kernel
2531	 * we simply search for the last entry.
2532	 */
2533	get_bi_record	BI_LAST
2534	addw	#PAGESIZE-1,%a0
2535	movel	%a0,%d0
2536	andw	#-PAGESIZE,%d0
2537
2538	dputn	%d0
2539
2540	lea	%pc@(L(memory_start)),%a0
2541	movel	%d0,%a0@
2542	lea	%pc@(L(kernel_end)),%a0
2543	movel	%d0,%a0@
2544
2545	/* we have to return the first page at _stext since the init code
2546	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2547	 * page is used for further ptr tables in get_ptr_table.
2548	 */
2549	lea	%pc@(_stext),%a0
2550	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2551	movel	%a0,%a1@
2552	addl	#ROOT_TABLE_SIZE*4,%a1@
2553
2554	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2555	addql	#1,%a1@
2556
2557	/* clear the page
2558	 */
2559	movel	%a0,%a1
2560	movew	#PAGESIZE/4-1,%d0
25611:
2562	clrl	%a1@+
2563	dbra	%d0,1b
2564
2565	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2566	movel	%a0,%a1@
2567
2568	dputn	%a0
2569	dputc	'\n'
25702:
2571	movel	ARG1,%d0
2572	lea	%a0@(%d0*4),%a0
2573
2574#if 0
2575	dputn	%a0
2576	dputc	'\n'
2577#endif
2578
2579func_return	mmu_get_root_table_entry
2580
2581
2582
2583func_start	mmu_get_ptr_table_entry,%d0/%a1
2584
2585#if 0
2586	dputs	"mmu_get_ptr_table_entry:"
2587	dputn	ARG1
2588	dputn	ARG2
2589	dputs	" ="
2590#endif
2591
2592	movel	ARG1,%a0
2593	movel	%a0@,%d0
2594	jne	2f
2595
2596	/* Keep track of the number of pointer tables we use
2597	 */
2598	dputs	"\nmmu_get_new_ptr_table:"
2599	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2600	movel	%a0@,%d0
2601	addql	#1,%a0@
2602
2603	/* See if there is a free pointer table in our cache of pointer tables
2604	 */
2605	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2606	andw	#7,%d0
2607	jne	1f
2608
2609	/* Get a new pointer table page from above the kernel memory
2610	 */
2611	get_new_page
2612	movel	%a0,%a1@
26131:
2614	/* There is an unused pointer table in our cache... use it
2615	 */
2616	movel	%a1@,%d0
2617	addl	#PTR_TABLE_SIZE*4,%a1@
2618
2619	dputn	%d0
2620	dputc	'\n'
2621
2622	/* Insert the new pointer table into the root table
2623	 */
2624	movel	ARG1,%a0
2625	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2626	movel	%d0,%a0@
26272:
2628	/* Extract the pointer table entry
2629	 */
2630	andw	#-PTR_TABLE_SIZE,%d0
2631	movel	%d0,%a0
2632	movel	ARG2,%d0
2633	lea	%a0@(%d0*4),%a0
2634
2635#if 0
2636	dputn	%a0
2637	dputc	'\n'
2638#endif
2639
2640func_return	mmu_get_ptr_table_entry
2641
2642
2643func_start	mmu_get_page_table_entry,%d0/%a1
2644
2645#if 0
2646	dputs	"mmu_get_page_table_entry:"
2647	dputn	ARG1
2648	dputn	ARG2
2649	dputs	" ="
2650#endif
2651
2652	movel	ARG1,%a0
2653	movel	%a0@,%d0
2654	jne	2f
2655
2656	/* If the page table entry doesn't exist, we allocate a complete new
2657	 * page and use it as one continuous big page table which can cover
2658	 * 4MB of memory, nearly almost all mappings have that alignment.
2659	 */
2660	get_new_page
2661	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2662
2663	/* align pointer table entry for a page of page tables
2664	 */
2665	movel	ARG1,%d0
2666	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2667	movel	%d0,%a1
2668
2669	/* Insert the page tables into the pointer entries
2670	 */
2671	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26721:
2673	movel	%a0,%a1@+
2674	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2675	dbra	%d0,1b
2676
2677	/* Now we can get the initialized pointer table entry
2678	 */
2679	movel	ARG1,%a0
2680	movel	%a0@,%d0
26812:
2682	/* Extract the page table entry
2683	 */
2684	andw	#-PAGE_TABLE_SIZE,%d0
2685	movel	%d0,%a0
2686	movel	ARG2,%d0
2687	lea	%a0@(%d0*4),%a0
2688
2689#if 0
2690	dputn	%a0
2691	dputc	'\n'
2692#endif
2693
2694func_return	mmu_get_page_table_entry
2695
2696/*
2697 *	get_new_page
2698 *
2699 *	Return a new page from the memory start and clear it.
2700 */
2701func_start	get_new_page,%d0/%a1
2702
2703	dputs	"\nget_new_page:"
2704
2705	/* allocate the page and adjust memory_start
2706	 */
2707	lea	%pc@(L(memory_start)),%a0
2708	movel	%a0@,%a1
2709	addl	#PAGESIZE,%a0@
2710
2711	/* clear the new page
2712	 */
2713	movel	%a1,%a0
2714	movew	#PAGESIZE/4-1,%d0
27151:
2716	clrl	%a1@+
2717	dbra	%d0,1b
2718
2719	dputn	%a0
2720	dputc	'\n'
2721
2722func_return	get_new_page
2723
2724
2725
2726/*
2727 * Debug output support
2728 * Atarians have a choice between the parallel port, the serial port
2729 * from the MFP or a serial port of the SCC
2730 */
2731
2732#ifdef CONFIG_MAC
2733/* You may define either or both of these. */
2734#define MAC_USE_SCC_A /* Modem port */
2735#define MAC_USE_SCC_B /* Printer port */
2736
2737#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2738/* Initialisation table for SCC with 3.6864 MHz PCLK */
2739L(scc_initable_mac):
2740	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2741	.byte	3,0xc0		/* receiver: 8 bpc */
2742	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2743	.byte	10,0		/* NRZ */
2744	.byte	11,0x50		/* use baud rate generator */
2745	.byte	12,1,13,0	/* 38400 baud */
2746	.byte	14,1		/* Baud rate generator enable */
2747	.byte	3,0xc1		/* enable receiver */
2748	.byte	5,0xea		/* enable transmitter */
2749	.byte	-1
2750	.even
2751#endif
2752#endif /* CONFIG_MAC */
2753
2754#ifdef CONFIG_ATARI
2755/* #define USE_PRINTER */
2756/* #define USE_SCC_B */
2757/* #define USE_SCC_A */
2758#define USE_MFP
2759
2760#if defined(USE_SCC_A) || defined(USE_SCC_B)
2761/* Initialisation table for SCC with 7.9872 MHz PCLK */
2762/* PCLK == 8.0539 gives baud == 9680.1 */
2763L(scc_initable_atari):
2764	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2765	.byte	3,0xc0		/* receiver: 8 bpc */
2766	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2767	.byte	10,0		/* NRZ */
2768	.byte	11,0x50		/* use baud rate generator */
2769	.byte	12,24,13,0	/* 9600 baud */
2770	.byte	14,2,14,3	/* use master clock for BRG, enable */
2771	.byte	3,0xc1		/* enable receiver */
2772	.byte	5,0xea		/* enable transmitter */
2773	.byte	-1
2774	.even
2775#endif
2776
2777#ifdef USE_PRINTER
2778
2779LPSG_SELECT	= 0xff8800
2780LPSG_READ	= 0xff8800
2781LPSG_WRITE	= 0xff8802
2782LPSG_IO_A	= 14
2783LPSG_IO_B	= 15
2784LPSG_CONTROL	= 7
2785LSTMFP_GPIP	= 0xfffa01
2786LSTMFP_DDR	= 0xfffa05
2787LSTMFP_IERB	= 0xfffa09
2788
2789#elif defined(USE_SCC_B)
2790
2791LSCC_CTRL	= 0xff8c85
2792LSCC_DATA	= 0xff8c87
2793
2794#elif defined(USE_SCC_A)
2795
2796LSCC_CTRL	= 0xff8c81
2797LSCC_DATA	= 0xff8c83
2798
2799#elif defined(USE_MFP)
2800
2801LMFP_UCR     = 0xfffa29
2802LMFP_TDCDR   = 0xfffa1d
2803LMFP_TDDR    = 0xfffa25
2804LMFP_TSR     = 0xfffa2d
2805LMFP_UDR     = 0xfffa2f
2806
2807#endif
2808#endif	/* CONFIG_ATARI */
2809
2810/*
2811 * Serial port output support.
2812 */
2813
2814/*
2815 * Initialize serial port hardware
2816 */
2817func_start	serial_init,%d0/%d1/%a0/%a1
2818	/*
2819	 *	Some of the register usage that follows
2820	 *	CONFIG_AMIGA
2821	 *		a0 = pointer to boot info record
2822	 *		d0 = boot info offset
2823	 *	CONFIG_ATARI
2824	 *		a0 = address of SCC
2825	 *		a1 = Liobase address/address of scc_initable_atari
2826	 *		d0 = init data for serial port
2827	 *	CONFIG_MAC
2828	 *		a0 = address of SCC
2829	 *		a1 = address of scc_initable_mac
2830	 *		d0 = init data for serial port
2831	 */
2832
2833#ifdef CONFIG_AMIGA
2834#define SERIAL_DTR	7
2835#define SERIAL_CNTRL	CIABBASE+C_PRA
2836
2837	is_not_amiga(1f)
2838	lea	%pc@(L(custom)),%a0
2839	movel	#-ZTWOBASE,%a0@
2840	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2841	get_bi_record	BI_AMIGA_SERPER
2842	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2843|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28441:
2845#endif
2846
2847#ifdef CONFIG_ATARI
2848	is_not_atari(4f)
2849	movel	%pc@(L(iobase)),%a1
2850#if defined(USE_PRINTER)
2851	bclr	#0,%a1@(LSTMFP_IERB)
2852	bclr	#0,%a1@(LSTMFP_DDR)
2853	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2854	moveb	#0xff,%a1@(LPSG_WRITE)
2855	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2856	clrb	%a1@(LPSG_WRITE)
2857	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2858	moveb	%a1@(LPSG_READ),%d0
2859	bset	#5,%d0
2860	moveb	%d0,%a1@(LPSG_WRITE)
2861#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2862	lea	%a1@(LSCC_CTRL),%a0
2863	/* Reset SCC register pointer */
2864	moveb	%a0@,%d0
2865	/* Reset SCC device: write register pointer then register value */
2866	moveb	#9,%a0@
2867	moveb	#0xc0,%a0@
2868	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2869	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2870	movel	#32,%d0
28712:
2872	subq	#1,%d0
2873	jne	2b
2874	/* Initialize channel */
2875	lea	%pc@(L(scc_initable_atari)),%a1
28762:	moveb	%a1@+,%d0
2877	jmi	3f
2878	moveb	%d0,%a0@
2879	moveb	%a1@+,%a0@
2880	jra	2b
28813:	clrb	%a0@
2882#elif defined(USE_MFP)
2883	bclr	#1,%a1@(LMFP_TSR)
2884	moveb   #0x88,%a1@(LMFP_UCR)
2885	andb	#0x70,%a1@(LMFP_TDCDR)
2886	moveb   #2,%a1@(LMFP_TDDR)
2887	orb	#1,%a1@(LMFP_TDCDR)
2888	bset	#1,%a1@(LMFP_TSR)
2889#endif
2890	jra	L(serial_init_done)
28914:
2892#endif
2893
2894#ifdef CONFIG_MAC
2895	is_not_mac(L(serial_init_not_mac))
2896#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2897#define mac_scc_cha_b_ctrl_offset	0x0
2898#define mac_scc_cha_a_ctrl_offset	0x2
2899#define mac_scc_cha_b_data_offset	0x4
2900#define mac_scc_cha_a_data_offset	0x6
2901	movel	%pc@(L(mac_sccbase)),%a0
2902	/* Reset SCC register pointer */
2903	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2904	/* Reset SCC device: write register pointer then register value */
2905	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2906	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2907	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2908	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2909	movel	#35,%d0
29105:
2911	subq	#1,%d0
2912	jne	5b
2913#endif
2914#ifdef MAC_USE_SCC_A
2915	/* Initialize channel A */
2916	lea	%pc@(L(scc_initable_mac)),%a1
29175:	moveb	%a1@+,%d0
2918	jmi	6f
2919	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2920	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2921	jra	5b
29226:
2923#endif	/* MAC_USE_SCC_A */
2924#ifdef MAC_USE_SCC_B
2925	/* Initialize channel B */
2926	lea	%pc@(L(scc_initable_mac)),%a1
29277:	moveb	%a1@+,%d0
2928	jmi	8f
2929	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2930	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2931	jra	7b
29328:
2933#endif	/* MAC_USE_SCC_B */
2934	jra	L(serial_init_done)
2935L(serial_init_not_mac):
2936#endif	/* CONFIG_MAC */
2937
2938#ifdef CONFIG_Q40
2939	is_not_q40(2f)
2940/* debug output goes into SRAM, so we don't do it unless requested
2941   - check for '%LX$' signature in SRAM   */
2942	lea	%pc@(q40_mem_cptr),%a1
2943	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2944	move.l	#0xff020000,%a1
2945	cmp.b	#'%',%a1@
2946	bne	2f	/*nodbg*/
2947	addq.w	#4,%a1
2948	cmp.b	#'L',%a1@
2949	bne	2f	/*nodbg*/
2950	addq.w	#4,%a1
2951	cmp.b	#'X',%a1@
2952	bne	2f	/*nodbg*/
2953	addq.w	#4,%a1
2954	cmp.b	#'$',%a1@
2955	bne	2f	/*nodbg*/
2956	/* signature OK */
2957	lea	%pc@(L(q40_do_debug)),%a1
2958	tas	%a1@
2959/*nodbg: q40_do_debug is 0 by default*/
29602:
2961#endif
2962
2963#ifdef CONFIG_MVME16x
2964	is_not_mvme16x(L(serial_init_not_mvme16x))
2965	moveb	#0x10,M167_PCSCCMICR
2966	moveb	#0x10,M167_PCSCCTICR
2967	moveb	#0x10,M167_PCSCCRICR
2968	jra	L(serial_init_done)
2969L(serial_init_not_mvme16x):
2970#endif
2971
2972#ifdef CONFIG_APOLLO
2973/* We count on the PROM initializing SIO1 */
2974#endif
2975
2976#ifdef CONFIG_HP300
2977/* We count on the boot loader initialising the UART */
2978#endif
2979
2980L(serial_init_done):
2981func_return	serial_init
2982
2983/*
2984 * Output character on serial port.
2985 */
2986func_start	serial_putc,%d0/%d1/%a0/%a1
2987
2988	movel	ARG1,%d0
2989	cmpib	#'\n',%d0
2990	jbne	1f
2991
2992	/* A little safe recursion is good for the soul */
2993	serial_putc	#'\r'
29941:
2995
2996#ifdef CONFIG_AMIGA
2997	is_not_amiga(2f)
2998	andw	#0x00ff,%d0
2999	oriw	#0x0100,%d0
3000	movel	%pc@(L(custom)),%a0
3001	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30021:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3003	andw	#0x2000,%d0
3004	jeq	1b
3005	jra	L(serial_putc_done)
30062:
3007#endif
3008
3009#ifdef CONFIG_MAC
3010	is_not_mac(5f)
3011#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3012	movel	%pc@(L(mac_sccbase)),%a1
3013#endif
3014#ifdef MAC_USE_SCC_A
30153:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3016	jeq	3b
3017	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3018#endif	/* MAC_USE_SCC_A */
3019#ifdef MAC_USE_SCC_B
30204:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3021	jeq	4b
3022	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3023#endif	/* MAC_USE_SCC_B */
3024	jra	L(serial_putc_done)
30255:
3026#endif	/* CONFIG_MAC */
3027
3028#ifdef CONFIG_ATARI
3029	is_not_atari(4f)
3030	movel	%pc@(L(iobase)),%a1
3031#if defined(USE_PRINTER)
30323:	btst	#0,%a1@(LSTMFP_GPIP)
3033	jne	3b
3034	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3035	moveb	%d0,%a1@(LPSG_WRITE)
3036	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3037	moveb	%a1@(LPSG_READ),%d0
3038	bclr	#5,%d0
3039	moveb	%d0,%a1@(LPSG_WRITE)
3040	nop
3041	nop
3042	bset	#5,%d0
3043	moveb	%d0,%a1@(LPSG_WRITE)
3044#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30453:	btst	#2,%a1@(LSCC_CTRL)
3046	jeq	3b
3047	moveb	%d0,%a1@(LSCC_DATA)
3048#elif defined(USE_MFP)
30493:	btst	#7,%a1@(LMFP_TSR)
3050	jeq	3b
3051	moveb	%d0,%a1@(LMFP_UDR)
3052#endif
3053	jra	L(serial_putc_done)
30544:
3055#endif	/* CONFIG_ATARI */
3056
3057#ifdef CONFIG_MVME147
3058	is_not_mvme147(2f)
30591:	btst	#2,M147_SCC_CTRL_A
3060	jeq	1b
3061	moveb	%d0,M147_SCC_DATA_A
3062	jbra	L(serial_putc_done)
30632:
3064#endif
3065
3066#ifdef CONFIG_MVME16x
3067	is_not_mvme16x(2f)
3068	/*
3069	 * If the loader gave us a board type then we can use that to
3070	 * select an appropriate output routine; otherwise we just use
3071	 * the Bug code.  If we have to use the Bug that means the Bug
3072	 * workspace has to be valid, which means the Bug has to use
3073	 * the SRAM, which is non-standard.
3074	 */
3075	moveml	%d0-%d7/%a2-%a6,%sp@-
3076	movel	vme_brdtype,%d1
3077	jeq	1f			| No tag - use the Bug
3078	cmpi	#VME_TYPE_MVME162,%d1
3079	jeq	6f
3080	cmpi	#VME_TYPE_MVME172,%d1
3081	jne	5f
3082	/* 162/172; it's an SCC */
30836:	btst	#2,M162_SCC_CTRL_A
3084	nop
3085	nop
3086	nop
3087	jeq	6b
3088	moveb	#8,M162_SCC_CTRL_A
3089	nop
3090	nop
3091	nop
3092	moveb	%d0,M162_SCC_CTRL_A
3093	jra	3f
30945:
3095	/* 166/167/177; it's a CD2401 */
3096	moveb	#0,M167_CYCAR
3097	moveb	M167_CYIER,%d2
3098	moveb	#0x02,M167_CYIER
30997:
3100	btst	#5,M167_PCSCCTICR
3101	jeq	7b
3102	moveb	M167_PCTPIACKR,%d1
3103	moveb	M167_CYLICR,%d1
3104	jeq	8f
3105	moveb	#0x08,M167_CYTEOIR
3106	jra	7b
31078:
3108	moveb	%d0,M167_CYTDR
3109	moveb	#0,M167_CYTEOIR
3110	moveb	%d2,M167_CYIER
3111	jra	3f
31121:
3113	moveb	%d0,%sp@-
3114	trap	#15
3115	.word	0x0020	/* TRAP 0x020 */
31163:
3117	moveml	%sp@+,%d0-%d7/%a2-%a6
3118	jbra	L(serial_putc_done)
31192:
3120#endif /* CONFIG_MVME16x */
3121
3122#ifdef CONFIG_BVME6000
3123	is_not_bvme6000(2f)
3124	/*
3125	 * The BVME6000 machine has a serial port ...
3126	 */
31271:	btst	#2,BVME_SCC_CTRL_A
3128	jeq	1b
3129	moveb	%d0,BVME_SCC_DATA_A
3130	jbra	L(serial_putc_done)
31312:
3132#endif
3133
3134#ifdef CONFIG_SUN3X
3135	is_not_sun3x(2f)
3136	movel	%d0,-(%sp)
3137	movel	0xFEFE0018,%a1
3138	jbsr	(%a1)
3139	addq	#4,%sp
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_Q40
3145	is_not_q40(2f)
3146	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3147	beq	2f
3148	lea	%pc@(q40_mem_cptr),%a1
3149	move.l	%a1@,%a0
3150	move.b	%d0,%a0@
3151	addq.l	#4,%a0
3152	move.l	%a0,%a1@
3153	jbra    L(serial_putc_done)
31542:
3155#endif
3156
3157#ifdef CONFIG_APOLLO
3158	is_not_apollo(2f)
3159	movl    %pc@(L(iobase)),%a1
3160	moveb	%d0,%a1@(LTHRB0)
31611:      moveb   %a1@(LSRB0),%d0
3162	andb	#0x4,%d0
3163	beq	1b
3164	jbra	L(serial_putc_done)
31652:
3166#endif
3167
3168#ifdef CONFIG_HP300
3169	is_not_hp300(3f)
3170	movl    %pc@(L(iobase)),%a1
3171	addl	%pc@(L(uartbase)),%a1
3172	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3173	jmi	3f			/* Unset? Exit */
3174	cmpi	#256,%d1		/* APCI scode? */
3175	jeq	2f
31761:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3177	andb	#0x20,%d1
3178	beq	1b
3179	moveb	%d0,%a1@(DCADATA)
3180	jbra	L(serial_putc_done)
31812:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3182	andb	#0x20,%d1
3183	beq	2b
3184	moveb	%d0,%a1@(APCIDATA)
3185	jbra	L(serial_putc_done)
31863:
3187#endif
3188
3189L(serial_putc_done):
3190func_return	serial_putc
3191
3192/*
3193 * Output a string.
3194 */
3195func_start	puts,%d0/%a0
3196
3197	movel	ARG1,%a0
3198	jra	2f
31991:
3200#ifdef CONSOLE_DEBUG
3201	console_putc	%d0
3202#endif
3203#ifdef SERIAL_DEBUG
3204	serial_putc	%d0
3205#endif
32062:	moveb	%a0@+,%d0
3207	jne	1b
3208
3209func_return	puts
3210
3211/*
3212 * Output number in hex notation.
3213 */
3214
3215func_start	putn,%d0-%d2
3216
3217	putc	' '
3218
3219	movel	ARG1,%d0
3220	moveq	#7,%d1
32211:	roll	#4,%d0
3222	move	%d0,%d2
3223	andb	#0x0f,%d2
3224	addb	#'0',%d2
3225	cmpb	#'9',%d2
3226	jls	2f
3227	addb	#'A'-('9'+1),%d2
32282:
3229#ifdef CONSOLE_DEBUG
3230	console_putc	%d2
3231#endif
3232#ifdef SERIAL_DEBUG
3233	serial_putc	%d2
3234#endif
3235	dbra	%d1,1b
3236
3237func_return	putn
3238
3239#ifdef CONFIG_EARLY_PRINTK
3240/*
3241 *	This routine takes its parameters on the stack.  It then
3242 *	turns around and calls the internal routines.  This routine
3243 *	is used by the boot console.
3244 *
3245 *	The calling parameters are:
3246 *		void debug_cons_nputs(const char *str, unsigned length)
3247 *
3248 *	This routine does NOT understand variable arguments only
3249 *	simple strings!
3250 */
3251ENTRY(debug_cons_nputs)
3252	moveml	%d0/%d1/%a0,%sp@-
3253	movew	%sr,%sp@-
3254	ori	#0x0700,%sr
3255	movel	%sp@(18),%a0		/* fetch parameter */
3256	movel	%sp@(22),%d1		/* fetch parameter */
3257	jra	2f
32581:
3259#ifdef CONSOLE_DEBUG
3260	console_putc	%d0
3261#endif
3262#ifdef SERIAL_DEBUG
3263	serial_putc	%d0
3264#endif
3265	subq	#1,%d1
32662:	jeq	3f
3267	moveb	%a0@+,%d0
3268	jne	1b
32693:
3270	movew	%sp@+,%sr
3271	moveml	%sp@+,%d0/%d1/%a0
3272	rts
3273#endif /* CONFIG_EARLY_PRINTK */
3274
3275#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3276func_start	set_leds,%d0/%a0
3277	movel	ARG1,%d0
3278#ifdef CONFIG_HP300
3279	is_not_hp300(1f)
3280	movel	%pc@(L(iobase)),%a0
3281	moveb	%d0,%a0@(0x1ffff)
3282	jra	2f
3283#endif
32841:
3285#ifdef CONFIG_APOLLO
3286	movel   %pc@(L(iobase)),%a0
3287	lsll    #8,%d0
3288	eorw    #0xff00,%d0
3289	moveb	%d0,%a0@(LCPUCTRL)
3290#endif
32912:
3292func_return	set_leds
3293#endif
3294
3295#ifdef CONSOLE_DEBUG
3296/*
3297 *	For continuity, see the data alignment
3298 *	to which this structure is tied.
3299 */
3300#define Lconsole_struct_cur_column	0
3301#define Lconsole_struct_cur_row		4
3302#define Lconsole_struct_num_columns	8
3303#define Lconsole_struct_num_rows	12
3304#define Lconsole_struct_left_edge	16
3305
3306func_start	console_init,%a0-%a4/%d0-%d7
3307	/*
3308	 *	Some of the register usage that follows
3309	 *		a0 = pointer to boot_info
3310	 *		a1 = pointer to screen
3311	 *		a2 = pointer to console_globals
3312	 *		d3 = pixel width of screen
3313	 *		d4 = pixel height of screen
3314	 *		(d3,d4) ~= (x,y) of a point just below
3315	 *			and to the right of the screen
3316	 *			NOT on the screen!
3317	 *		d5 = number of bytes per scan line
3318	 *		d6 = number of bytes on the entire screen
3319	 */
3320
3321	lea	%pc@(L(console_globals)),%a2
3322	movel	%pc@(L(mac_videobase)),%a1
3323	movel	%pc@(L(mac_rowbytes)),%d5
3324	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3325	movel	%d3,%d4
3326	swap	%d4		/* -> high byte */
3327	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3328	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3329
3330	movel	%d5,%d6
3331|	subl	#20,%d6
3332	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3333	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3334	moveq	#-1,%d0		/* Mac_black */
3335	subq	#1,%d6
3336
3337L(console_clear_loop):
3338	movel	%d0,%a1@+
3339	movel	%d0,%a1@+
3340	dbra	%d6,L(console_clear_loop)
3341
3342	/* Calculate font size */
3343
3344#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3345	lea	%pc@(font_vga_8x8),%a0
3346#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3347	lea	%pc@(font_vga_8x16),%a0
3348#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3349	lea	%pc@(font_vga_6x11),%a0
3350#elif defined(CONFIG_FONT_8x8) /* default */
3351	lea	%pc@(font_vga_8x8),%a0
3352#else /* no compiled-in font */
3353	lea	0,%a0
3354#endif
3355
3356	/*
3357	 *	At this point we make a shift in register usage
3358	 *	a1 = address of console_font pointer
3359	 */
3360	lea	%pc@(L(console_font)),%a1
3361	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3362	tstl	%a0
3363	jeq	1f
3364	lea	%pc@(L(console_font_data)),%a4
3365	movel	%a0@(FONT_DESC_DATA),%d0
3366	subl	#L(console_font),%a1
3367	addl	%a1,%d0
3368	movel	%d0,%a4@
3369
3370	/*
3371	 *	Calculate global maxs
3372	 *	Note - we can use either an
3373	 *	8 x 16 or 8 x 8 character font
3374	 *	6 x 11 also supported
3375	 */
3376		/* ASSERT: a0 = contents of Lconsole_font */
3377	movel	%d3,%d0				/* screen width in pixels */
3378	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3379
3380	movel	%d4,%d1				/* screen height in pixels */
3381	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3382
3383	movel	%d0,%a2@(Lconsole_struct_num_columns)
3384	movel	%d1,%a2@(Lconsole_struct_num_rows)
3385
3386	/*
3387	 *	Clear the current row and column
3388	 */
3389	clrl	%a2@(Lconsole_struct_cur_column)
3390	clrl	%a2@(Lconsole_struct_cur_row)
3391	clrl	%a2@(Lconsole_struct_left_edge)
3392
3393	/*
3394	 * Initialization is complete
3395	 */
33961:
3397func_return	console_init
3398
3399#ifdef CONFIG_LOGO
3400func_start	console_put_penguin,%a0-%a1/%d0-%d7
3401	/*
3402	 *	Get 'that_penguin' onto the screen in the upper right corner
3403	 *	penguin is 64 x 74 pixels, align against right edge of screen
3404	 */
3405	lea	%pc@(L(mac_dimensions)),%a0
3406	movel	%a0@,%d0
3407	andil	#0xffff,%d0
3408	subil	#64,%d0		/* snug up against the right edge */
3409	clrl	%d1		/* start at the top */
3410	movel	#73,%d7
3411	lea	%pc@(L(that_penguin)),%a1
3412L(console_penguin_row):
3413	movel	#31,%d6
3414L(console_penguin_pixel_pair):
3415	moveb	%a1@,%d2
3416	lsrb	#4,%d2
3417	console_plot_pixel %d0,%d1,%d2
3418	addq	#1,%d0
3419	moveb	%a1@+,%d2
3420	console_plot_pixel %d0,%d1,%d2
3421	addq	#1,%d0
3422	dbra	%d6,L(console_penguin_pixel_pair)
3423
3424	subil	#64,%d0
3425	addq	#1,%d1
3426	dbra	%d7,L(console_penguin_row)
3427
3428func_return	console_put_penguin
3429
3430/* include penguin bitmap */
3431L(that_penguin):
3432#include "../mac/mac_penguin.S"
3433#endif
3434
3435	/*
3436	 * Calculate source and destination addresses
3437	 *	output	a1 = dest
3438	 *		a2 = source
3439	 */
3440
3441func_start	console_scroll,%a0-%a4/%d0-%d7
3442	lea	%pc@(L(mac_videobase)),%a0
3443	movel	%a0@,%a1
3444	movel	%a1,%a2
3445	lea	%pc@(L(mac_rowbytes)),%a0
3446	movel	%a0@,%d5
3447	movel	%pc@(L(console_font)),%a0
3448	tstl	%a0
3449	jeq	1f
3450	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3451	addal	%d5,%a2
3452
3453	/*
3454	 * Get dimensions
3455	 */
3456	lea	%pc@(L(mac_dimensions)),%a0
3457	movel	%a0@,%d3
3458	movel	%d3,%d4
3459	swap	%d4
3460	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3461	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3462
3463	/*
3464	 * Calculate number of bytes to move
3465	 */
3466	lea	%pc@(L(mac_rowbytes)),%a0
3467	movel	%a0@,%d6
3468	movel	%pc@(L(console_font)),%a0
3469	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3470	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3471	divul	#32,%d6		/* we'll move 8 longs at a time */
3472	subq	#1,%d6
3473
3474L(console_scroll_loop):
3475	movel	%a2@+,%a1@+
3476	movel	%a2@+,%a1@+
3477	movel	%a2@+,%a1@+
3478	movel	%a2@+,%a1@+
3479	movel	%a2@+,%a1@+
3480	movel	%a2@+,%a1@+
3481	movel	%a2@+,%a1@+
3482	movel	%a2@+,%a1@+
3483	dbra	%d6,L(console_scroll_loop)
3484
3485	lea	%pc@(L(mac_rowbytes)),%a0
3486	movel	%a0@,%d6
3487	movel	%pc@(L(console_font)),%a0
3488	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3489	divul	#32,%d6			/* we'll move 8 words at a time */
3490	subq	#1,%d6
3491
3492	moveq	#-1,%d0
3493L(console_scroll_clear_loop):
3494	movel	%d0,%a1@+
3495	movel	%d0,%a1@+
3496	movel	%d0,%a1@+
3497	movel	%d0,%a1@+
3498	movel	%d0,%a1@+
3499	movel	%d0,%a1@+
3500	movel	%d0,%a1@+
3501	movel	%d0,%a1@+
3502	dbra	%d6,L(console_scroll_clear_loop)
3503
35041:
3505func_return	console_scroll
3506
3507
3508func_start	console_putc,%a0/%a1/%d0-%d7
3509
3510	is_not_mac(L(console_exit))
3511	tstl	%pc@(L(console_font))
3512	jeq	L(console_exit)
3513
3514	/* Output character in d7 on console.
3515	 */
3516	movel	ARG1,%d7
3517	cmpib	#'\n',%d7
3518	jbne	1f
3519
3520	/* A little safe recursion is good for the soul */
3521	console_putc	#'\r'
35221:
3523	lea	%pc@(L(console_globals)),%a0
3524
3525	cmpib	#10,%d7
3526	jne	L(console_not_lf)
3527	movel	%a0@(Lconsole_struct_cur_row),%d0
3528	addil	#1,%d0
3529	movel	%d0,%a0@(Lconsole_struct_cur_row)
3530	movel	%a0@(Lconsole_struct_num_rows),%d1
3531	cmpl	%d1,%d0
3532	jcs	1f
3533	subil	#1,%d0
3534	movel	%d0,%a0@(Lconsole_struct_cur_row)
3535	console_scroll
35361:
3537	jra	L(console_exit)
3538
3539L(console_not_lf):
3540	cmpib	#13,%d7
3541	jne	L(console_not_cr)
3542	clrl	%a0@(Lconsole_struct_cur_column)
3543	jra	L(console_exit)
3544
3545L(console_not_cr):
3546	cmpib	#1,%d7
3547	jne	L(console_not_home)
3548	clrl	%a0@(Lconsole_struct_cur_row)
3549	clrl	%a0@(Lconsole_struct_cur_column)
3550	jra	L(console_exit)
3551
3552/*
3553 *	At this point we know that the %d7 character is going to be
3554 *	rendered on the screen.  Register usage is -
3555 *		a0 = pointer to console globals
3556 *		a1 = font data
3557 *		d0 = cursor column
3558 *		d1 = cursor row to draw the character
3559 *		d7 = character number
3560 */
3561L(console_not_home):
3562	movel	%a0@(Lconsole_struct_cur_column),%d0
3563	addql	#1,%a0@(Lconsole_struct_cur_column)
3564	movel	%a0@(Lconsole_struct_num_columns),%d1
3565	cmpl	%d1,%d0
3566	jcs	1f
3567	console_putc	#'\n'	/* recursion is OK! */
35681:
3569	movel	%a0@(Lconsole_struct_cur_row),%d1
3570
3571	/*
3572	 *	At this point we make a shift in register usage
3573	 *	a0 = address of pointer to font data (fbcon_font_desc)
3574	 */
3575	movel	%pc@(L(console_font)),%a0
3576	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3577	andl	#0x000000ff,%d7
3578		/* ASSERT: a0 = contents of Lconsole_font */
3579	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3580	addl	%d7,%a1			/* a1 = points to char image */
3581
3582	/*
3583	 *	At this point we make a shift in register usage
3584	 *	d0 = pixel coordinate, x
3585	 *	d1 = pixel coordinate, y
3586	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3587	 *	d3 = font scan line data (8 pixels)
3588	 *	d6 = count down for the font's pixel width (8)
3589	 *	d7 = count down for the font's pixel count in height
3590	 */
3591		/* ASSERT: a0 = contents of Lconsole_font */
3592	mulul	%a0@(FONT_DESC_WIDTH),%d0
3593	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3594	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3595	subq	#1,%d7
3596L(console_read_char_scanline):
3597	moveb	%a1@+,%d3
3598
3599		/* ASSERT: a0 = contents of Lconsole_font */
3600	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3601	subql	#1,%d6
3602
3603L(console_do_font_scanline):
3604	lslb	#1,%d3
3605	scsb	%d2		/* convert 1 bit into a byte */
3606	console_plot_pixel %d0,%d1,%d2
3607	addq	#1,%d0
3608	dbra	%d6,L(console_do_font_scanline)
3609
3610		/* ASSERT: a0 = contents of Lconsole_font */
3611	subl	%a0@(FONT_DESC_WIDTH),%d0
3612	addq	#1,%d1
3613	dbra	%d7,L(console_read_char_scanline)
3614
3615L(console_exit):
3616func_return	console_putc
3617
3618	/*
3619	 *	Input:
3620	 *		d0 = x coordinate
3621	 *		d1 = y coordinate
3622	 *		d2 = (bit 0) 1/0 for white/black (!)
3623	 *	All registers are preserved
3624	 */
3625func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3626
3627	movel	%pc@(L(mac_videobase)),%a1
3628	movel	%pc@(L(mac_videodepth)),%d3
3629	movel	ARG1,%d0
3630	movel	ARG2,%d1
3631	mulul	%pc@(L(mac_rowbytes)),%d1
3632	movel	ARG3,%d2
3633
3634	/*
3635	 *	Register usage:
3636	 *		d0 = x coord becomes byte offset into frame buffer
3637	 *		d1 = y coord
3638	 *		d2 = black or white (0/1)
3639	 *		d3 = video depth
3640	 *		d4 = temp of x (d0) for many bit depths
3641	 */
3642L(test_1bit):
3643	cmpb	#1,%d3
3644	jbne	L(test_2bit)
3645	movel	%d0,%d4		/* we need the low order 3 bits! */
3646	divul	#8,%d0
3647	addal	%d0,%a1
3648	addal	%d1,%a1
3649	andb	#7,%d4
3650	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3651	andb	#1,%d2
3652	jbne	L(white_1)
3653	bsetb	%d4,%a1@
3654	jbra	L(console_plot_pixel_exit)
3655L(white_1):
3656	bclrb	%d4,%a1@
3657	jbra	L(console_plot_pixel_exit)
3658
3659L(test_2bit):
3660	cmpb	#2,%d3
3661	jbne	L(test_4bit)
3662	movel	%d0,%d4		/* we need the low order 2 bits! */
3663	divul	#4,%d0
3664	addal	%d0,%a1
3665	addal	%d1,%a1
3666	andb	#3,%d4
3667	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3668	lsll	#1,%d4		/* ! */
3669	andb	#1,%d2
3670	jbne	L(white_2)
3671	bsetb	%d4,%a1@
3672	addq	#1,%d4
3673	bsetb	%d4,%a1@
3674	jbra	L(console_plot_pixel_exit)
3675L(white_2):
3676	bclrb	%d4,%a1@
3677	addq	#1,%d4
3678	bclrb	%d4,%a1@
3679	jbra	L(console_plot_pixel_exit)
3680
3681L(test_4bit):
3682	cmpb	#4,%d3
3683	jbne	L(test_8bit)
3684	movel	%d0,%d4		/* we need the low order bit! */
3685	divul	#2,%d0
3686	addal	%d0,%a1
3687	addal	%d1,%a1
3688	andb	#1,%d4
3689	eorb	#1,%d4
3690	lsll	#2,%d4		/* ! */
3691	andb	#1,%d2
3692	jbne	L(white_4)
3693	bsetb	%d4,%a1@
3694	addq	#1,%d4
3695	bsetb	%d4,%a1@
3696	addq	#1,%d4
3697	bsetb	%d4,%a1@
3698	addq	#1,%d4
3699	bsetb	%d4,%a1@
3700	jbra	L(console_plot_pixel_exit)
3701L(white_4):
3702	bclrb	%d4,%a1@
3703	addq	#1,%d4
3704	bclrb	%d4,%a1@
3705	addq	#1,%d4
3706	bclrb	%d4,%a1@
3707	addq	#1,%d4
3708	bclrb	%d4,%a1@
3709	jbra	L(console_plot_pixel_exit)
3710
3711L(test_8bit):
3712	cmpb	#8,%d3
3713	jbne	L(test_16bit)
3714	addal	%d0,%a1
3715	addal	%d1,%a1
3716	andb	#1,%d2
3717	jbne	L(white_8)
3718	moveb	#0xff,%a1@
3719	jbra	L(console_plot_pixel_exit)
3720L(white_8):
3721	clrb	%a1@
3722	jbra	L(console_plot_pixel_exit)
3723
3724L(test_16bit):
3725	cmpb	#16,%d3
3726	jbne	L(console_plot_pixel_exit)
3727	addal	%d0,%a1
3728	addal	%d0,%a1
3729	addal	%d1,%a1
3730	andb	#1,%d2
3731	jbne	L(white_16)
3732	clrw	%a1@
3733	jbra	L(console_plot_pixel_exit)
3734L(white_16):
3735	movew	#0x0fff,%a1@
3736	jbra	L(console_plot_pixel_exit)
3737
3738L(console_plot_pixel_exit):
3739func_return	console_plot_pixel
3740#endif /* CONSOLE_DEBUG */
3741
3742
3743__INITDATA
3744	.align	4
3745
3746m68k_init_mapped_size:
3747	.long	0
3748
3749#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3750    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3751L(custom):
3752L(iobase):
3753	.long 0
3754#endif
3755
3756#ifdef CONSOLE_DEBUG
3757L(console_globals):
3758	.long	0		/* cursor column */
3759	.long	0		/* cursor row */
3760	.long	0		/* max num columns */
3761	.long	0		/* max num rows */
3762	.long	0		/* left edge */
3763L(console_font):
3764	.long	0		/* pointer to console font (struct font_desc) */
3765L(console_font_data):
3766	.long	0		/* pointer to console font data */
3767#endif /* CONSOLE_DEBUG */
3768
3769#if defined(MMU_PRINT)
3770L(mmu_print_data):
3771	.long	0		/* valid flag */
3772	.long	0		/* start logical */
3773	.long	0		/* next logical */
3774	.long	0		/* start physical */
3775	.long	0		/* next physical */
3776#endif /* MMU_PRINT */
3777
3778L(cputype):
3779	.long	0
3780L(mmu_cached_pointer_tables):
3781	.long	0
3782L(mmu_num_pointer_tables):
3783	.long	0
3784L(phys_kernel_start):
3785	.long	0
3786L(kernel_end):
3787	.long	0
3788L(memory_start):
3789	.long	0
3790L(kernel_pgdir_ptr):
3791	.long	0
3792L(temp_mmap_mem):
3793	.long	0
3794
3795#if defined (CONFIG_MVME147)
3796M147_SCC_CTRL_A = 0xfffe3002
3797M147_SCC_DATA_A = 0xfffe3003
3798#endif
3799
3800#if defined (CONFIG_MVME16x)
3801M162_SCC_CTRL_A = 0xfff45005
3802M167_CYCAR = 0xfff450ee
3803M167_CYIER = 0xfff45011
3804M167_CYLICR = 0xfff45026
3805M167_CYTEOIR = 0xfff45085
3806M167_CYTDR = 0xfff450f8
3807M167_PCSCCMICR = 0xfff4201d
3808M167_PCSCCTICR = 0xfff4201e
3809M167_PCSCCRICR = 0xfff4201f
3810M167_PCTPIACKR = 0xfff42025
3811#endif
3812
3813#if defined (CONFIG_BVME6000)
3814BVME_SCC_CTRL_A	= 0xffb0000b
3815BVME_SCC_DATA_A	= 0xffb0000f
3816#endif
3817
3818#if defined(CONFIG_MAC)
3819L(mac_videobase):
3820	.long	0
3821L(mac_videodepth):
3822	.long	0
3823L(mac_dimensions):
3824	.long	0
3825L(mac_rowbytes):
3826	.long	0
3827L(mac_sccbase):
3828	.long	0
3829#endif /* CONFIG_MAC */
3830
3831#if defined (CONFIG_APOLLO)
3832LSRB0        = 0x10412
3833LTHRB0       = 0x10416
3834LCPUCTRL     = 0x10100
3835#endif
3836
3837#if defined(CONFIG_HP300)
3838DCADATA	     = 0x11
3839DCALSR	     = 0x1b
3840APCIDATA     = 0x00
3841APCILSR      = 0x14
3842L(uartbase):
3843	.long	0
3844L(uart_scode):
3845	.long	-1
3846#endif
3847
3848__FINIT
3849	.data
3850	.align	4
3851
3852availmem:
3853	.long	0
3854m68k_pgtable_cachemode:
3855	.long	0
3856m68k_supervisor_cachemode:
3857	.long	0
3858#if defined(CONFIG_MVME16x)
3859mvme_bdid:
3860	.long	0,0,0,0,0,0,0,0
3861#endif
3862#if defined(CONFIG_Q40)
3863q40_mem_cptr:
3864	.long	0
3865L(q40_do_debug):
3866	.long	0
3867#endif
3868