xref: /openbmc/linux/arch/m68k/kernel/head.S (revision e2ad626f)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exhaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
203 *
204 * TEST_MMU:	This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine.  The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
208 *
209 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
210 *		When head.S boots on Atari, Amiga, Macintosh, and VME
211 *		machines.  At that point the underlying logic will be
212 *		believed to be solid enough to be trusted, and TEST_MMU
213 *		can be dropped.  Do note that that will clean up the
214 *		head.S code significantly as large blocks of #if/#else
215 *		clauses can be removed.
216 *
217 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work.  A test case was to remove
219 * the cacheability of the kernel bits.
220 *
221 * MMU_PRINT:	There is a routine built into head.S that can display the
222 * MMU data structures.  It outputs its result through the serial_putc
223 * interface.  So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
225 *
226 * SERIAL_DEBUG:	There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console.  This constant determines whether those
229 * are used.
230 *
231 * DEBUG:	This is the standard DEBUG flag that can be set for building
232 *		the kernel.  It has the effect adding additional tests into
233 *		the code.
234 *
235 * FONT_6x11:
236 * FONT_8x8:
237 * FONT_8x16:
238 *		In theory these could be determined at run time or handed
239 *		over by the booter.  But, let's be real, it's a fine hard
240 *		coded value.  (But, you will notice the code is run-time
241 *		flexible!)  A pointer to the font's struct font_desc
242 *		is kept locally in Lconsole_font.  It is used to determine
243 *		font size information dynamically.
244 *
245 * Atari constants:
246 * USE_PRINTER:	Use the printer port for serial debug.
247 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
250 *
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
254 */
255
256#include <linux/linkage.h>
257#include <linux/init.h>
258#include <linux/pgtable.h>
259#include <asm/bootinfo.h>
260#include <asm/bootinfo-amiga.h>
261#include <asm/bootinfo-atari.h>
262#include <asm/bootinfo-hp300.h>
263#include <asm/bootinfo-mac.h>
264#include <asm/bootinfo-q40.h>
265#include <asm/bootinfo-virt.h>
266#include <asm/bootinfo-vme.h>
267#include <asm/setup.h>
268#include <asm/entry.h>
269#include <asm/page.h>
270#include <asm/asm-offsets.h>
271#ifdef CONFIG_MAC
272#  include <asm/machw.h>
273#endif
274
275#ifdef CONFIG_EARLY_PRINTK
276#  define SERIAL_DEBUG
277#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
278#    define CONSOLE_DEBUG
279#  endif
280#endif
281
282#undef MMU_PRINT
283#undef MMU_NOCACHE_KERNEL
284#undef DEBUG
285
286/*
287 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
288 * The 8x8 font is harder to read but fits more on the screen.
289 */
290#define FONT_8x8	/* default */
291/* #define FONT_8x16 */	/* 2nd choice */
292/* #define FONT_6x11 */	/* 3rd choice */
293
294.globl kernel_pg_dir
295.globl availmem
296.globl m68k_init_mapped_size
297.globl m68k_pgtable_cachemode
298.globl m68k_supervisor_cachemode
299#ifdef CONFIG_MVME16x
300.globl mvme_bdid
301#endif
302#ifdef CONFIG_Q40
303.globl q40_mem_cptr
304#endif
305
306CPUTYPE_040	= 1	/* indicates an 040 */
307CPUTYPE_060	= 2	/* indicates an 060 */
308CPUTYPE_0460	= 3	/* if either above are set, this is set */
309CPUTYPE_020	= 4	/* indicates an 020 */
310
311/* Translation control register */
312TC_ENABLE = 0x8000
313TC_PAGE8K = 0x4000
314TC_PAGE4K = 0x0000
315
316/* Transparent translation registers */
317TTR_ENABLE	= 0x8000	/* enable transparent translation */
318TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
319TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
320TTR_USERMODE	= 0x0000	/* only user mode access */
321TTR_CI		= 0x0400	/* inhibit cache */
322TTR_RW		= 0x0200	/* read/write mode */
323TTR_RWM		= 0x0100	/* read/write mask */
324TTR_FCB2	= 0x0040	/* function code base bit 2 */
325TTR_FCB1	= 0x0020	/* function code base bit 1 */
326TTR_FCB0	= 0x0010	/* function code base bit 0 */
327TTR_FCM2	= 0x0004	/* function code mask bit 2 */
328TTR_FCM1	= 0x0002	/* function code mask bit 1 */
329TTR_FCM0	= 0x0001	/* function code mask bit 0 */
330
331/* Cache Control registers */
332CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
333CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
334CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
335CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
336CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
337CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
338CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
339CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
340CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
341CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
342CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
343CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
344CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
345CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
346CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
347CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
348CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
349CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
350CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
351CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
352CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
353CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
354
355/* Miscellaneous definitions */
356PAGESIZE	= 4096
357PAGESHIFT	= 12
358
359ROOT_TABLE_SIZE	= 128
360PTR_TABLE_SIZE	= 128
361PAGE_TABLE_SIZE	= 64
362ROOT_INDEX_SHIFT = 25
363PTR_INDEX_SHIFT  = 18
364PAGE_INDEX_SHIFT = 12
365
366#ifdef DEBUG
367/* When debugging use readable names for labels */
368#ifdef __STDC__
369#define L(name) .head.S.##name
370#else
371#define L(name) .head.S./**/name
372#endif
373#else
374#ifdef __STDC__
375#define L(name) .L##name
376#else
377#define L(name) .L/**/name
378#endif
379#endif
380
381/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
382#ifndef __INITDATA
383#define __INITDATA	.data
384#define __FINIT		.previous
385#endif
386
387/* Several macros to make the writing of subroutines easier:
388 * - func_start marks the beginning of the routine which setups the frame
389 *   register and saves the registers, it also defines another macro
390 *   to automatically restore the registers again.
391 * - func_return marks the end of the routine and simply calls the prepared
392 *   macro to restore registers and jump back to the caller.
393 * - func_define generates another macro to automatically put arguments
394 *   onto the stack call the subroutine and cleanup the stack again.
395 */
396
397/* Within subroutines these macros can be used to access the arguments
398 * on the stack. With STACK some allocated memory on the stack can be
399 * accessed and ARG0 points to the return address (used by mmu_engage).
400 */
401#define	STACK	%a6@(stackstart)
402#define ARG0	%a6@(4)
403#define ARG1	%a6@(8)
404#define ARG2	%a6@(12)
405#define ARG3	%a6@(16)
406#define ARG4	%a6@(20)
407
408.macro	func_start	name,saveregs,stack=0
409L(\name):
410	linkw	%a6,#-\stack
411	moveml	\saveregs,%sp@-
412.set	stackstart,-\stack
413
414.macro	func_return_\name
415	moveml	%sp@+,\saveregs
416	unlk	%a6
417	rts
418.endm
419.endm
420
421.macro	func_return	name
422	func_return_\name
423.endm
424
425.macro	func_call	name
426	jbsr	L(\name)
427.endm
428
429.macro	move_stack	nr,arg1,arg2,arg3,arg4
430.if	\nr
431	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
432	movel	\arg1,%sp@-
433.endif
434.endm
435
436.macro	func_define	name,nr=0
437.macro	\name	arg1,arg2,arg3,arg4
438	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
439	func_call	\name
440.if	\nr
441	lea	%sp@(\nr*4),%sp
442.endif
443.endm
444.endm
445
446func_define	mmu_map,4
447func_define	mmu_map_tt,4
448func_define	mmu_fixup_page_mmu_cache,1
449func_define	mmu_temp_map,2
450func_define	mmu_engage
451func_define	mmu_get_root_table_entry,1
452func_define	mmu_get_ptr_table_entry,2
453func_define	mmu_get_page_table_entry,2
454func_define	mmu_print
455func_define	get_new_page
456#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
457func_define	set_leds
458#endif
459
460.macro	mmu_map_eq	arg1,arg2,arg3
461	mmu_map	\arg1,\arg1,\arg2,\arg3
462.endm
463
464.macro	get_bi_record	record
465	pea	\record
466	func_call	get_bi_record
467	addql	#4,%sp
468.endm
469
470func_define	serial_putc,1
471func_define	console_putc,1
472
473func_define	console_init
474func_define	console_put_penguin
475func_define	console_plot_pixel,3
476func_define	console_scroll
477
478.macro	putc	ch
479#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
480	pea	\ch
481#endif
482#ifdef CONSOLE_DEBUG
483	func_call	console_putc
484#endif
485#ifdef SERIAL_DEBUG
486	func_call	serial_putc
487#endif
488#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
489	addql	#4,%sp
490#endif
491.endm
492
493.macro	dputc	ch
494#ifdef DEBUG
495	putc	\ch
496#endif
497.endm
498
499func_define	putn,1
500
501.macro	dputn	nr
502#ifdef DEBUG
503	putn	\nr
504#endif
505.endm
506
507.macro	puts		string
508#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
509	__INITDATA
510.Lstr\@:
511	.string	"\string"
512	__FINIT
513	pea	%pc@(.Lstr\@)
514	func_call	puts
515	addql	#4,%sp
516#endif
517.endm
518
519.macro	dputs	string
520#ifdef DEBUG
521	puts	"\string"
522#endif
523.endm
524
525#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
526#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
527#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
528#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
529#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
530#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
531#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
532#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
533#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
534#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
535#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
536#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
537#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
538#define is_not_virt(lab) cmpl &MACH_VIRT,%pc@(m68k_machtype); jne lab
539
540#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
541			jeq 42f; \
542			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
543			jne lab ;\
544		42:\
545
546#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
547#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
548#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
549#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
550#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
551#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
552#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
553
554/* On the HP300 we use the on-board LEDs for debug output before
555   the console is running.  Writing a 1 bit turns the corresponding LED
556   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
557.macro	leds	mask
558#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
559	hasnt_leds(.Lled\@)
560	pea	\mask
561	func_call	set_leds
562	addql	#4,%sp
563.Lled\@:
564#endif
565.endm
566
567__HEAD
568ENTRY(_stext)
569/*
570 * Version numbers of the bootinfo interface
571 * The area from _stext to _start will later be used as kernel pointer table
572 */
573	bras	1f	/* Jump over bootinfo version numbers */
574
575	.long	BOOTINFOV_MAGIC
576	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
577	.long	MACH_ATARI, ATARI_BOOTI_VERSION
578	.long	MACH_MVME147, MVME147_BOOTI_VERSION
579	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
580	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
581	.long	MACH_MAC, MAC_BOOTI_VERSION
582	.long	MACH_Q40, Q40_BOOTI_VERSION
583	.long	MACH_HP300, HP300_BOOTI_VERSION
584	.long	0
5851:	jra	__start
586
587.equ	kernel_pg_dir,_stext
588
589.equ	.,_stext+PAGESIZE
590
591ENTRY(_start)
592	jra	__start
593__INIT
594ENTRY(__start)
595/*
596 * Setup initial stack pointer
597 */
598	lea	%pc@(_stext),%sp
599
600/*
601 * Record the CPU and machine type.
602 */
603	get_bi_record	BI_MACHTYPE
604	lea	%pc@(m68k_machtype),%a1
605	movel	%a0@,%a1@
606
607	get_bi_record	BI_FPUTYPE
608	lea	%pc@(m68k_fputype),%a1
609	movel	%a0@,%a1@
610
611	get_bi_record	BI_MMUTYPE
612	lea	%pc@(m68k_mmutype),%a1
613	movel	%a0@,%a1@
614
615	get_bi_record	BI_CPUTYPE
616	lea	%pc@(m68k_cputype),%a1
617	movel	%a0@,%a1@
618
619	leds	0x1
620
621#ifdef CONFIG_MAC
622/*
623 * For Macintosh, we need to determine the display parameters early (at least
624 * while debugging it).
625 */
626
627	is_not_mac(L(test_notmac))
628
629	get_bi_record	BI_MAC_VADDR
630	lea	%pc@(L(mac_videobase)),%a1
631	movel	%a0@,%a1@
632
633	get_bi_record	BI_MAC_VDEPTH
634	lea	%pc@(L(mac_videodepth)),%a1
635	movel	%a0@,%a1@
636
637	get_bi_record	BI_MAC_VDIM
638	lea	%pc@(L(mac_dimensions)),%a1
639	movel	%a0@,%a1@
640
641	get_bi_record	BI_MAC_VROW
642	lea	%pc@(L(mac_rowbytes)),%a1
643	movel	%a0@,%a1@
644
645	get_bi_record	BI_MAC_SCCBASE
646	lea	%pc@(L(mac_sccbase)),%a1
647	movel	%a0@,%a1@
648
649L(test_notmac):
650#endif /* CONFIG_MAC */
651
652#ifdef CONFIG_VIRT
653	is_not_virt(L(test_notvirt))
654
655	get_bi_record BI_VIRT_GF_TTY_BASE
656	lea	%pc@(L(virt_gf_tty_base)),%a1
657	movel	%a0@,%a1@
658L(test_notvirt):
659#endif /* CONFIG_VIRT */
660
661/*
662 * There are ultimately two pieces of information we want for all kinds of
663 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
664 * and is converted here from a booter type definition to a separate bit
665 * number which allows for the standard is_0x0 macro tests.
666 */
667	movel	%pc@(m68k_cputype),%d0
668	/*
669	 * Assume it's an 030
670	 */
671	clrl	%d1
672
673	/*
674	 * Test the BootInfo cputype for 060
675	 */
676	btst	#CPUB_68060,%d0
677	jeq	1f
678	bset	#CPUTYPE_060,%d1
679	bset	#CPUTYPE_0460,%d1
680	jra	3f
6811:
682	/*
683	 * Test the BootInfo cputype for 040
684	 */
685	btst	#CPUB_68040,%d0
686	jeq	2f
687	bset	#CPUTYPE_040,%d1
688	bset	#CPUTYPE_0460,%d1
689	jra	3f
6902:
691	/*
692	 * Test the BootInfo cputype for 020
693	 */
694	btst	#CPUB_68020,%d0
695	jeq	3f
696	bset	#CPUTYPE_020,%d1
697	jra	3f
6983:
699	/*
700	 * Record the cpu type
701	 */
702	lea	%pc@(L(cputype)),%a0
703	movel	%d1,%a0@
704
705	/*
706	 * NOTE:
707	 *
708	 * Now the macros are valid:
709	 *	is_040_or_060
710	 *	is_not_040_or_060
711	 *	is_040
712	 *	is_060
713	 *	is_not_060
714	 */
715
716	/*
717	 * Determine the cache mode for pages holding MMU tables
718	 * and for supervisor mode, unused for '020 and '030
719	 */
720	clrl	%d0
721	clrl	%d1
722
723	is_not_040_or_060(L(save_cachetype))
724
725	/*
726	 * '040 or '060
727	 * d1 := cacheable write-through
728	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
729	 * but we have been using write-through since at least 2.0.29 so I
730	 * guess it is OK.
731	 */
732#ifdef CONFIG_060_WRITETHROUGH
733	/*
734	 * If this is a 68060 board using drivers with cache coherency
735	 * problems, then supervisor memory accesses need to be write-through
736	 * also; otherwise, we want copyback.
737	 */
738
739	is_not_060(1f)
740	movel	#_PAGE_CACHE040W,%d0
741	jra	L(save_cachetype)
742#endif /* CONFIG_060_WRITETHROUGH */
7431:
744	movew	#_PAGE_CACHE040,%d0
745
746	movel	#_PAGE_CACHE040W,%d1
747
748L(save_cachetype):
749	/* Save cache mode for supervisor mode and page tables
750	 */
751	lea	%pc@(m68k_supervisor_cachemode),%a0
752	movel	%d0,%a0@
753	lea	%pc@(m68k_pgtable_cachemode),%a0
754	movel	%d1,%a0@
755
756/*
757 * raise interrupt level
758 */
759	movew	#0x2700,%sr
760
761/*
762   If running on an Atari, determine the I/O base of the
763   serial port and test if we are running on a Medusa or Hades.
764   This test is necessary here, because on the Hades the serial
765   port is only accessible in the high I/O memory area.
766
767   The test whether it is a Medusa is done by writing to the byte at
768   phys. 0x0. This should result in a bus error on all other machines.
769
770   ...should, but doesn't. The Afterburner040 for the Falcon has the
771   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
772   another test to distinguish Medusa and AB040. This is a
773   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
774   (+AB040), but is in the range where the Medusa always asserts DTACK.
775
776   The test for the Hades is done by reading address 0xb0000000. This
777   should give a bus error on the Medusa.
778 */
779
780#ifdef CONFIG_ATARI
781	is_not_atari(L(notypetest))
782
783	/* get special machine type (Medusa/Hades/AB40) */
784	moveq	#0,%d3 /* default if tag doesn't exist */
785	get_bi_record	BI_ATARI_MCH_TYPE
786	tstl	%d0
787	jbmi	1f
788	movel	%a0@,%d3
789	lea	%pc@(atari_mch_type),%a0
790	movel	%d3,%a0@
7911:
792	/* On the Hades, the iobase must be set up before opening the
793	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
794	moveq	#0,%d0
795	cmpl	#ATARI_MACH_HADES,%d3
796	jbne	1f
797	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
7981:	lea     %pc@(L(iobase)),%a0
799	movel   %d0,%a0@
800
801L(notypetest):
802#endif
803
804#ifdef CONFIG_VME
805	is_mvme147(L(getvmetype))
806	is_bvme6000(L(getvmetype))
807	is_not_mvme16x(L(gvtdone))
808
809	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
810	 * versions of VMELILO and TFTPLILO do this.  We have to do this
811	 * early so we know how to handle console output.  If the tag
812	 * doesn't exist then we use the Bug for output on MVME16x.
813	 */
814L(getvmetype):
815	get_bi_record	BI_VME_TYPE
816	tstl	%d0
817	jbmi	1f
818	movel	%a0@,%d3
819	lea	%pc@(vme_brdtype),%a0
820	movel	%d3,%a0@
8211:
822#ifdef CONFIG_MVME16x
823	is_not_mvme16x(L(gvtdone))
824
825	/* Need to get the BRD_ID info to differentiate between 162, 167,
826	 * etc.  This is available as a BI_VME_BRDINFO tag with later
827	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
828	 */
829	get_bi_record	BI_VME_BRDINFO
830	tstl	%d0
831	jpl	1f
832
833	/* Get pointer to board ID data from Bug */
834	movel	%d2,%sp@-
835	trap	#15
836	.word	0x70		/* trap 0x70 - .BRD_ID */
837	movel	%sp@+,%a0
8381:
839	lea	%pc@(mvme_bdid),%a1
840	/* Structure is 32 bytes long */
841	movel	%a0@+,%a1@+
842	movel	%a0@+,%a1@+
843	movel	%a0@+,%a1@+
844	movel	%a0@+,%a1@+
845	movel	%a0@+,%a1@+
846	movel	%a0@+,%a1@+
847	movel	%a0@+,%a1@+
848	movel	%a0@+,%a1@+
849#endif
850
851L(gvtdone):
852
853#endif
854
855#ifdef CONFIG_HP300
856	is_not_hp300(L(nothp))
857
858	/* Get the address of the UART for serial debugging */
859	get_bi_record	BI_HP300_UART_ADDR
860	tstl	%d0
861	jbmi	1f
862	movel	%a0@,%d3
863	lea	%pc@(L(uartbase)),%a0
864	movel	%d3,%a0@
865	get_bi_record	BI_HP300_UART_SCODE
866	tstl	%d0
867	jbmi	1f
868	movel	%a0@,%d3
869	lea	%pc@(L(uart_scode)),%a0
870	movel	%d3,%a0@
8711:
872L(nothp):
873#endif
874
875/*
876 * Initialize serial port
877 */
878	jbsr	L(serial_init)
879
880/*
881 * Initialize console
882 */
883#ifdef CONFIG_MAC
884	is_not_mac(L(nocon))
885#  ifdef CONSOLE_DEBUG
886	console_init
887#    ifdef CONFIG_LOGO
888	console_put_penguin
889#    endif /* CONFIG_LOGO */
890#  endif /* CONSOLE_DEBUG */
891L(nocon):
892#endif /* CONFIG_MAC */
893
894
895	putc	'\n'
896	putc	'A'
897	leds	0x2
898	dputn	%pc@(L(cputype))
899	dputn	%pc@(m68k_supervisor_cachemode)
900	dputn	%pc@(m68k_pgtable_cachemode)
901	dputc	'\n'
902
903/*
904 * Save physical start address of kernel
905 */
906	lea	%pc@(L(phys_kernel_start)),%a0
907	lea	%pc@(_stext),%a1
908	subl	#_stext,%a1
909	addl	#PAGE_OFFSET,%a1
910	movel	%a1,%a0@
911
912	putc	'B'
913
914	leds	0x4
915
916/*
917 *	mmu_init
918 *
919 *	This block of code does what's necessary to map in the various kinds
920 *	of machines for execution of Linux.
921 *	First map the first 4, 8, or 16 MB of kernel code & data
922 */
923
924	get_bi_record BI_MEMCHUNK
925	movel	%a0@(4),%d0
926	movel	#16*1024*1024,%d1
927	cmpl	%d0,%d1
928	jls	1f
929	lsrl	#1,%d1
930	cmpl	%d0,%d1
931	jls	1f
932	lsrl	#1,%d1
9331:
934	lea	%pc@(m68k_init_mapped_size),%a0
935	movel	%d1,%a0@
936	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),%d1,\
937		%pc@(m68k_supervisor_cachemode)
938
939	putc	'C'
940
941#ifdef CONFIG_AMIGA
942
943L(mmu_init_amiga):
944
945	is_not_amiga(L(mmu_init_not_amiga))
946/*
947 * mmu_init_amiga
948 */
949
950	putc	'D'
951
952	is_not_040_or_060(1f)
953
954	/*
955	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
956	 */
957	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
958	/*
959	 * Map the Zorro III I/O space with transparent translation
960	 * for frame buffer memory etc.
961	 */
962	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
963
964	jbra	L(mmu_init_done)
965
9661:
967	/*
968	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
969	 */
970	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
971	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
972
973	jbra	L(mmu_init_done)
974
975L(mmu_init_not_amiga):
976#endif
977
978#ifdef CONFIG_ATARI
979
980L(mmu_init_atari):
981
982	is_not_atari(L(mmu_init_not_atari))
983
984	putc	'E'
985
986/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
987   the last 16 MB of virtual address space to the first 16 MB (i.e.
988   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
989   needed. I/O ranges are marked non-cachable.
990
991   For the Medusa it is better to map the I/O region transparently
992   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
993   accessible only in the high area.
994
995   On the Hades all I/O registers are only accessible in the high
996   area.
997*/
998
999	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1000	moveq	#0,%d0
1001	movel	%pc@(atari_mch_type),%d3
1002	cmpl	#ATARI_MACH_MEDUSA,%d3
1003	jbeq	2f
1004	cmpl	#ATARI_MACH_HADES,%d3
1005	jbne	1f
10062:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10071:	movel	%d0,%d3
1008
1009	is_040_or_060(L(spata68040))
1010
1011	/* Map everything non-cacheable, though not all parts really
1012	 * need to disable caches (crucial only for 0xff8000..0xffffff
1013	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1014	 * isn't really used, except for sometimes peeking into the
1015	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1016	 * this. */
1017	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1018
1019	jbra	L(mmu_init_done)
1020
1021L(spata68040):
1022
1023	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1024
1025	jbra	L(mmu_init_done)
1026
1027L(mmu_init_not_atari):
1028#endif
1029
1030#ifdef CONFIG_Q40
1031	is_not_q40(L(notq40))
1032	/*
1033	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1034	 * non-cached serialized etc..
1035	 * this includes master chip, DAC, RTC and ISA ports
1036	 * 0xfe000000-0xfeffffff is for screen and ROM
1037	 */
1038
1039	putc    'Q'
1040
1041	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1042	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1043
1044	jbra	L(mmu_init_done)
1045
1046L(notq40):
1047#endif
1048
1049#ifdef CONFIG_HP300
1050	is_not_hp300(L(nothp300))
1051
1052	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1053	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1054	 * The ROM mapping is needed because the LEDs are mapped there too.
1055	 */
1056
1057	is_040(1f)
1058
1059	/*
1060	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1061	 */
1062	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1063
1064	jbra	L(mmu_init_done)
1065
10661:
1067	/*
1068	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1069	 */
1070	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1071
1072	jbra	L(mmu_init_done)
1073
1074L(nothp300):
1075#endif /* CONFIG_HP300 */
1076
1077#ifdef CONFIG_MVME147
1078
1079	is_not_mvme147(L(not147))
1080
1081	/*
1082	 * On MVME147 we have already created kernel page tables for
1083	 * 4MB of RAM at address 0, so now need to do a transparent
1084	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1085	 * so we can access on-board i/o areas.
1086	 */
1087
1088	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1089
1090	jbra	L(mmu_init_done)
1091
1092L(not147):
1093#endif /* CONFIG_MVME147 */
1094
1095#ifdef CONFIG_MVME16x
1096
1097	is_not_mvme16x(L(not16x))
1098
1099	/*
1100	 * On MVME16x we have already created kernel page tables for
1101	 * 4MB of RAM at address 0, so now need to do a transparent
1102	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1103	 * Supervisor only access, so transparent mapping doesn't
1104	 * clash with User code virtual address space.
1105	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1106	 * mapping is needed to allow 167Bug to run.
1107	 * IO is in the range 0xfff00000 to 0xfffeffff.
1108	 * PROM is 0xff800000->0xffbfffff and SRAM is
1109	 * 0xffe00000->0xffe1ffff.
1110	 */
1111
1112	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1113
1114	jbra	L(mmu_init_done)
1115
1116L(not16x):
1117#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1118
1119#ifdef CONFIG_BVME6000
1120
1121	is_not_bvme6000(L(not6000))
1122
1123	/*
1124	 * On BVME6000 we have already created kernel page tables for
1125	 * 4MB of RAM at address 0, so now need to do a transparent
1126	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1127	 * so we can access on-board i/o areas.
1128	 * Supervisor only access, so transparent mapping doesn't
1129	 * clash with User code virtual address space.
1130	 */
1131
1132	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1133
1134	jbra	L(mmu_init_done)
1135
1136L(not6000):
1137#endif /* CONFIG_BVME6000 */
1138
1139/*
1140 * mmu_init_mac
1141 *
1142 * The Macintosh mappings are less clear.
1143 *
1144 * Even as of this writing, it is unclear how the
1145 * Macintosh mappings will be done.  However, as
1146 * the first author of this code I'm proposing the
1147 * following model:
1148 *
1149 * Map the kernel (that's already done),
1150 * Map the I/O (on most machines that's the
1151 * 0x5000.0000 ... 0x5300.0000 range,
1152 * Map the video frame buffer using as few pages
1153 * as absolutely (this requirement mostly stems from
1154 * the fact that when the frame buffer is at
1155 * 0x0000.0000 then we know there is valid RAM just
1156 * above the screen that we don't want to waste!).
1157 *
1158 * By the way, if the frame buffer is at 0x0000.0000
1159 * then the Macintosh is known as an RBV based Mac.
1160 *
1161 * By the way 2, the code currently maps in a bunch of
1162 * regions.  But I'd like to cut that out.  (And move most
1163 * of the mappings up into the kernel proper ... or only
1164 * map what's necessary.)
1165 */
1166
1167#ifdef CONFIG_MAC
1168
1169L(mmu_init_mac):
1170
1171	is_not_mac(L(mmu_init_not_mac))
1172
1173	putc	'F'
1174
1175	is_not_040_or_060(1f)
1176
1177	moveq	#_PAGE_NOCACHE_S,%d3
1178	jbra	2f
11791:
1180	moveq	#_PAGE_NOCACHE030,%d3
11812:
1182	/*
1183	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1184	 *	     we simply map the 4MB that contains the videomem
1185	 */
1186
1187	movel	#VIDEOMEMMASK,%d0
1188	andl	%pc@(L(mac_videobase)),%d0
1189
1190	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1191	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1192	mmu_map_eq	#0x40000000,#0x02000000,%d3
1193	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1194	mmu_map_eq	#0x50000000,#0x03000000,%d3
1195	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1196	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1197
1198	jbra	L(mmu_init_done)
1199
1200L(mmu_init_not_mac):
1201#endif
1202
1203#ifdef CONFIG_SUN3X
1204	is_not_sun3x(L(notsun3x))
1205
1206	/* oh, the pain..  We're gonna want the prom code after
1207	 * starting the MMU, so we copy the mappings, translating
1208	 * from 8k -> 4k pages as we go.
1209	 */
1210
1211	/* copy maps from 0xfee00000 to 0xff000000 */
1212	movel	#0xfee00000, %d0
1213	moveq	#ROOT_INDEX_SHIFT, %d1
1214	lsrl	%d1,%d0
1215	mmu_get_root_table_entry	%d0
1216
1217	movel	#0xfee00000, %d0
1218	moveq	#PTR_INDEX_SHIFT, %d1
1219	lsrl	%d1,%d0
1220	andl	#PTR_TABLE_SIZE-1, %d0
1221	mmu_get_ptr_table_entry		%a0,%d0
1222
1223	movel	#0xfee00000, %d0
1224	moveq	#PAGE_INDEX_SHIFT, %d1
1225	lsrl	%d1,%d0
1226	andl	#PAGE_TABLE_SIZE-1, %d0
1227	mmu_get_page_table_entry	%a0,%d0
1228
1229	/* this is where the prom page table lives */
1230	movel	0xfefe00d4, %a1
1231	movel	%a1@, %a1
1232
1233	movel	#((0x200000 >> 13)-1), %d1
1234
12351:
1236	movel	%a1@+, %d3
1237	movel	%d3,%a0@+
1238	addl	#0x1000,%d3
1239	movel	%d3,%a0@+
1240
1241	dbra	%d1,1b
1242
1243	/* setup tt1 for I/O */
1244	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1245	jbra	L(mmu_init_done)
1246
1247L(notsun3x):
1248#endif
1249
1250#ifdef CONFIG_VIRT
1251	is_not_virt(L(novirt))
1252	mmu_map_tt	#1,#0xFF000000,#0x01000000,#_PAGE_NOCACHE_S
1253	jbra    L(mmu_init_done)
1254L(novirt):
1255#endif
1256
1257#ifdef CONFIG_APOLLO
1258	is_not_apollo(L(notapollo))
1259
1260	putc	'P'
1261	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1262
1263L(notapollo):
1264	jbra	L(mmu_init_done)
1265#endif
1266
1267L(mmu_init_done):
1268
1269	putc	'G'
1270	leds	0x8
1271
1272/*
1273 * mmu_fixup
1274 *
1275 * On the 040 class machines, all pages that are used for the
1276 * mmu have to be fixed up. According to Motorola, pages holding mmu
1277 * tables should be non-cacheable on a '040 and write-through on a
1278 * '060. But analysis of the reasons for this, and practical
1279 * experience, showed that write-through also works on a '040.
1280 *
1281 * Allocated memory so far goes from kernel_end to memory_start that
1282 * is used for all kind of tables, for that the cache attributes
1283 * are now fixed.
1284 */
1285L(mmu_fixup):
1286
1287	is_not_040_or_060(L(mmu_fixup_done))
1288
1289#ifdef MMU_NOCACHE_KERNEL
1290	jbra	L(mmu_fixup_done)
1291#endif
1292
1293	/* first fix the page at the start of the kernel, that
1294	 * contains also kernel_pg_dir.
1295	 */
1296	movel	%pc@(L(phys_kernel_start)),%d0
1297	subl	#PAGE_OFFSET,%d0
1298	lea	%pc@(_stext),%a0
1299	subl	%d0,%a0
1300	mmu_fixup_page_mmu_cache	%a0
1301
1302	movel	%pc@(L(kernel_end)),%a0
1303	subl	%d0,%a0
1304	movel	%pc@(L(memory_start)),%a1
1305	subl	%d0,%a1
1306	bra	2f
13071:
1308	mmu_fixup_page_mmu_cache	%a0
1309	addw	#PAGESIZE,%a0
13102:
1311	cmpl	%a0,%a1
1312	jgt	1b
1313
1314L(mmu_fixup_done):
1315
1316#ifdef MMU_PRINT
1317	mmu_print
1318#endif
1319
1320/*
1321 * mmu_engage
1322 *
1323 * This chunk of code performs the gruesome task of engaging the MMU.
1324 * The reason it's gruesome is because when the MMU becomes engaged it
1325 * maps logical addresses to physical addresses.  The Program Counter
1326 * register is then passed through the MMU before the next instruction
1327 * is fetched (the instruction following the engage MMU instruction).
1328 * This may mean one of two things:
1329 * 1. The Program Counter falls within the logical address space of
1330 *    the kernel of which there are two sub-possibilities:
1331 *    A. The PC maps to the correct instruction (logical PC == physical
1332 *       code location), or
1333 *    B. The PC does not map through and the processor will read some
1334 *       data (or instruction) which is not the logically next instr.
1335 *    As you can imagine, A is good and B is bad.
1336 * Alternatively,
1337 * 2. The Program Counter does not map through the MMU.  The processor
1338 *    will take a Bus Error.
1339 * Clearly, 2 is bad.
1340 * It doesn't take a wiz kid to figure you want 1.A.
1341 * This code creates that possibility.
1342 * There are two possible 1.A. states (we now ignore the other above states):
1343 * A. The kernel is located at physical memory addressed the same as
1344 *    the logical memory for the kernel, i.e., 0x01000.
1345 * B. The kernel is located some where else.  e.g., 0x0400.0000
1346 *
1347 *    Under some conditions the Macintosh can look like A or B.
1348 * [A friend and I once noted that Apple hardware engineers should be
1349 * wacked twice each day: once when they show up at work (as in, Whack!,
1350 * "This is for the screwy hardware we know you're going to design today."),
1351 * and also at the end of the day (as in, Whack! "I don't know what
1352 * you designed today, but I'm sure it wasn't good."). -- rst]
1353 *
1354 * This code works on the following premise:
1355 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1356 * then create a mapping for the kernel at logical 0x8000.0000 to
1357 * the physical location of the pc.  And, create a transparent
1358 * translation register for the first 16 Meg.  Then, after the MMU
1359 * is engaged, the PC can be moved up into the 0x8000.0000 range
1360 * and then the transparent translation can be turned off and then
1361 * the PC can jump to the correct logical location and it will be
1362 * home (finally).  This is essentially the code that the Amiga used
1363 * to use.  Now, it's generalized for all processors.  Which means
1364 * that a fresh (but temporary) mapping has to be created.  The mapping
1365 * is made in page 0 (an as of yet unused location -- except for the
1366 * stack!).  This temporary mapping will only require 1 pointer table
1367 * and a single page table (it can map 256K).
1368 *
1369 * OK, alternatively, imagine that the Program Counter is not within
1370 * the first 16 Meg.  Then, just use Transparent Translation registers
1371 * to do the right thing.
1372 *
1373 * Last, if _start is already at 0x01000, then there's nothing special
1374 * to do (in other words, in a degenerate case of the first case above,
1375 * do nothing).
1376 *
1377 * Let's do it.
1378 *
1379 *
1380 */
1381
1382	putc	'H'
1383
1384	mmu_engage
1385
1386/*
1387 * After this point no new memory is allocated and
1388 * the start of available memory is stored in availmem.
1389 * (The bootmem allocator requires now the physical address.)
1390 */
1391
1392	movel	L(memory_start),availmem
1393
1394#ifdef CONFIG_AMIGA
1395	is_not_amiga(1f)
1396	/* fixup the Amiga custom register location before printing */
1397	clrl	L(custom)
13981:
1399#endif
1400
1401#ifdef CONFIG_ATARI
1402	is_not_atari(1f)
1403	/* fixup the Atari iobase register location before printing */
1404	movel	#0xff000000,L(iobase)
14051:
1406#endif
1407
1408#ifdef CONFIG_MAC
1409	is_not_mac(1f)
1410	movel	#~VIDEOMEMMASK,%d0
1411	andl	L(mac_videobase),%d0
1412	addl	#VIDEOMEMBASE,%d0
1413	movel	%d0,L(mac_videobase)
1414#ifdef CONSOLE_DEBUG
1415	movel	%pc@(L(phys_kernel_start)),%d0
1416	subl	#PAGE_OFFSET,%d0
1417	subl	%d0,L(console_font)
1418	subl	%d0,L(console_font_data)
1419#endif
1420	orl	#0x50000000,L(mac_sccbase)
14211:
1422#endif
1423
1424#ifdef CONFIG_HP300
1425	is_not_hp300(2f)
1426	/*
1427	 * Fix up the iobase register to point to the new location of the LEDs.
1428	 */
1429	movel	#0xf0000000,L(iobase)
1430
1431	/*
1432	 * Energise the FPU and caches.
1433	 */
1434	is_040(1f)
1435	movel	#0x60,0xf05f400c
1436	jbra	2f
1437
1438	/*
1439	 * 040: slightly different, apparently.
1440	 */
14411:	movew	#0,0xf05f400e
1442	movew	#0x64,0xf05f400e
14432:
1444#endif
1445
1446#ifdef CONFIG_SUN3X
1447	is_not_sun3x(1f)
1448
1449	/* enable copro */
1450	oriw	#0x4000,0x61000000
14511:
1452#endif
1453
1454#ifdef CONFIG_APOLLO
1455	is_not_apollo(1f)
1456
1457	/*
1458	 * Fix up the iobase before printing
1459	 */
1460	movel	#0x80000000,L(iobase)
14611:
1462#endif
1463
1464	putc	'I'
1465	leds	0x10
1466
1467/*
1468 * Enable caches
1469 */
1470
1471	is_not_040_or_060(L(cache_not_680460))
1472
1473L(cache680460):
1474	.chip	68040
1475	nop
1476	cpusha	%bc
1477	nop
1478
1479	is_060(L(cache68060))
1480
1481	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1482	/* MMU stuff works in copyback mode now, so enable the cache */
1483	movec	%d0,%cacr
1484	jra	L(cache_done)
1485
1486L(cache68060):
1487	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1488	/* MMU stuff works in copyback mode now, so enable the cache */
1489	movec	%d0,%cacr
1490	/* enable superscalar dispatch in PCR */
1491	moveq	#1,%d0
1492	.chip	68060
1493	movec	%d0,%pcr
1494
1495	jbra	L(cache_done)
1496L(cache_not_680460):
1497L(cache68030):
1498	.chip	68030
1499	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1500	movec	%d0,%cacr
1501
1502	jra	L(cache_done)
1503	.chip	68k
1504L(cache_done):
1505
1506	putc	'J'
1507
1508/*
1509 * Setup initial stack pointer
1510 */
1511	lea	init_task,%curptr
1512	lea	init_thread_union+THREAD_SIZE,%sp
1513
1514	putc	'K'
1515
1516	subl	%a6,%a6		/* clear a6 for gdb */
1517
1518/*
1519 * The new 64bit printf support requires an early exception initialization.
1520 */
1521	jbsr	base_trap_init
1522
1523/* jump to the kernel start */
1524
1525	putc	'\n'
1526	leds	0x55
1527
1528	jbsr	start_kernel
1529
1530/*
1531 * Find a tag record in the bootinfo structure
1532 * The bootinfo structure is located right after the kernel
1533 * Returns: d0: size (-1 if not found)
1534 *          a0: data pointer (end-of-records if not found)
1535 */
1536func_start	get_bi_record,%d1
1537
1538	movel	ARG1,%d0
1539	lea	%pc@(_end),%a0
15401:	tstw	%a0@(BIR_TAG)
1541	jeq	3f
1542	cmpw	%a0@(BIR_TAG),%d0
1543	jeq	2f
1544	addw	%a0@(BIR_SIZE),%a0
1545	jra	1b
15462:	moveq	#0,%d0
1547	movew	%a0@(BIR_SIZE),%d0
1548	lea	%a0@(BIR_DATA),%a0
1549	jra	4f
15503:	moveq	#-1,%d0
1551	lea	%a0@(BIR_SIZE),%a0
15524:
1553func_return	get_bi_record
1554
1555
1556/*
1557 *	MMU Initialization Begins Here
1558 *
1559 *	The structure of the MMU tables on the 68k machines
1560 *	is thus:
1561 *	Root Table
1562 *		Logical addresses are translated through
1563 *	a hierarchical translation mechanism where the high-order
1564 *	seven bits of the logical address (LA) are used as an
1565 *	index into the "root table."  Each entry in the root
1566 *	table has a bit which specifies if it's a valid pointer to a
1567 *	pointer table.  Each entry defines a 32Meg range of memory.
1568 *	If an entry is invalid then that logical range of 32M is
1569 *	invalid and references to that range of memory (when the MMU
1570 *	is enabled) will fault.  If the entry is valid, then it does
1571 *	one of two things.  On 040/060 class machines, it points to
1572 *	a pointer table which then describes more finely the memory
1573 *	within that 32M range.  On 020/030 class machines, a technique
1574 *	called "early terminating descriptors" are used.  This technique
1575 *	allows an entire 32Meg to be described by a single entry in the
1576 *	root table.  Thus, this entry in the root table, contains the
1577 *	physical address of the memory or I/O at the logical address
1578 *	which the entry represents and it also contains the necessary
1579 *	cache bits for this region.
1580 *
1581 *	Pointer Tables
1582 *		Per the Root Table, there will be one or more
1583 *	pointer tables.  Each pointer table defines a 32M range.
1584 *	Not all of the 32M range need be defined.  Again, the next
1585 *	seven bits of the logical address are used an index into
1586 *	the pointer table to point to page tables (if the pointer
1587 *	is valid).  There will undoubtedly be more than one
1588 *	pointer table for the kernel because each pointer table
1589 *	defines a range of only 32M.  Valid pointer table entries
1590 *	point to page tables, or are early terminating entries
1591 *	themselves.
1592 *
1593 *	Page Tables
1594 *		Per the Pointer Tables, each page table entry points
1595 *	to the physical page in memory that supports the logical
1596 *	address that translates to the particular index.
1597 *
1598 *	In short, the Logical Address gets translated as follows:
1599 *		bits 31..26 - index into the Root Table
1600 *		bits 25..18 - index into the Pointer Table
1601 *		bits 17..12 - index into the Page Table
1602 *		bits 11..0  - offset into a particular 4K page
1603 *
1604 *	The algorithms which follow do one thing: they abstract
1605 *	the MMU hardware.  For example, there are three kinds of
1606 *	cache settings that are relevant.  Either, memory is
1607 *	being mapped in which case it is either Kernel Code (or
1608 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1609 *	option also describes the kernel.  Or, I/O is being mapped
1610 *	in which case it has its own kind of cache bits.  There
1611 *	are constants which abstract these notions from the code that
1612 *	actually makes the call to map some range of memory.
1613 *
1614 *
1615 *
1616 */
1617
1618#ifdef MMU_PRINT
1619/*
1620 *	mmu_print
1621 *
1622 *	This algorithm will print out the current MMU mappings.
1623 *
1624 *	Input:
1625 *		%a5 points to the root table.  Everything else is calculated
1626 *			from this.
1627 */
1628
1629#define mmu_next_valid		0
1630#define mmu_start_logical	4
1631#define mmu_next_logical	8
1632#define mmu_start_physical	12
1633#define mmu_next_physical	16
1634
1635#define MMU_PRINT_INVALID		-1
1636#define MMU_PRINT_VALID			1
1637#define MMU_PRINT_UNINITED		0
1638
1639#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1640
1641func_start	mmu_print,%a0-%a6/%d0-%d7
1642
1643	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1644	lea	%pc@(L(mmu_print_data)),%a0
1645	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1646
1647	is_not_040_or_060(mmu_030_print)
1648
1649mmu_040_print:
1650	puts	"\nMMU040\n"
1651	puts	"rp:"
1652	putn	%a5
1653	putc	'\n'
1654#if 0
1655	/*
1656	 * The following #if/#endif block is a tight algorithm for dumping the 040
1657	 * MMU Map in gory detail.  It really isn't that practical unless the
1658	 * MMU Map algorithm appears to go awry and you need to debug it at the
1659	 * entry per entry level.
1660	 */
1661	movel	#ROOT_TABLE_SIZE,%d5
1662#if 0
1663	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1664	subql	#1,%d5			| they (might) work
1665#endif
16661:	tstl	%d5
1667	jbeq	mmu_print_done
1668	subq	#1,%d5
1669	movel	%a5@+,%d7
1670	btst	#1,%d7
1671	jbeq	1b
1672
16732:	putn	%d7
1674	andil	#0xFFFFFE00,%d7
1675	movel	%d7,%a4
1676	movel	#PTR_TABLE_SIZE,%d4
1677	putc	' '
16783:	tstl	%d4
1679	jbeq	11f
1680	subq	#1,%d4
1681	movel	%a4@+,%d7
1682	btst	#1,%d7
1683	jbeq	3b
1684
16854:	putn	%d7
1686	andil	#0xFFFFFF00,%d7
1687	movel	%d7,%a3
1688	movel	#PAGE_TABLE_SIZE,%d3
16895:	movel	#8,%d2
16906:	tstl	%d3
1691	jbeq	31f
1692	subq	#1,%d3
1693	movel	%a3@+,%d6
1694	btst	#0,%d6
1695	jbeq	6b
16967:	tstl	%d2
1697	jbeq	8f
1698	subq	#1,%d2
1699	putc	' '
1700	jbra	91f
17018:	putc	'\n'
1702	movel	#8+1+8+1+1,%d2
17039:	putc	' '
1704	dbra	%d2,9b
1705	movel	#7,%d2
170691:	putn	%d6
1707	jbra	6b
1708
170931:	putc	'\n'
1710	movel	#8+1,%d2
171132:	putc	' '
1712	dbra	%d2,32b
1713	jbra	3b
1714
171511:	putc	'\n'
1716	jbra	1b
1717#endif /* MMU 040 Dumping code that's gory and detailed */
1718
1719	lea	%pc@(kernel_pg_dir),%a5
1720	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1721	movel	#0x00000000,%a4		/* logical address */
1722	moveql	#0,%d0
172340:
1724	/* Increment the logical address and preserve in d5 */
1725	movel	%a4,%d5
1726	addil	#PAGESIZE<<13,%d5
1727	movel	%a0@+,%d6
1728	btst	#1,%d6
1729	jbne	41f
1730	jbsr	mmu_print_tuple_invalidate
1731	jbra	48f
173241:
1733	movel	#0,%d1
1734	andil	#0xfffffe00,%d6
1735	movel	%d6,%a1
173642:
1737	movel	%a4,%d5
1738	addil	#PAGESIZE<<6,%d5
1739	movel	%a1@+,%d6
1740	btst	#1,%d6
1741	jbne	43f
1742	jbsr	mmu_print_tuple_invalidate
1743	jbra	47f
174443:
1745	movel	#0,%d2
1746	andil	#0xffffff00,%d6
1747	movel	%d6,%a2
174844:
1749	movel	%a4,%d5
1750	addil	#PAGESIZE,%d5
1751	movel	%a2@+,%d6
1752	btst	#0,%d6
1753	jbne	45f
1754	jbsr	mmu_print_tuple_invalidate
1755	jbra	46f
175645:
1757	moveml	%d0-%d1,%sp@-
1758	movel	%a4,%d0
1759	movel	%d6,%d1
1760	andil	#0xfffff4e0,%d1
1761	lea	%pc@(mmu_040_print_flags),%a6
1762	jbsr	mmu_print_tuple
1763	moveml	%sp@+,%d0-%d1
176446:
1765	movel	%d5,%a4
1766	addq	#1,%d2
1767	cmpib	#64,%d2
1768	jbne	44b
176947:
1770	movel	%d5,%a4
1771	addq	#1,%d1
1772	cmpib	#128,%d1
1773	jbne	42b
177448:
1775	movel	%d5,%a4			/* move to the next logical address */
1776	addq	#1,%d0
1777	cmpib	#128,%d0
1778	jbne	40b
1779
1780	.chip	68040
1781	movec	%dtt1,%d0
1782	movel	%d0,%d1
1783	andiw	#0x8000,%d1		/* is it valid ? */
1784	jbeq	1f			/* No, bail out */
1785
1786	movel	%d0,%d1
1787	andil	#0xff000000,%d1		/* Get the address */
1788	putn	%d1
1789	puts	"=="
1790	putn	%d1
1791
1792	movel	%d0,%d6
1793	jbsr	mmu_040_print_flags_tt
17941:
1795	movec	%dtt0,%d0
1796	movel	%d0,%d1
1797	andiw	#0x8000,%d1		/* is it valid ? */
1798	jbeq	1f			/* No, bail out */
1799
1800	movel	%d0,%d1
1801	andil	#0xff000000,%d1		/* Get the address */
1802	putn	%d1
1803	puts	"=="
1804	putn	%d1
1805
1806	movel	%d0,%d6
1807	jbsr	mmu_040_print_flags_tt
18081:
1809	.chip	68k
1810
1811	jbra	mmu_print_done
1812
1813mmu_040_print_flags:
1814	btstl	#10,%d6
1815	putZc(' ','G')	/* global bit */
1816	btstl	#7,%d6
1817	putZc(' ','S')	/* supervisor bit */
1818mmu_040_print_flags_tt:
1819	btstl	#6,%d6
1820	jbne	3f
1821	putc	'C'
1822	btstl	#5,%d6
1823	putZc('w','c')	/* write through or copy-back */
1824	jbra	4f
18253:
1826	putc	'N'
1827	btstl	#5,%d6
1828	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18294:
1830	rts
1831
1832mmu_030_print_flags:
1833	btstl	#6,%d6
1834	putZc('C','I')	/* write through or copy-back */
1835	rts
1836
1837mmu_030_print:
1838	puts	"\nMMU030\n"
1839	puts	"\nrp:"
1840	putn	%a5
1841	putc	'\n'
1842	movel	%a5,%d0
1843	andil	#0xfffffff0,%d0
1844	movel	%d0,%a0
1845	movel	#0x00000000,%a4		/* logical address */
1846	movel	#0,%d0
184730:
1848	movel	%a4,%d5
1849	addil	#PAGESIZE<<13,%d5
1850	movel	%a0@+,%d6
1851	btst	#1,%d6			/* is it a table ptr? */
1852	jbne	31f			/* yes */
1853	btst	#0,%d6			/* is it early terminating? */
1854	jbeq	1f			/* no */
1855	jbsr	mmu_030_print_helper
1856	jbra	38f
18571:
1858	jbsr	mmu_print_tuple_invalidate
1859	jbra	38f
186031:
1861	movel	#0,%d1
1862	andil	#0xfffffff0,%d6
1863	movel	%d6,%a1
186432:
1865	movel	%a4,%d5
1866	addil	#PAGESIZE<<6,%d5
1867	movel	%a1@+,%d6
1868	btst	#1,%d6			/* is it a table ptr? */
1869	jbne	33f			/* yes */
1870	btst	#0,%d6			/* is it a page descriptor? */
1871	jbeq	1f			/* no */
1872	jbsr	mmu_030_print_helper
1873	jbra	37f
18741:
1875	jbsr	mmu_print_tuple_invalidate
1876	jbra	37f
187733:
1878	movel	#0,%d2
1879	andil	#0xfffffff0,%d6
1880	movel	%d6,%a2
188134:
1882	movel	%a4,%d5
1883	addil	#PAGESIZE,%d5
1884	movel	%a2@+,%d6
1885	btst	#0,%d6
1886	jbne	35f
1887	jbsr	mmu_print_tuple_invalidate
1888	jbra	36f
188935:
1890	jbsr	mmu_030_print_helper
189136:
1892	movel	%d5,%a4
1893	addq	#1,%d2
1894	cmpib	#64,%d2
1895	jbne	34b
189637:
1897	movel	%d5,%a4
1898	addq	#1,%d1
1899	cmpib	#128,%d1
1900	jbne	32b
190138:
1902	movel	%d5,%a4			/* move to the next logical address */
1903	addq	#1,%d0
1904	cmpib	#128,%d0
1905	jbne	30b
1906
1907mmu_print_done:
1908	puts	"\n"
1909
1910func_return	mmu_print
1911
1912
1913mmu_030_print_helper:
1914	moveml	%d0-%d1,%sp@-
1915	movel	%a4,%d0
1916	movel	%d6,%d1
1917	lea	%pc@(mmu_030_print_flags),%a6
1918	jbsr	mmu_print_tuple
1919	moveml	%sp@+,%d0-%d1
1920	rts
1921
1922mmu_print_tuple_invalidate:
1923	moveml	%a0/%d7,%sp@-
1924
1925	lea	%pc@(L(mmu_print_data)),%a0
1926	tstl	%a0@(mmu_next_valid)
1927	jbmi	mmu_print_tuple_invalidate_exit
1928
1929	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1930
1931	putn	%a4
1932
1933	puts	"##\n"
1934
1935mmu_print_tuple_invalidate_exit:
1936	moveml	%sp@+,%a0/%d7
1937	rts
1938
1939
1940mmu_print_tuple:
1941	moveml	%d0-%d7/%a0,%sp@-
1942
1943	lea	%pc@(L(mmu_print_data)),%a0
1944
1945	tstl	%a0@(mmu_next_valid)
1946	jble	mmu_print_tuple_print
1947
1948	cmpl	%a0@(mmu_next_physical),%d1
1949	jbeq	mmu_print_tuple_increment
1950
1951mmu_print_tuple_print:
1952	putn	%d0
1953	puts	"->"
1954	putn	%d1
1955
1956	movel	%d1,%d6
1957	jbsr	%a6@
1958
1959mmu_print_tuple_record:
1960	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1961
1962	movel	%d1,%a0@(mmu_next_physical)
1963
1964mmu_print_tuple_increment:
1965	movel	%d5,%d7
1966	subl	%a4,%d7
1967	addl	%d7,%a0@(mmu_next_physical)
1968
1969mmu_print_tuple_exit:
1970	moveml	%sp@+,%d0-%d7/%a0
1971	rts
1972
1973mmu_print_machine_cpu_types:
1974	puts	"machine: "
1975
1976	is_not_amiga(1f)
1977	puts	"amiga"
1978	jbra	9f
19791:
1980	is_not_atari(2f)
1981	puts	"atari"
1982	jbra	9f
19832:
1984	is_not_mac(3f)
1985	puts	"macintosh"
1986	jbra	9f
19873:	puts	"unknown"
19889:	putc	'\n'
1989
1990	puts	"cputype: 0"
1991	is_not_060(1f)
1992	putc	'6'
1993	jbra	9f
19941:
1995	is_not_040_or_060(2f)
1996	putc	'4'
1997	jbra	9f
19982:	putc	'3'
19999:	putc	'0'
2000	putc	'\n'
2001
2002	rts
2003#endif /* MMU_PRINT */
2004
2005/*
2006 * mmu_map_tt
2007 *
2008 * This is a specific function which works on all 680x0 machines.
2009 * On 030, 040 & 060 it will attempt to use Transparent Translation
2010 * registers (tt1).
2011 * On 020 it will call the standard mmu_map which will use early
2012 * terminating descriptors.
2013 */
2014func_start	mmu_map_tt,%d0/%d1/%a0,4
2015
2016	dputs	"mmu_map_tt:"
2017	dputn	ARG1
2018	dputn	ARG2
2019	dputn	ARG3
2020	dputn	ARG4
2021	dputc	'\n'
2022
2023	is_020(L(do_map))
2024
2025	/* Extract the highest bit set
2026	 */
2027	bfffo	ARG3{#0,#32},%d1
2028	cmpw	#8,%d1
2029	jcc	L(do_map)
2030
2031	/* And get the mask
2032	 */
2033	moveq	#-1,%d0
2034	lsrl	%d1,%d0
2035	lsrl	#1,%d0
2036
2037	/* Mask the address
2038	 */
2039	movel	%d0,%d1
2040	notl	%d1
2041	andl	ARG2,%d1
2042
2043	/* Generate the upper 16bit of the tt register
2044	 */
2045	lsrl	#8,%d0
2046	orl	%d0,%d1
2047	clrw	%d1
2048
2049	is_040_or_060(L(mmu_map_tt_040))
2050
2051	/* set 030 specific bits (read/write access for supervisor mode
2052	 * (highest function code set, lower two bits masked))
2053	 */
2054	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2055	movel	ARG4,%d0
2056	btst	#6,%d0
2057	jeq	1f
2058	orw	#TTR_CI,%d1
2059
20601:	lea	STACK,%a0
2061	dputn	%d1
2062	movel	%d1,%a0@
2063	.chip	68030
2064	tstl	ARG1
2065	jne	1f
2066	pmove	%a0@,%tt0
2067	jra	2f
20681:	pmove	%a0@,%tt1
20692:	.chip	68k
2070	jra	L(mmu_map_tt_done)
2071
2072	/* set 040 specific bits
2073	 */
2074L(mmu_map_tt_040):
2075	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2076	orl	ARG4,%d1
2077	dputn	%d1
2078
2079	.chip	68040
2080	tstl	ARG1
2081	jne	1f
2082	movec	%d1,%itt0
2083	movec	%d1,%dtt0
2084	jra	2f
20851:	movec	%d1,%itt1
2086	movec	%d1,%dtt1
20872:	.chip	68k
2088
2089	jra	L(mmu_map_tt_done)
2090
2091L(do_map):
2092	mmu_map_eq	ARG2,ARG3,ARG4
2093
2094L(mmu_map_tt_done):
2095
2096func_return	mmu_map_tt
2097
2098/*
2099 *	mmu_map
2100 *
2101 *	This routine will map a range of memory using a pointer
2102 *	table and allocate the pages on the fly from the kernel.
2103 *	The pointer table does not have to be already linked into
2104 *	the root table, this routine will do that if necessary.
2105 *
2106 *	NOTE
2107 *	This routine will assert failure and use the serial_putc
2108 *	routines in the case of a run-time error.  For example,
2109 *	if the address is already mapped.
2110 *
2111 *	NOTE-2
2112 *	This routine will use early terminating descriptors
2113 *	where possible for the 68020+68851 and 68030 type
2114 *	processors.
2115 */
2116func_start	mmu_map,%d0-%d4/%a0-%a4
2117
2118	dputs	"\nmmu_map:"
2119	dputn	ARG1
2120	dputn	ARG2
2121	dputn	ARG3
2122	dputn	ARG4
2123	dputc	'\n'
2124
2125	/* Get logical address and round it down to 256KB
2126	 */
2127	movel	ARG1,%d0
2128	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2129	movel	%d0,%a3
2130
2131	/* Get the end address
2132	 */
2133	movel	ARG1,%a4
2134	addl	ARG3,%a4
2135	subql	#1,%a4
2136
2137	/* Get physical address and round it down to 256KB
2138	 */
2139	movel	ARG2,%d0
2140	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141	movel	%d0,%a2
2142
2143	/* Add page attributes to the physical address
2144	 */
2145	movel	ARG4,%d0
2146	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2147	addw	%d0,%a2
2148
2149	dputn	%a2
2150	dputn	%a3
2151	dputn	%a4
2152
2153	is_not_040_or_060(L(mmu_map_030))
2154
2155	addw	#_PAGE_GLOBAL040,%a2
2156/*
2157 *	MMU 040 & 060 Support
2158 *
2159 *	The MMU usage for the 040 and 060 is different enough from
2160 *	the 030 and 68851 that there is separate code.  This comment
2161 *	block describes the data structures and algorithms built by
2162 *	this code.
2163 *
2164 *	The 040 does not support early terminating descriptors, as
2165 *	the 030 does.  Therefore, a third level of table is needed
2166 *	for the 040, and that would be the page table.  In Linux,
2167 *	page tables are allocated directly from the memory above the
2168 *	kernel.
2169 *
2170 */
2171
2172L(mmu_map_040):
2173	/* Calculate the offset into the root table
2174	 */
2175	movel	%a3,%d0
2176	moveq	#ROOT_INDEX_SHIFT,%d1
2177	lsrl	%d1,%d0
2178	mmu_get_root_table_entry	%d0
2179
2180	/* Calculate the offset into the pointer table
2181	 */
2182	movel	%a3,%d0
2183	moveq	#PTR_INDEX_SHIFT,%d1
2184	lsrl	%d1,%d0
2185	andl	#PTR_TABLE_SIZE-1,%d0
2186	mmu_get_ptr_table_entry		%a0,%d0
2187
2188	/* Calculate the offset into the page table
2189	 */
2190	movel	%a3,%d0
2191	moveq	#PAGE_INDEX_SHIFT,%d1
2192	lsrl	%d1,%d0
2193	andl	#PAGE_TABLE_SIZE-1,%d0
2194	mmu_get_page_table_entry	%a0,%d0
2195
2196	/* The page table entry must not no be busy
2197	 */
2198	tstl	%a0@
2199	jne	L(mmu_map_error)
2200
2201	/* Do the mapping and advance the pointers
2202	 */
2203	movel	%a2,%a0@
22042:
2205	addw	#PAGESIZE,%a2
2206	addw	#PAGESIZE,%a3
2207
2208	/* Ready with mapping?
2209	 */
2210	lea	%a3@(-1),%a0
2211	cmpl	%a0,%a4
2212	jhi	L(mmu_map_040)
2213	jra	L(mmu_map_done)
2214
2215L(mmu_map_030):
2216	/* Calculate the offset into the root table
2217	 */
2218	movel	%a3,%d0
2219	moveq	#ROOT_INDEX_SHIFT,%d1
2220	lsrl	%d1,%d0
2221	mmu_get_root_table_entry	%d0
2222
2223	/* Check if logical address 32MB aligned,
2224	 * so we can try to map it once
2225	 */
2226	movel	%a3,%d0
2227	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2228	jne	1f
2229
2230	/* Is there enough to map for 32MB at once
2231	 */
2232	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2233	cmpl	%a1,%a4
2234	jcs	1f
2235
2236	addql	#1,%a1
2237
2238	/* The root table entry must not no be busy
2239	 */
2240	tstl	%a0@
2241	jne	L(mmu_map_error)
2242
2243	/* Do the mapping and advance the pointers
2244	 */
2245	dputs	"early term1"
2246	dputn	%a2
2247	dputn	%a3
2248	dputn	%a1
2249	dputc	'\n'
2250	movel	%a2,%a0@
2251
2252	movel	%a1,%a3
2253	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2254	jra	L(mmu_mapnext_030)
22551:
2256	/* Calculate the offset into the pointer table
2257	 */
2258	movel	%a3,%d0
2259	moveq	#PTR_INDEX_SHIFT,%d1
2260	lsrl	%d1,%d0
2261	andl	#PTR_TABLE_SIZE-1,%d0
2262	mmu_get_ptr_table_entry		%a0,%d0
2263
2264	/* The pointer table entry must not no be busy
2265	 */
2266	tstl	%a0@
2267	jne	L(mmu_map_error)
2268
2269	/* Do the mapping and advance the pointers
2270	 */
2271	dputs	"early term2"
2272	dputn	%a2
2273	dputn	%a3
2274	dputc	'\n'
2275	movel	%a2,%a0@
2276
2277	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2278	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2279
2280L(mmu_mapnext_030):
2281	/* Ready with mapping?
2282	 */
2283	lea	%a3@(-1),%a0
2284	cmpl	%a0,%a4
2285	jhi	L(mmu_map_030)
2286	jra	L(mmu_map_done)
2287
2288L(mmu_map_error):
2289
2290	dputs	"mmu_map error:"
2291	dputn	%a2
2292	dputn	%a3
2293	dputc	'\n'
2294
2295L(mmu_map_done):
2296
2297func_return	mmu_map
2298
2299/*
2300 *	mmu_fixup
2301 *
2302 *	On the 040 class machines, all pages that are used for the
2303 *	mmu have to be fixed up.
2304 */
2305
2306func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2307
2308	dputs	"mmu_fixup_page_mmu_cache"
2309	dputn	ARG1
2310
2311	/* Calculate the offset into the root table
2312	 */
2313	movel	ARG1,%d0
2314	moveq	#ROOT_INDEX_SHIFT,%d1
2315	lsrl	%d1,%d0
2316	mmu_get_root_table_entry	%d0
2317
2318	/* Calculate the offset into the pointer table
2319	 */
2320	movel	ARG1,%d0
2321	moveq	#PTR_INDEX_SHIFT,%d1
2322	lsrl	%d1,%d0
2323	andl	#PTR_TABLE_SIZE-1,%d0
2324	mmu_get_ptr_table_entry		%a0,%d0
2325
2326	/* Calculate the offset into the page table
2327	 */
2328	movel	ARG1,%d0
2329	moveq	#PAGE_INDEX_SHIFT,%d1
2330	lsrl	%d1,%d0
2331	andl	#PAGE_TABLE_SIZE-1,%d0
2332	mmu_get_page_table_entry	%a0,%d0
2333
2334	movel	%a0@,%d0
2335	andil	#_CACHEMASK040,%d0
2336	orl	%pc@(m68k_pgtable_cachemode),%d0
2337	movel	%d0,%a0@
2338
2339	dputc	'\n'
2340
2341func_return	mmu_fixup_page_mmu_cache
2342
2343/*
2344 *	mmu_temp_map
2345 *
2346 *	create a temporary mapping to enable the mmu,
2347 *	this we don't need any transparation translation tricks.
2348 */
2349
2350func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2351
2352	dputs	"mmu_temp_map"
2353	dputn	ARG1
2354	dputn	ARG2
2355	dputc	'\n'
2356
2357	lea	%pc@(L(temp_mmap_mem)),%a1
2358
2359	/* Calculate the offset in the root table
2360	 */
2361	movel	ARG2,%d0
2362	moveq	#ROOT_INDEX_SHIFT,%d1
2363	lsrl	%d1,%d0
2364	mmu_get_root_table_entry	%d0
2365
2366	/* Check if the table is temporary allocated, so we have to reuse it
2367	 */
2368	movel	%a0@,%d0
2369	cmpl	%pc@(L(memory_start)),%d0
2370	jcc	1f
2371
2372	/* Temporary allocate a ptr table and insert it into the root table
2373	 */
2374	movel	%a1@,%d0
2375	addl	#PTR_TABLE_SIZE*4,%a1@
2376	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2377	movel	%d0,%a0@
2378	dputs	" (new)"
23791:
2380	dputn	%d0
2381	/* Mask the root table entry for the ptr table
2382	 */
2383	andw	#-ROOT_TABLE_SIZE,%d0
2384	movel	%d0,%a0
2385
2386	/* Calculate the offset into the pointer table
2387	 */
2388	movel	ARG2,%d0
2389	moveq	#PTR_INDEX_SHIFT,%d1
2390	lsrl	%d1,%d0
2391	andl	#PTR_TABLE_SIZE-1,%d0
2392	lea	%a0@(%d0*4),%a0
2393	dputn	%a0
2394
2395	/* Check if a temporary page table is already allocated
2396	 */
2397	movel	%a0@,%d0
2398	jne	1f
2399
2400	/* Temporary allocate a page table and insert it into the ptr table
2401	 */
2402	movel	%a1@,%d0
2403	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2404	   alignment restriction for pointer tables on the '0[46]0.  */
2405	addl	#512,%a1@
2406	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2407	movel	%d0,%a0@
2408	dputs	" (new)"
24091:
2410	dputn	%d0
2411	/* Mask the ptr table entry for the page table
2412	 */
2413	andw	#-PTR_TABLE_SIZE,%d0
2414	movel	%d0,%a0
2415
2416	/* Calculate the offset into the page table
2417	 */
2418	movel	ARG2,%d0
2419	moveq	#PAGE_INDEX_SHIFT,%d1
2420	lsrl	%d1,%d0
2421	andl	#PAGE_TABLE_SIZE-1,%d0
2422	lea	%a0@(%d0*4),%a0
2423	dputn	%a0
2424
2425	/* Insert the address into the page table
2426	 */
2427	movel	ARG1,%d0
2428	andw	#-PAGESIZE,%d0
2429	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2430	movel	%d0,%a0@
2431	dputn	%d0
2432
2433	dputc	'\n'
2434
2435func_return	mmu_temp_map
2436
2437func_start	mmu_engage,%d0-%d2/%a0-%a3
2438
2439	moveq	#ROOT_TABLE_SIZE-1,%d0
2440	/* Temporarily use a different root table.  */
2441	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2442	movel	%a0@,%a2
2443	movel	%pc@(L(memory_start)),%a1
2444	movel	%a1,%a0@
2445	movel	%a2,%a0
24461:
2447	movel	%a0@+,%a1@+
2448	dbra	%d0,1b
2449
2450	lea	%pc@(L(temp_mmap_mem)),%a0
2451	movel	%a1,%a0@
2452
2453	movew	#PAGESIZE-1,%d0
24541:
2455	clrl	%a1@+
2456	dbra	%d0,1b
2457
2458	lea	%pc@(1b),%a0
2459	movel	#1b,%a1
2460	/* Skip temp mappings if phys == virt */
2461	cmpl	%a0,%a1
2462	jeq	1f
2463
2464	mmu_temp_map	%a0,%a0
2465	mmu_temp_map	%a0,%a1
2466
2467	addw	#PAGESIZE,%a0
2468	addw	#PAGESIZE,%a1
2469	mmu_temp_map	%a0,%a0
2470	mmu_temp_map	%a0,%a1
24711:
2472	movel	%pc@(L(memory_start)),%a3
2473	movel	%pc@(L(phys_kernel_start)),%d2
2474
2475	is_not_040_or_060(L(mmu_engage_030))
2476
2477L(mmu_engage_040):
2478	.chip	68040
2479	nop
2480	cinva	%bc
2481	nop
2482	pflusha
2483	nop
2484	movec	%a3,%srp
2485	movel	#TC_ENABLE+TC_PAGE4K,%d0
2486	movec	%d0,%tc		/* enable the MMU */
2487	jmp	1f:l
24881:	nop
2489	movec	%a2,%srp
2490	nop
2491	cinva	%bc
2492	nop
2493	pflusha
2494	.chip	68k
2495	jra	L(mmu_engage_cleanup)
2496
2497L(mmu_engage_030_temp):
2498	.space	12
2499L(mmu_engage_030):
2500	.chip	68030
2501	lea	%pc@(L(mmu_engage_030_temp)),%a0
2502	movel	#0x80000002,%a0@
2503	movel	%a3,%a0@(4)
2504	movel	#0x0808,%d0
2505	movec	%d0,%cacr
2506	pmove	%a0@,%srp
2507	pflusha
2508	/*
2509	 * enable,super root enable,4096 byte pages,7 bit root index,
2510	 * 7 bit pointer index, 6 bit page table index.
2511	 */
2512	movel	#0x82c07760,%a0@(8)
2513	pmove	%a0@(8),%tc	/* enable the MMU */
2514	jmp	1f:l
25151:	movel	%a2,%a0@(4)
2516	movel	#0x0808,%d0
2517	movec	%d0,%cacr
2518	pmove	%a0@,%srp
2519	pflusha
2520	.chip	68k
2521
2522L(mmu_engage_cleanup):
2523	subl	#PAGE_OFFSET,%d2
2524	subl	%d2,%a2
2525	movel	%a2,L(kernel_pgdir_ptr)
2526	subl	%d2,%fp
2527	subl	%d2,%sp
2528	subl	%d2,ARG0
2529
2530func_return	mmu_engage
2531
2532func_start	mmu_get_root_table_entry,%d0/%a1
2533
2534#if 0
2535	dputs	"mmu_get_root_table_entry:"
2536	dputn	ARG1
2537	dputs	" ="
2538#endif
2539
2540	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2541	tstl	%a0
2542	jne	2f
2543
2544	dputs	"\nmmu_init:"
2545
2546	/* Find the start of free memory, get_bi_record does this for us,
2547	 * as the bootinfo structure is located directly behind the kernel
2548	 * we simply search for the last entry.
2549	 */
2550	get_bi_record	BI_LAST
2551	addw	#PAGESIZE-1,%a0
2552	movel	%a0,%d0
2553	andw	#-PAGESIZE,%d0
2554
2555	dputn	%d0
2556
2557	lea	%pc@(L(memory_start)),%a0
2558	movel	%d0,%a0@
2559	lea	%pc@(L(kernel_end)),%a0
2560	movel	%d0,%a0@
2561
2562	/* we have to return the first page at _stext since the init code
2563	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2564	 * page is used for further ptr tables in get_ptr_table.
2565	 */
2566	lea	%pc@(_stext),%a0
2567	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2568	movel	%a0,%a1@
2569	addl	#ROOT_TABLE_SIZE*4,%a1@
2570
2571	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2572	addql	#1,%a1@
2573
2574	/* clear the page
2575	 */
2576	movel	%a0,%a1
2577	movew	#PAGESIZE/4-1,%d0
25781:
2579	clrl	%a1@+
2580	dbra	%d0,1b
2581
2582	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2583	movel	%a0,%a1@
2584
2585	dputn	%a0
2586	dputc	'\n'
25872:
2588	movel	ARG1,%d0
2589	lea	%a0@(%d0*4),%a0
2590
2591#if 0
2592	dputn	%a0
2593	dputc	'\n'
2594#endif
2595
2596func_return	mmu_get_root_table_entry
2597
2598
2599
2600func_start	mmu_get_ptr_table_entry,%d0/%a1
2601
2602#if 0
2603	dputs	"mmu_get_ptr_table_entry:"
2604	dputn	ARG1
2605	dputn	ARG2
2606	dputs	" ="
2607#endif
2608
2609	movel	ARG1,%a0
2610	movel	%a0@,%d0
2611	jne	2f
2612
2613	/* Keep track of the number of pointer tables we use
2614	 */
2615	dputs	"\nmmu_get_new_ptr_table:"
2616	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2617	movel	%a0@,%d0
2618	addql	#1,%a0@
2619
2620	/* See if there is a free pointer table in our cache of pointer tables
2621	 */
2622	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2623	andw	#7,%d0
2624	jne	1f
2625
2626	/* Get a new pointer table page from above the kernel memory
2627	 */
2628	get_new_page
2629	movel	%a0,%a1@
26301:
2631	/* There is an unused pointer table in our cache... use it
2632	 */
2633	movel	%a1@,%d0
2634	addl	#PTR_TABLE_SIZE*4,%a1@
2635
2636	dputn	%d0
2637	dputc	'\n'
2638
2639	/* Insert the new pointer table into the root table
2640	 */
2641	movel	ARG1,%a0
2642	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2643	movel	%d0,%a0@
26442:
2645	/* Extract the pointer table entry
2646	 */
2647	andw	#-PTR_TABLE_SIZE,%d0
2648	movel	%d0,%a0
2649	movel	ARG2,%d0
2650	lea	%a0@(%d0*4),%a0
2651
2652#if 0
2653	dputn	%a0
2654	dputc	'\n'
2655#endif
2656
2657func_return	mmu_get_ptr_table_entry
2658
2659
2660func_start	mmu_get_page_table_entry,%d0/%a1
2661
2662#if 0
2663	dputs	"mmu_get_page_table_entry:"
2664	dputn	ARG1
2665	dputn	ARG2
2666	dputs	" ="
2667#endif
2668
2669	movel	ARG1,%a0
2670	movel	%a0@,%d0
2671	jne	2f
2672
2673	/* If the page table entry doesn't exist, we allocate a complete new
2674	 * page and use it as one continuous big page table which can cover
2675	 * 4MB of memory, nearly almost all mappings have that alignment.
2676	 */
2677	get_new_page
2678	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2679
2680	/* align pointer table entry for a page of page tables
2681	 */
2682	movel	ARG1,%d0
2683	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2684	movel	%d0,%a1
2685
2686	/* Insert the page tables into the pointer entries
2687	 */
2688	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26891:
2690	movel	%a0,%a1@+
2691	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2692	dbra	%d0,1b
2693
2694	/* Now we can get the initialized pointer table entry
2695	 */
2696	movel	ARG1,%a0
2697	movel	%a0@,%d0
26982:
2699	/* Extract the page table entry
2700	 */
2701	andw	#-PAGE_TABLE_SIZE,%d0
2702	movel	%d0,%a0
2703	movel	ARG2,%d0
2704	lea	%a0@(%d0*4),%a0
2705
2706#if 0
2707	dputn	%a0
2708	dputc	'\n'
2709#endif
2710
2711func_return	mmu_get_page_table_entry
2712
2713/*
2714 *	get_new_page
2715 *
2716 *	Return a new page from the memory start and clear it.
2717 */
2718func_start	get_new_page,%d0/%a1
2719
2720	dputs	"\nget_new_page:"
2721
2722	/* allocate the page and adjust memory_start
2723	 */
2724	lea	%pc@(L(memory_start)),%a0
2725	movel	%a0@,%a1
2726	addl	#PAGESIZE,%a0@
2727
2728	/* clear the new page
2729	 */
2730	movel	%a1,%a0
2731	movew	#PAGESIZE/4-1,%d0
27321:
2733	clrl	%a1@+
2734	dbra	%d0,1b
2735
2736	dputn	%a0
2737	dputc	'\n'
2738
2739func_return	get_new_page
2740
2741
2742
2743/*
2744 * Debug output support
2745 * Atarians have a choice between the parallel port, the serial port
2746 * from the MFP or a serial port of the SCC
2747 */
2748
2749#ifdef CONFIG_MAC
2750/* You may define either or both of these. */
2751#define MAC_USE_SCC_A /* Modem port */
2752#define MAC_USE_SCC_B /* Printer port */
2753
2754#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2755/* Initialisation table for SCC with 3.6864 MHz PCLK */
2756L(scc_initable_mac):
2757	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2758	.byte	3,0xc0		/* receiver: 8 bpc */
2759	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2760	.byte	10,0		/* NRZ */
2761	.byte	11,0x50		/* use baud rate generator */
2762	.byte	12,1,13,0	/* 38400 baud */
2763	.byte	14,1		/* Baud rate generator enable */
2764	.byte	3,0xc1		/* enable receiver */
2765	.byte	5,0xea		/* enable transmitter */
2766	.byte	-1
2767	.even
2768#endif
2769#endif /* CONFIG_MAC */
2770
2771#ifdef CONFIG_ATARI
2772/* #define USE_PRINTER */
2773/* #define USE_SCC_B */
2774/* #define USE_SCC_A */
2775#define USE_MFP
2776
2777#if defined(USE_SCC_A) || defined(USE_SCC_B)
2778/* Initialisation table for SCC with 7.9872 MHz PCLK */
2779/* PCLK == 8.0539 gives baud == 9680.1 */
2780L(scc_initable_atari):
2781	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2782	.byte	3,0xc0		/* receiver: 8 bpc */
2783	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2784	.byte	10,0		/* NRZ */
2785	.byte	11,0x50		/* use baud rate generator */
2786	.byte	12,24,13,0	/* 9600 baud */
2787	.byte	14,2,14,3	/* use master clock for BRG, enable */
2788	.byte	3,0xc1		/* enable receiver */
2789	.byte	5,0xea		/* enable transmitter */
2790	.byte	-1
2791	.even
2792#endif
2793
2794#ifdef USE_PRINTER
2795
2796LPSG_SELECT	= 0xff8800
2797LPSG_READ	= 0xff8800
2798LPSG_WRITE	= 0xff8802
2799LPSG_IO_A	= 14
2800LPSG_IO_B	= 15
2801LPSG_CONTROL	= 7
2802LSTMFP_GPIP	= 0xfffa01
2803LSTMFP_DDR	= 0xfffa05
2804LSTMFP_IERB	= 0xfffa09
2805
2806#elif defined(USE_SCC_B)
2807
2808LSCC_CTRL	= 0xff8c85
2809LSCC_DATA	= 0xff8c87
2810
2811#elif defined(USE_SCC_A)
2812
2813LSCC_CTRL	= 0xff8c81
2814LSCC_DATA	= 0xff8c83
2815
2816#elif defined(USE_MFP)
2817
2818LMFP_UCR     = 0xfffa29
2819LMFP_TDCDR   = 0xfffa1d
2820LMFP_TDDR    = 0xfffa25
2821LMFP_TSR     = 0xfffa2d
2822LMFP_UDR     = 0xfffa2f
2823
2824#endif
2825#endif	/* CONFIG_ATARI */
2826
2827/*
2828 * Serial port output support.
2829 */
2830
2831/*
2832 * Initialize serial port hardware
2833 */
2834func_start	serial_init,%d0/%d1/%a0/%a1
2835	/*
2836	 *	Some of the register usage that follows
2837	 *	CONFIG_AMIGA
2838	 *		a0 = pointer to boot info record
2839	 *		d0 = boot info offset
2840	 *	CONFIG_ATARI
2841	 *		a0 = address of SCC
2842	 *		a1 = Liobase address/address of scc_initable_atari
2843	 *		d0 = init data for serial port
2844	 *	CONFIG_MAC
2845	 *		a0 = address of SCC
2846	 *		a1 = address of scc_initable_mac
2847	 *		d0 = init data for serial port
2848	 */
2849
2850#ifdef CONFIG_AMIGA
2851#define SERIAL_DTR	7
2852#define SERIAL_CNTRL	CIABBASE+C_PRA
2853
2854	is_not_amiga(1f)
2855	lea	%pc@(L(custom)),%a0
2856	movel	#-ZTWOBASE,%a0@
2857	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2858	get_bi_record	BI_AMIGA_SERPER
2859	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2860|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28611:
2862#endif
2863
2864#ifdef CONFIG_ATARI
2865	is_not_atari(4f)
2866	movel	%pc@(L(iobase)),%a1
2867#if defined(USE_PRINTER)
2868	bclr	#0,%a1@(LSTMFP_IERB)
2869	bclr	#0,%a1@(LSTMFP_DDR)
2870	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2871	moveb	#0xff,%a1@(LPSG_WRITE)
2872	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2873	clrb	%a1@(LPSG_WRITE)
2874	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2875	moveb	%a1@(LPSG_READ),%d0
2876	bset	#5,%d0
2877	moveb	%d0,%a1@(LPSG_WRITE)
2878#elif defined(USE_SCC_A) || defined(USE_SCC_B)
2879	lea	%a1@(LSCC_CTRL),%a0
2880	/* Reset SCC register pointer */
2881	moveb	%a0@,%d0
2882	/* Reset SCC device: write register pointer then register value */
2883	moveb	#9,%a0@
2884	moveb	#0xc0,%a0@
2885	/* Wait for 5 PCLK cycles, which is about 63 CPU cycles */
2886	/* 5 / 7.9872 MHz = approx. 0.63 us = 63 / 100 MHz */
2887	movel	#32,%d0
28882:
2889	subq	#1,%d0
2890	jne	2b
2891	/* Initialize channel */
2892	lea	%pc@(L(scc_initable_atari)),%a1
28932:	moveb	%a1@+,%d0
2894	jmi	3f
2895	moveb	%d0,%a0@
2896	moveb	%a1@+,%a0@
2897	jra	2b
28983:	clrb	%a0@
2899#elif defined(USE_MFP)
2900	bclr	#1,%a1@(LMFP_TSR)
2901	moveb   #0x88,%a1@(LMFP_UCR)
2902	andb	#0x70,%a1@(LMFP_TDCDR)
2903	moveb   #2,%a1@(LMFP_TDDR)
2904	orb	#1,%a1@(LMFP_TDCDR)
2905	bset	#1,%a1@(LMFP_TSR)
2906#endif
2907	jra	L(serial_init_done)
29084:
2909#endif
2910
2911#ifdef CONFIG_MAC
2912	is_not_mac(L(serial_init_not_mac))
2913#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2914#define mac_scc_cha_b_ctrl_offset	0x0
2915#define mac_scc_cha_a_ctrl_offset	0x2
2916#define mac_scc_cha_b_data_offset	0x4
2917#define mac_scc_cha_a_data_offset	0x6
2918	movel	%pc@(L(mac_sccbase)),%a0
2919	/* Reset SCC register pointer */
2920	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2921	/* Reset SCC device: write register pointer then register value */
2922	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2923	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2924	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2925	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2926	movel	#35,%d0
29275:
2928	subq	#1,%d0
2929	jne	5b
2930#endif
2931#ifdef MAC_USE_SCC_A
2932	/* Initialize channel A */
2933	lea	%pc@(L(scc_initable_mac)),%a1
29345:	moveb	%a1@+,%d0
2935	jmi	6f
2936	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2937	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2938	jra	5b
29396:
2940#endif	/* MAC_USE_SCC_A */
2941#ifdef MAC_USE_SCC_B
2942	/* Initialize channel B */
2943	lea	%pc@(L(scc_initable_mac)),%a1
29447:	moveb	%a1@+,%d0
2945	jmi	8f
2946	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2947	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2948	jra	7b
29498:
2950#endif	/* MAC_USE_SCC_B */
2951	jra	L(serial_init_done)
2952L(serial_init_not_mac):
2953#endif	/* CONFIG_MAC */
2954
2955#ifdef CONFIG_Q40
2956	is_not_q40(2f)
2957/* debug output goes into SRAM, so we don't do it unless requested
2958   - check for '%LX$' signature in SRAM   */
2959	lea	%pc@(q40_mem_cptr),%a1
2960	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2961	move.l	#0xff020000,%a1
2962	cmp.b	#'%',%a1@
2963	bne	2f	/*nodbg*/
2964	addq.w	#4,%a1
2965	cmp.b	#'L',%a1@
2966	bne	2f	/*nodbg*/
2967	addq.w	#4,%a1
2968	cmp.b	#'X',%a1@
2969	bne	2f	/*nodbg*/
2970	addq.w	#4,%a1
2971	cmp.b	#'$',%a1@
2972	bne	2f	/*nodbg*/
2973	/* signature OK */
2974	lea	%pc@(L(q40_do_debug)),%a1
2975	tas	%a1@
2976/*nodbg: q40_do_debug is 0 by default*/
29772:
2978#endif
2979
2980#ifdef CONFIG_MVME16x
2981	is_not_mvme16x(L(serial_init_not_mvme16x))
2982	moveb	#0x10,M167_PCSCCMICR
2983	moveb	#0x10,M167_PCSCCTICR
2984	moveb	#0x10,M167_PCSCCRICR
2985	jra	L(serial_init_done)
2986L(serial_init_not_mvme16x):
2987#endif
2988
2989#ifdef CONFIG_APOLLO
2990/* We count on the PROM initializing SIO1 */
2991#endif
2992
2993#ifdef CONFIG_HP300
2994/* We count on the boot loader initialising the UART */
2995#endif
2996
2997L(serial_init_done):
2998func_return	serial_init
2999
3000/*
3001 * Output character on serial port.
3002 */
3003func_start	serial_putc,%d0/%d1/%a0/%a1
3004
3005	movel	ARG1,%d0
3006	cmpib	#'\n',%d0
3007	jbne	1f
3008
3009	/* A little safe recursion is good for the soul */
3010	serial_putc	#'\r'
30111:
3012
3013#ifdef CONFIG_AMIGA
3014	is_not_amiga(2f)
3015	andw	#0x00ff,%d0
3016	oriw	#0x0100,%d0
3017	movel	%pc@(L(custom)),%a0
3018	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
30191:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
3020	andw	#0x2000,%d0
3021	jeq	1b
3022	jra	L(serial_putc_done)
30232:
3024#endif
3025
3026#ifdef CONFIG_MAC
3027	is_not_mac(5f)
3028#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
3029	movel	%pc@(L(mac_sccbase)),%a1
3030#endif
3031#ifdef MAC_USE_SCC_A
30323:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3033	jeq	3b
3034	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3035#endif	/* MAC_USE_SCC_A */
3036#ifdef MAC_USE_SCC_B
30374:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3038	jeq	4b
3039	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3040#endif	/* MAC_USE_SCC_B */
3041	jra	L(serial_putc_done)
30425:
3043#endif	/* CONFIG_MAC */
3044
3045#ifdef CONFIG_ATARI
3046	is_not_atari(4f)
3047	movel	%pc@(L(iobase)),%a1
3048#if defined(USE_PRINTER)
30493:	btst	#0,%a1@(LSTMFP_GPIP)
3050	jne	3b
3051	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3052	moveb	%d0,%a1@(LPSG_WRITE)
3053	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3054	moveb	%a1@(LPSG_READ),%d0
3055	bclr	#5,%d0
3056	moveb	%d0,%a1@(LPSG_WRITE)
3057	nop
3058	nop
3059	bset	#5,%d0
3060	moveb	%d0,%a1@(LPSG_WRITE)
3061#elif defined(USE_SCC_A) || defined(USE_SCC_B)
30623:	btst	#2,%a1@(LSCC_CTRL)
3063	jeq	3b
3064	moveb	%d0,%a1@(LSCC_DATA)
3065#elif defined(USE_MFP)
30663:	btst	#7,%a1@(LMFP_TSR)
3067	jeq	3b
3068	moveb	%d0,%a1@(LMFP_UDR)
3069#endif
3070	jra	L(serial_putc_done)
30714:
3072#endif	/* CONFIG_ATARI */
3073
3074#ifdef CONFIG_MVME147
3075	is_not_mvme147(2f)
30761:	btst	#2,M147_SCC_CTRL_A
3077	jeq	1b
3078	moveb	%d0,M147_SCC_DATA_A
3079	jbra	L(serial_putc_done)
30802:
3081#endif
3082
3083#ifdef CONFIG_MVME16x
3084	is_not_mvme16x(2f)
3085	/*
3086	 * If the loader gave us a board type then we can use that to
3087	 * select an appropriate output routine; otherwise we just use
3088	 * the Bug code.  If we have to use the Bug that means the Bug
3089	 * workspace has to be valid, which means the Bug has to use
3090	 * the SRAM, which is non-standard.
3091	 */
3092	moveml	%d0-%d7/%a2-%a6,%sp@-
3093	movel	vme_brdtype,%d1
3094	jeq	1f			| No tag - use the Bug
3095	cmpi	#VME_TYPE_MVME162,%d1
3096	jeq	6f
3097	cmpi	#VME_TYPE_MVME172,%d1
3098	jne	5f
3099	/* 162/172; it's an SCC */
31006:	btst	#2,M162_SCC_CTRL_A
3101	nop
3102	nop
3103	nop
3104	jeq	6b
3105	moveb	#8,M162_SCC_CTRL_A
3106	nop
3107	nop
3108	nop
3109	moveb	%d0,M162_SCC_CTRL_A
3110	jra	3f
31115:
3112	/* 166/167/177; it's a CD2401 */
3113	moveb	#0,M167_CYCAR
3114	moveb	M167_CYIER,%d2
3115	moveb	#0x02,M167_CYIER
31167:
3117	btst	#5,M167_PCSCCTICR
3118	jeq	7b
3119	moveb	M167_PCTPIACKR,%d1
3120	moveb	M167_CYLICR,%d1
3121	jeq	8f
3122	moveb	#0x08,M167_CYTEOIR
3123	jra	7b
31248:
3125	moveb	%d0,M167_CYTDR
3126	moveb	#0,M167_CYTEOIR
3127	moveb	%d2,M167_CYIER
3128	jra	3f
31291:
3130	moveb	%d0,%sp@-
3131	trap	#15
3132	.word	0x0020	/* TRAP 0x020 */
31333:
3134	moveml	%sp@+,%d0-%d7/%a2-%a6
3135	jbra	L(serial_putc_done)
31362:
3137#endif /* CONFIG_MVME16x */
3138
3139#ifdef CONFIG_BVME6000
3140	is_not_bvme6000(2f)
3141	/*
3142	 * The BVME6000 machine has a serial port ...
3143	 */
31441:	btst	#2,BVME_SCC_CTRL_A
3145	jeq	1b
3146	moveb	%d0,BVME_SCC_DATA_A
3147	jbra	L(serial_putc_done)
31482:
3149#endif
3150
3151#ifdef CONFIG_SUN3X
3152	is_not_sun3x(2f)
3153	movel	%d0,-(%sp)
3154	movel	0xFEFE0018,%a1
3155	jbsr	(%a1)
3156	addq	#4,%sp
3157	jbra	L(serial_putc_done)
31582:
3159#endif
3160
3161#ifdef CONFIG_Q40
3162	is_not_q40(2f)
3163	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3164	beq	2f
3165	lea	%pc@(q40_mem_cptr),%a1
3166	move.l	%a1@,%a0
3167	move.b	%d0,%a0@
3168	addq.l	#4,%a0
3169	move.l	%a0,%a1@
3170	jbra    L(serial_putc_done)
31712:
3172#endif
3173
3174#ifdef CONFIG_APOLLO
3175	is_not_apollo(2f)
3176	movl    %pc@(L(iobase)),%a1
3177	moveb	%d0,%a1@(LTHRB0)
31781:      moveb   %a1@(LSRB0),%d0
3179	andb	#0x4,%d0
3180	beq	1b
3181	jbra	L(serial_putc_done)
31822:
3183#endif
3184
3185#ifdef CONFIG_HP300
3186	is_not_hp300(3f)
3187	movl    %pc@(L(iobase)),%a1
3188	addl	%pc@(L(uartbase)),%a1
3189	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3190	jmi	3f			/* Unset? Exit */
3191	cmpi	#256,%d1		/* APCI scode? */
3192	jeq	2f
31931:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3194	andb	#0x20,%d1
3195	beq	1b
3196	moveb	%d0,%a1@(DCADATA)
3197	jbra	L(serial_putc_done)
31982:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3199	andb	#0x20,%d1
3200	beq	2b
3201	moveb	%d0,%a1@(APCIDATA)
3202	jbra	L(serial_putc_done)
32033:
3204#endif
3205
3206#ifdef CONFIG_VIRT
3207	is_not_virt(1f)
3208
3209	movel L(virt_gf_tty_base),%a1
3210	movel %d0,%a1@(GF_PUT_CHAR)
32111:
3212#endif
3213
3214L(serial_putc_done):
3215func_return	serial_putc
3216
3217/*
3218 * Output a string.
3219 */
3220func_start	puts,%d0/%a0
3221
3222	movel	ARG1,%a0
3223	jra	2f
32241:
3225#ifdef CONSOLE_DEBUG
3226	console_putc	%d0
3227#endif
3228#ifdef SERIAL_DEBUG
3229	serial_putc	%d0
3230#endif
32312:	moveb	%a0@+,%d0
3232	jne	1b
3233
3234func_return	puts
3235
3236/*
3237 * Output number in hex notation.
3238 */
3239
3240func_start	putn,%d0-%d2
3241
3242	putc	' '
3243
3244	movel	ARG1,%d0
3245	moveq	#7,%d1
32461:	roll	#4,%d0
3247	move	%d0,%d2
3248	andb	#0x0f,%d2
3249	addb	#'0',%d2
3250	cmpb	#'9',%d2
3251	jls	2f
3252	addb	#'A'-('9'+1),%d2
32532:
3254#ifdef CONSOLE_DEBUG
3255	console_putc	%d2
3256#endif
3257#ifdef SERIAL_DEBUG
3258	serial_putc	%d2
3259#endif
3260	dbra	%d1,1b
3261
3262func_return	putn
3263
3264#ifdef CONFIG_EARLY_PRINTK
3265/*
3266 *	This routine takes its parameters on the stack.  It then
3267 *	turns around and calls the internal routines.  This routine
3268 *	is used by the boot console.
3269 *
3270 *	The calling parameters are:
3271 *		void debug_cons_nputs(const char *str, unsigned length)
3272 *
3273 *	This routine does NOT understand variable arguments only
3274 *	simple strings!
3275 */
3276ENTRY(debug_cons_nputs)
3277	moveml	%d0/%d1/%a0,%sp@-
3278	movew	%sr,%sp@-
3279	ori	#0x0700,%sr
3280	movel	%sp@(18),%a0		/* fetch parameter */
3281	movel	%sp@(22),%d1		/* fetch parameter */
3282	jra	2f
32831:
3284#ifdef CONSOLE_DEBUG
3285	console_putc	%d0
3286#endif
3287#ifdef SERIAL_DEBUG
3288	serial_putc	%d0
3289#endif
3290	subq	#1,%d1
32912:	jeq	3f
3292	moveb	%a0@+,%d0
3293	jne	1b
32943:
3295	movew	%sp@+,%sr
3296	moveml	%sp@+,%d0/%d1/%a0
3297	rts
3298#endif /* CONFIG_EARLY_PRINTK */
3299
3300#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3301func_start	set_leds,%d0/%a0
3302	movel	ARG1,%d0
3303#ifdef CONFIG_HP300
3304	is_not_hp300(1f)
3305	movel	%pc@(L(iobase)),%a0
3306	moveb	%d0,%a0@(0x1ffff)
3307	jra	2f
3308#endif
33091:
3310#ifdef CONFIG_APOLLO
3311	movel   %pc@(L(iobase)),%a0
3312	lsll    #8,%d0
3313	eorw    #0xff00,%d0
3314	moveb	%d0,%a0@(LCPUCTRL)
3315#endif
33162:
3317func_return	set_leds
3318#endif
3319
3320#ifdef CONSOLE_DEBUG
3321/*
3322 *	For continuity, see the data alignment
3323 *	to which this structure is tied.
3324 */
3325#define Lconsole_struct_cur_column	0
3326#define Lconsole_struct_cur_row		4
3327#define Lconsole_struct_num_columns	8
3328#define Lconsole_struct_num_rows	12
3329#define Lconsole_struct_left_edge	16
3330
3331func_start	console_init,%a0-%a4/%d0-%d7
3332	/*
3333	 *	Some of the register usage that follows
3334	 *		a0 = pointer to boot_info
3335	 *		a1 = pointer to screen
3336	 *		a2 = pointer to console_globals
3337	 *		d3 = pixel width of screen
3338	 *		d4 = pixel height of screen
3339	 *		(d3,d4) ~= (x,y) of a point just below
3340	 *			and to the right of the screen
3341	 *			NOT on the screen!
3342	 *		d5 = number of bytes per scan line
3343	 *		d6 = number of bytes on the entire screen
3344	 */
3345
3346	lea	%pc@(L(console_globals)),%a2
3347	movel	%pc@(L(mac_videobase)),%a1
3348	movel	%pc@(L(mac_rowbytes)),%d5
3349	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3350	movel	%d3,%d4
3351	swap	%d4		/* -> high byte */
3352	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3353	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3354
3355	movel	%d5,%d6
3356|	subl	#20,%d6
3357	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3358	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3359	moveq	#-1,%d0		/* Mac_black */
3360	subq	#1,%d6
3361
3362L(console_clear_loop):
3363	movel	%d0,%a1@+
3364	movel	%d0,%a1@+
3365	dbra	%d6,L(console_clear_loop)
3366
3367	/* Calculate font size */
3368
3369#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3370	lea	%pc@(font_vga_8x8),%a0
3371#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3372	lea	%pc@(font_vga_8x16),%a0
3373#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3374	lea	%pc@(font_vga_6x11),%a0
3375#elif defined(CONFIG_FONT_8x8) /* default */
3376	lea	%pc@(font_vga_8x8),%a0
3377#else /* no compiled-in font */
3378	lea	0,%a0
3379#endif
3380
3381	/*
3382	 *	At this point we make a shift in register usage
3383	 *	a1 = address of console_font pointer
3384	 */
3385	lea	%pc@(L(console_font)),%a1
3386	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3387	tstl	%a0
3388	jeq	1f
3389	lea	%pc@(L(console_font_data)),%a4
3390	movel	%a0@(FONT_DESC_DATA),%d0
3391	subl	#L(console_font),%a1
3392	addl	%a1,%d0
3393	movel	%d0,%a4@
3394
3395	/*
3396	 *	Calculate global maxs
3397	 *	Note - we can use either an
3398	 *	8 x 16 or 8 x 8 character font
3399	 *	6 x 11 also supported
3400	 */
3401		/* ASSERT: a0 = contents of Lconsole_font */
3402	movel	%d3,%d0				/* screen width in pixels */
3403	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3404
3405	movel	%d4,%d1				/* screen height in pixels */
3406	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3407
3408	movel	%d0,%a2@(Lconsole_struct_num_columns)
3409	movel	%d1,%a2@(Lconsole_struct_num_rows)
3410
3411	/*
3412	 *	Clear the current row and column
3413	 */
3414	clrl	%a2@(Lconsole_struct_cur_column)
3415	clrl	%a2@(Lconsole_struct_cur_row)
3416	clrl	%a2@(Lconsole_struct_left_edge)
3417
3418	/*
3419	 * Initialization is complete
3420	 */
34211:
3422func_return	console_init
3423
3424#ifdef CONFIG_LOGO
3425func_start	console_put_penguin,%a0-%a1/%d0-%d7
3426	/*
3427	 *	Get 'that_penguin' onto the screen in the upper right corner
3428	 *	penguin is 64 x 74 pixels, align against right edge of screen
3429	 */
3430	lea	%pc@(L(mac_dimensions)),%a0
3431	movel	%a0@,%d0
3432	andil	#0xffff,%d0
3433	subil	#64,%d0		/* snug up against the right edge */
3434	clrl	%d1		/* start at the top */
3435	movel	#73,%d7
3436	lea	%pc@(L(that_penguin)),%a1
3437L(console_penguin_row):
3438	movel	#31,%d6
3439L(console_penguin_pixel_pair):
3440	moveb	%a1@,%d2
3441	lsrb	#4,%d2
3442	console_plot_pixel %d0,%d1,%d2
3443	addq	#1,%d0
3444	moveb	%a1@+,%d2
3445	console_plot_pixel %d0,%d1,%d2
3446	addq	#1,%d0
3447	dbra	%d6,L(console_penguin_pixel_pair)
3448
3449	subil	#64,%d0
3450	addq	#1,%d1
3451	dbra	%d7,L(console_penguin_row)
3452
3453func_return	console_put_penguin
3454
3455/* include penguin bitmap */
3456L(that_penguin):
3457#include "../mac/mac_penguin.S"
3458#endif
3459
3460	/*
3461	 * Calculate source and destination addresses
3462	 *	output	a1 = dest
3463	 *		a2 = source
3464	 */
3465
3466func_start	console_scroll,%a0-%a4/%d0-%d7
3467	lea	%pc@(L(mac_videobase)),%a0
3468	movel	%a0@,%a1
3469	movel	%a1,%a2
3470	lea	%pc@(L(mac_rowbytes)),%a0
3471	movel	%a0@,%d5
3472	movel	%pc@(L(console_font)),%a0
3473	tstl	%a0
3474	jeq	1f
3475	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3476	addal	%d5,%a2
3477
3478	/*
3479	 * Get dimensions
3480	 */
3481	lea	%pc@(L(mac_dimensions)),%a0
3482	movel	%a0@,%d3
3483	movel	%d3,%d4
3484	swap	%d4
3485	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3486	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3487
3488	/*
3489	 * Calculate number of bytes to move
3490	 */
3491	lea	%pc@(L(mac_rowbytes)),%a0
3492	movel	%a0@,%d6
3493	movel	%pc@(L(console_font)),%a0
3494	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3495	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3496	divul	#32,%d6		/* we'll move 8 longs at a time */
3497	subq	#1,%d6
3498
3499L(console_scroll_loop):
3500	movel	%a2@+,%a1@+
3501	movel	%a2@+,%a1@+
3502	movel	%a2@+,%a1@+
3503	movel	%a2@+,%a1@+
3504	movel	%a2@+,%a1@+
3505	movel	%a2@+,%a1@+
3506	movel	%a2@+,%a1@+
3507	movel	%a2@+,%a1@+
3508	dbra	%d6,L(console_scroll_loop)
3509
3510	lea	%pc@(L(mac_rowbytes)),%a0
3511	movel	%a0@,%d6
3512	movel	%pc@(L(console_font)),%a0
3513	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3514	divul	#32,%d6			/* we'll move 8 words at a time */
3515	subq	#1,%d6
3516
3517	moveq	#-1,%d0
3518L(console_scroll_clear_loop):
3519	movel	%d0,%a1@+
3520	movel	%d0,%a1@+
3521	movel	%d0,%a1@+
3522	movel	%d0,%a1@+
3523	movel	%d0,%a1@+
3524	movel	%d0,%a1@+
3525	movel	%d0,%a1@+
3526	movel	%d0,%a1@+
3527	dbra	%d6,L(console_scroll_clear_loop)
3528
35291:
3530func_return	console_scroll
3531
3532
3533func_start	console_putc,%a0/%a1/%d0-%d7
3534
3535	is_not_mac(L(console_exit))
3536	tstl	%pc@(L(console_font))
3537	jeq	L(console_exit)
3538
3539	/* Output character in d7 on console.
3540	 */
3541	movel	ARG1,%d7
3542	cmpib	#'\n',%d7
3543	jbne	1f
3544
3545	/* A little safe recursion is good for the soul */
3546	console_putc	#'\r'
35471:
3548	lea	%pc@(L(console_globals)),%a0
3549
3550	cmpib	#10,%d7
3551	jne	L(console_not_lf)
3552	movel	%a0@(Lconsole_struct_cur_row),%d0
3553	addil	#1,%d0
3554	movel	%d0,%a0@(Lconsole_struct_cur_row)
3555	movel	%a0@(Lconsole_struct_num_rows),%d1
3556	cmpl	%d1,%d0
3557	jcs	1f
3558	subil	#1,%d0
3559	movel	%d0,%a0@(Lconsole_struct_cur_row)
3560	console_scroll
35611:
3562	jra	L(console_exit)
3563
3564L(console_not_lf):
3565	cmpib	#13,%d7
3566	jne	L(console_not_cr)
3567	clrl	%a0@(Lconsole_struct_cur_column)
3568	jra	L(console_exit)
3569
3570L(console_not_cr):
3571	cmpib	#1,%d7
3572	jne	L(console_not_home)
3573	clrl	%a0@(Lconsole_struct_cur_row)
3574	clrl	%a0@(Lconsole_struct_cur_column)
3575	jra	L(console_exit)
3576
3577/*
3578 *	At this point we know that the %d7 character is going to be
3579 *	rendered on the screen.  Register usage is -
3580 *		a0 = pointer to console globals
3581 *		a1 = font data
3582 *		d0 = cursor column
3583 *		d1 = cursor row to draw the character
3584 *		d7 = character number
3585 */
3586L(console_not_home):
3587	movel	%a0@(Lconsole_struct_cur_column),%d0
3588	addql	#1,%a0@(Lconsole_struct_cur_column)
3589	movel	%a0@(Lconsole_struct_num_columns),%d1
3590	cmpl	%d1,%d0
3591	jcs	1f
3592	console_putc	#'\n'	/* recursion is OK! */
35931:
3594	movel	%a0@(Lconsole_struct_cur_row),%d1
3595
3596	/*
3597	 *	At this point we make a shift in register usage
3598	 *	a0 = address of pointer to font data (fbcon_font_desc)
3599	 */
3600	movel	%pc@(L(console_font)),%a0
3601	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3602	andl	#0x000000ff,%d7
3603		/* ASSERT: a0 = contents of Lconsole_font */
3604	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3605	addl	%d7,%a1			/* a1 = points to char image */
3606
3607	/*
3608	 *	At this point we make a shift in register usage
3609	 *	d0 = pixel coordinate, x
3610	 *	d1 = pixel coordinate, y
3611	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3612	 *	d3 = font scan line data (8 pixels)
3613	 *	d6 = count down for the font's pixel width (8)
3614	 *	d7 = count down for the font's pixel count in height
3615	 */
3616		/* ASSERT: a0 = contents of Lconsole_font */
3617	mulul	%a0@(FONT_DESC_WIDTH),%d0
3618	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3619	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3620	subq	#1,%d7
3621L(console_read_char_scanline):
3622	moveb	%a1@+,%d3
3623
3624		/* ASSERT: a0 = contents of Lconsole_font */
3625	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3626	subql	#1,%d6
3627
3628L(console_do_font_scanline):
3629	lslb	#1,%d3
3630	scsb	%d2		/* convert 1 bit into a byte */
3631	console_plot_pixel %d0,%d1,%d2
3632	addq	#1,%d0
3633	dbra	%d6,L(console_do_font_scanline)
3634
3635		/* ASSERT: a0 = contents of Lconsole_font */
3636	subl	%a0@(FONT_DESC_WIDTH),%d0
3637	addq	#1,%d1
3638	dbra	%d7,L(console_read_char_scanline)
3639
3640L(console_exit):
3641func_return	console_putc
3642
3643	/*
3644	 *	Input:
3645	 *		d0 = x coordinate
3646	 *		d1 = y coordinate
3647	 *		d2 = (bit 0) 1/0 for white/black (!)
3648	 *	All registers are preserved
3649	 */
3650func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3651
3652	movel	%pc@(L(mac_videobase)),%a1
3653	movel	%pc@(L(mac_videodepth)),%d3
3654	movel	ARG1,%d0
3655	movel	ARG2,%d1
3656	mulul	%pc@(L(mac_rowbytes)),%d1
3657	movel	ARG3,%d2
3658
3659	/*
3660	 *	Register usage:
3661	 *		d0 = x coord becomes byte offset into frame buffer
3662	 *		d1 = y coord
3663	 *		d2 = black or white (0/1)
3664	 *		d3 = video depth
3665	 *		d4 = temp of x (d0) for many bit depths
3666	 */
3667L(test_1bit):
3668	cmpb	#1,%d3
3669	jbne	L(test_2bit)
3670	movel	%d0,%d4		/* we need the low order 3 bits! */
3671	divul	#8,%d0
3672	addal	%d0,%a1
3673	addal	%d1,%a1
3674	andb	#7,%d4
3675	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3676	andb	#1,%d2
3677	jbne	L(white_1)
3678	bsetb	%d4,%a1@
3679	jbra	L(console_plot_pixel_exit)
3680L(white_1):
3681	bclrb	%d4,%a1@
3682	jbra	L(console_plot_pixel_exit)
3683
3684L(test_2bit):
3685	cmpb	#2,%d3
3686	jbne	L(test_4bit)
3687	movel	%d0,%d4		/* we need the low order 2 bits! */
3688	divul	#4,%d0
3689	addal	%d0,%a1
3690	addal	%d1,%a1
3691	andb	#3,%d4
3692	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3693	lsll	#1,%d4		/* ! */
3694	andb	#1,%d2
3695	jbne	L(white_2)
3696	bsetb	%d4,%a1@
3697	addq	#1,%d4
3698	bsetb	%d4,%a1@
3699	jbra	L(console_plot_pixel_exit)
3700L(white_2):
3701	bclrb	%d4,%a1@
3702	addq	#1,%d4
3703	bclrb	%d4,%a1@
3704	jbra	L(console_plot_pixel_exit)
3705
3706L(test_4bit):
3707	cmpb	#4,%d3
3708	jbne	L(test_8bit)
3709	movel	%d0,%d4		/* we need the low order bit! */
3710	divul	#2,%d0
3711	addal	%d0,%a1
3712	addal	%d1,%a1
3713	andb	#1,%d4
3714	eorb	#1,%d4
3715	lsll	#2,%d4		/* ! */
3716	andb	#1,%d2
3717	jbne	L(white_4)
3718	bsetb	%d4,%a1@
3719	addq	#1,%d4
3720	bsetb	%d4,%a1@
3721	addq	#1,%d4
3722	bsetb	%d4,%a1@
3723	addq	#1,%d4
3724	bsetb	%d4,%a1@
3725	jbra	L(console_plot_pixel_exit)
3726L(white_4):
3727	bclrb	%d4,%a1@
3728	addq	#1,%d4
3729	bclrb	%d4,%a1@
3730	addq	#1,%d4
3731	bclrb	%d4,%a1@
3732	addq	#1,%d4
3733	bclrb	%d4,%a1@
3734	jbra	L(console_plot_pixel_exit)
3735
3736L(test_8bit):
3737	cmpb	#8,%d3
3738	jbne	L(test_16bit)
3739	addal	%d0,%a1
3740	addal	%d1,%a1
3741	andb	#1,%d2
3742	jbne	L(white_8)
3743	moveb	#0xff,%a1@
3744	jbra	L(console_plot_pixel_exit)
3745L(white_8):
3746	clrb	%a1@
3747	jbra	L(console_plot_pixel_exit)
3748
3749L(test_16bit):
3750	cmpb	#16,%d3
3751	jbne	L(console_plot_pixel_exit)
3752	addal	%d0,%a1
3753	addal	%d0,%a1
3754	addal	%d1,%a1
3755	andb	#1,%d2
3756	jbne	L(white_16)
3757	clrw	%a1@
3758	jbra	L(console_plot_pixel_exit)
3759L(white_16):
3760	movew	#0x0fff,%a1@
3761	jbra	L(console_plot_pixel_exit)
3762
3763L(console_plot_pixel_exit):
3764func_return	console_plot_pixel
3765#endif /* CONSOLE_DEBUG */
3766
3767
3768__INITDATA
3769	.align	4
3770
3771m68k_init_mapped_size:
3772	.long	0
3773
3774#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3775    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3776L(custom):
3777L(iobase):
3778	.long 0
3779#endif
3780
3781#ifdef CONSOLE_DEBUG
3782L(console_globals):
3783	.long	0		/* cursor column */
3784	.long	0		/* cursor row */
3785	.long	0		/* max num columns */
3786	.long	0		/* max num rows */
3787	.long	0		/* left edge */
3788L(console_font):
3789	.long	0		/* pointer to console font (struct font_desc) */
3790L(console_font_data):
3791	.long	0		/* pointer to console font data */
3792#endif /* CONSOLE_DEBUG */
3793
3794#if defined(MMU_PRINT)
3795L(mmu_print_data):
3796	.long	0		/* valid flag */
3797	.long	0		/* start logical */
3798	.long	0		/* next logical */
3799	.long	0		/* start physical */
3800	.long	0		/* next physical */
3801#endif /* MMU_PRINT */
3802
3803L(cputype):
3804	.long	0
3805L(mmu_cached_pointer_tables):
3806	.long	0
3807L(mmu_num_pointer_tables):
3808	.long	0
3809L(phys_kernel_start):
3810	.long	0
3811L(kernel_end):
3812	.long	0
3813L(memory_start):
3814	.long	0
3815L(kernel_pgdir_ptr):
3816	.long	0
3817L(temp_mmap_mem):
3818	.long	0
3819
3820#if defined (CONFIG_MVME147)
3821M147_SCC_CTRL_A = 0xfffe3002
3822M147_SCC_DATA_A = 0xfffe3003
3823#endif
3824
3825#if defined (CONFIG_MVME16x)
3826M162_SCC_CTRL_A = 0xfff45005
3827M167_CYCAR = 0xfff450ee
3828M167_CYIER = 0xfff45011
3829M167_CYLICR = 0xfff45026
3830M167_CYTEOIR = 0xfff45085
3831M167_CYTDR = 0xfff450f8
3832M167_PCSCCMICR = 0xfff4201d
3833M167_PCSCCTICR = 0xfff4201e
3834M167_PCSCCRICR = 0xfff4201f
3835M167_PCTPIACKR = 0xfff42025
3836#endif
3837
3838#if defined (CONFIG_BVME6000)
3839BVME_SCC_CTRL_A	= 0xffb0000b
3840BVME_SCC_DATA_A	= 0xffb0000f
3841#endif
3842
3843#if defined(CONFIG_MAC)
3844L(mac_videobase):
3845	.long	0
3846L(mac_videodepth):
3847	.long	0
3848L(mac_dimensions):
3849	.long	0
3850L(mac_rowbytes):
3851	.long	0
3852L(mac_sccbase):
3853	.long	0
3854#endif /* CONFIG_MAC */
3855
3856#if defined (CONFIG_APOLLO)
3857LSRB0        = 0x10412
3858LTHRB0       = 0x10416
3859LCPUCTRL     = 0x10100
3860#endif
3861
3862#if defined(CONFIG_HP300)
3863DCADATA	     = 0x11
3864DCALSR	     = 0x1b
3865APCIDATA     = 0x00
3866APCILSR      = 0x14
3867L(uartbase):
3868	.long	0
3869L(uart_scode):
3870	.long	-1
3871#endif
3872
3873__FINIT
3874	.data
3875	.align	4
3876
3877availmem:
3878	.long	0
3879m68k_pgtable_cachemode:
3880	.long	0
3881m68k_supervisor_cachemode:
3882	.long	0
3883#if defined(CONFIG_MVME16x)
3884mvme_bdid:
3885	.long	0,0,0,0,0,0,0,0
3886#endif
3887#if defined(CONFIG_Q40)
3888q40_mem_cptr:
3889	.long	0
3890L(q40_do_debug):
3891	.long	0
3892#endif
3893
3894#if defined(CONFIG_VIRT)
3895GF_PUT_CHAR = 0x00
3896L(virt_gf_tty_base):
3897	.long 0
3898#endif /* CONFIG_VIRT */
3899