xref: /openbmc/linux/arch/m68k/kernel/head.S (revision ca79522c)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 9/02/11  Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE:	There is support for head.S console in this file.  This
202 * console can talk to a Mac frame buffer, but could easily be extrapolated
203 * to extend it to support other platforms.
204 *
205 * TEST_MMU:	This is a test harness for running on any given machine but
206 * getting an MMU dump for another class of machine.  The classes of machines
207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208 * and any of the models (030, 040, 060, etc.).
209 *
210 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
211 *		When head.S boots on Atari, Amiga, Macintosh, and VME
212 *		machines.  At that point the underlying logic will be
213 *		believed to be solid enough to be trusted, and TEST_MMU
214 *		can be dropped.  Do note that that will clean up the
215 *		head.S code significantly as large blocks of #if/#else
216 *		clauses can be removed.
217 *
218 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
219 * determing why devices don't appear to work.  A test case was to remove
220 * the cacheability of the kernel bits.
221 *
222 * MMU_PRINT:	There is a routine built into head.S that can display the
223 * MMU data structures.  It outputs its result through the serial_putc
224 * interface.  So where ever that winds up driving data, that's where the
225 * mmu struct will appear.  On the Macintosh that's typically the console.
226 *
227 * SERIAL_DEBUG:	There are a series of putc() macro statements
228 * scattered through out the code to give progress of status to the
229 * person sitting at the console.  This constant determines whether those
230 * are used.
231 *
232 * DEBUG:	This is the standard DEBUG flag that can be set for building
233 *		the kernel.  It has the effect adding additional tests into
234 *		the code.
235 *
236 * FONT_6x11:
237 * FONT_8x8:
238 * FONT_8x16:
239 *		In theory these could be determined at run time or handed
240 *		over by the booter.  But, let's be real, it's a fine hard
241 *		coded value.  (But, you will notice the code is run-time
242 *		flexible!)  A pointer to the font's struct font_desc
243 *		is kept locally in Lconsole_font.  It is used to determine
244 *		font size information dynamically.
245 *
246 * Atari constants:
247 * USE_PRINTER:	Use the printer port for serial debug.
248 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
249 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
250 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
251 *
252 * Macintosh constants:
253 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug and early console.
254 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug and early console.
255 */
256
257#include <linux/linkage.h>
258#include <linux/init.h>
259#include <asm/bootinfo.h>
260#include <asm/setup.h>
261#include <asm/entry.h>
262#include <asm/pgtable.h>
263#include <asm/page.h>
264#include <asm/asm-offsets.h>
265
266#ifdef CONFIG_MAC
267
268#include <asm/machw.h>
269
270#ifdef CONFIG_FRAMEBUFFER_CONSOLE
271#define CONSOLE
272#define CONSOLE_PENGUIN
273#endif
274
275#ifdef CONFIG_EARLY_PRINTK
276#define SERIAL_DEBUG
277#else
278#undef SERIAL_DEBUG
279#endif
280
281#else /* !CONFIG_MAC */
282
283#define SERIAL_DEBUG
284
285#endif /* !CONFIG_MAC */
286
287#undef MMU_PRINT
288#undef MMU_NOCACHE_KERNEL
289#undef DEBUG
290
291/*
292 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
293 * The 8x8 font is harder to read but fits more on the screen.
294 */
295#define FONT_8x8	/* default */
296/* #define FONT_8x16 */	/* 2nd choice */
297/* #define FONT_6x11 */	/* 3rd choice */
298
299.globl kernel_pg_dir
300.globl availmem
301.globl m68k_pgtable_cachemode
302.globl m68k_supervisor_cachemode
303#ifdef CONFIG_MVME16x
304.globl mvme_bdid
305#endif
306#ifdef CONFIG_Q40
307.globl q40_mem_cptr
308#endif
309
310CPUTYPE_040	= 1	/* indicates an 040 */
311CPUTYPE_060	= 2	/* indicates an 060 */
312CPUTYPE_0460	= 3	/* if either above are set, this is set */
313CPUTYPE_020	= 4	/* indicates an 020 */
314
315/* Translation control register */
316TC_ENABLE = 0x8000
317TC_PAGE8K = 0x4000
318TC_PAGE4K = 0x0000
319
320/* Transparent translation registers */
321TTR_ENABLE	= 0x8000	/* enable transparent translation */
322TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
323TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
324TTR_USERMODE	= 0x0000	/* only user mode access */
325TTR_CI		= 0x0400	/* inhibit cache */
326TTR_RW		= 0x0200	/* read/write mode */
327TTR_RWM		= 0x0100	/* read/write mask */
328TTR_FCB2	= 0x0040	/* function code base bit 2 */
329TTR_FCB1	= 0x0020	/* function code base bit 1 */
330TTR_FCB0	= 0x0010	/* function code base bit 0 */
331TTR_FCM2	= 0x0004	/* function code mask bit 2 */
332TTR_FCM1	= 0x0002	/* function code mask bit 1 */
333TTR_FCM0	= 0x0001	/* function code mask bit 0 */
334
335/* Cache Control registers */
336CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
337CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
338CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
339CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
340CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
341CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
342CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
343CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
344CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
345CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
346CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
347CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
348CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
349CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
350CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
351CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
352CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
353CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
354CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
355CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
356CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
357CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
358
359/* Miscellaneous definitions */
360PAGESIZE	= 4096
361PAGESHIFT	= 12
362
363ROOT_TABLE_SIZE	= 128
364PTR_TABLE_SIZE	= 128
365PAGE_TABLE_SIZE	= 64
366ROOT_INDEX_SHIFT = 25
367PTR_INDEX_SHIFT  = 18
368PAGE_INDEX_SHIFT = 12
369
370#ifdef DEBUG
371/* When debugging use readable names for labels */
372#ifdef __STDC__
373#define L(name) .head.S.##name
374#else
375#define L(name) .head.S./**/name
376#endif
377#else
378#ifdef __STDC__
379#define L(name) .L##name
380#else
381#define L(name) .L/**/name
382#endif
383#endif
384
385/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
386#ifndef __INITDATA
387#define __INITDATA	.data
388#define __FINIT		.previous
389#endif
390
391/* Several macros to make the writing of subroutines easier:
392 * - func_start marks the beginning of the routine which setups the frame
393 *   register and saves the registers, it also defines another macro
394 *   to automatically restore the registers again.
395 * - func_return marks the end of the routine and simply calls the prepared
396 *   macro to restore registers and jump back to the caller.
397 * - func_define generates another macro to automatically put arguments
398 *   onto the stack call the subroutine and cleanup the stack again.
399 */
400
401/* Within subroutines these macros can be used to access the arguments
402 * on the stack. With STACK some allocated memory on the stack can be
403 * accessed and ARG0 points to the return address (used by mmu_engage).
404 */
405#define	STACK	%a6@(stackstart)
406#define ARG0	%a6@(4)
407#define ARG1	%a6@(8)
408#define ARG2	%a6@(12)
409#define ARG3	%a6@(16)
410#define ARG4	%a6@(20)
411
412.macro	func_start	name,saveregs,stack=0
413L(\name):
414	linkw	%a6,#-\stack
415	moveml	\saveregs,%sp@-
416.set	stackstart,-\stack
417
418.macro	func_return_\name
419	moveml	%sp@+,\saveregs
420	unlk	%a6
421	rts
422.endm
423.endm
424
425.macro	func_return	name
426	func_return_\name
427.endm
428
429.macro	func_call	name
430	jbsr	L(\name)
431.endm
432
433.macro	move_stack	nr,arg1,arg2,arg3,arg4
434.if	\nr
435	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
436	movel	\arg1,%sp@-
437.endif
438.endm
439
440.macro	func_define	name,nr=0
441.macro	\name	arg1,arg2,arg3,arg4
442	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
443	func_call	\name
444.if	\nr
445	lea	%sp@(\nr*4),%sp
446.endif
447.endm
448.endm
449
450func_define	mmu_map,4
451func_define	mmu_map_tt,4
452func_define	mmu_fixup_page_mmu_cache,1
453func_define	mmu_temp_map,2
454func_define	mmu_engage
455func_define	mmu_get_root_table_entry,1
456func_define	mmu_get_ptr_table_entry,2
457func_define	mmu_get_page_table_entry,2
458func_define	mmu_print
459func_define	get_new_page
460#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
461func_define	set_leds
462#endif
463
464.macro	mmu_map_eq	arg1,arg2,arg3
465	mmu_map	\arg1,\arg1,\arg2,\arg3
466.endm
467
468.macro	get_bi_record	record
469	pea	\record
470	func_call	get_bi_record
471	addql	#4,%sp
472.endm
473
474func_define	serial_putc,1
475func_define	console_putc,1
476
477func_define	console_init
478func_define	console_put_stats
479func_define	console_put_penguin
480func_define	console_plot_pixel,3
481func_define	console_scroll
482
483.macro	putc	ch
484#if defined(CONSOLE) || defined(SERIAL_DEBUG)
485	pea	\ch
486#endif
487#ifdef CONSOLE
488	func_call	console_putc
489#endif
490#ifdef SERIAL_DEBUG
491	func_call	serial_putc
492#endif
493#if defined(CONSOLE) || defined(SERIAL_DEBUG)
494	addql	#4,%sp
495#endif
496.endm
497
498.macro	dputc	ch
499#ifdef DEBUG
500	putc	\ch
501#endif
502.endm
503
504func_define	putn,1
505
506.macro	dputn	nr
507#ifdef DEBUG
508	putn	\nr
509#endif
510.endm
511
512.macro	puts		string
513#if defined(CONSOLE) || defined(SERIAL_DEBUG)
514	__INITDATA
515.Lstr\@:
516	.string	"\string"
517	__FINIT
518	pea	%pc@(.Lstr\@)
519	func_call	puts
520	addql	#4,%sp
521#endif
522.endm
523
524.macro	dputs	string
525#ifdef DEBUG
526	puts	"\string"
527#endif
528.endm
529
530#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
531#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
532#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
533#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
534#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
535#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
536#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
537#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
538#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
539#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
540#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
541#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
542#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
543
544#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
545			jeq 42f; \
546			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
547			jne lab ;\
548		42:\
549
550#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
551#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
552#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
553#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
554#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
555#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
556#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
557
558/* On the HP300 we use the on-board LEDs for debug output before
559   the console is running.  Writing a 1 bit turns the corresponding LED
560   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
561.macro	leds	mask
562#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
563	hasnt_leds(.Lled\@)
564	pea	\mask
565	func_call	set_leds
566	addql	#4,%sp
567.Lled\@:
568#endif
569.endm
570
571__HEAD
572ENTRY(_stext)
573/*
574 * Version numbers of the bootinfo interface
575 * The area from _stext to _start will later be used as kernel pointer table
576 */
577	bras	1f	/* Jump over bootinfo version numbers */
578
579	.long	BOOTINFOV_MAGIC
580	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
581	.long	MACH_ATARI, ATARI_BOOTI_VERSION
582	.long	MACH_MVME147, MVME147_BOOTI_VERSION
583	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
584	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
585	.long	MACH_MAC, MAC_BOOTI_VERSION
586	.long	MACH_Q40, Q40_BOOTI_VERSION
587	.long	MACH_HP300, HP300_BOOTI_VERSION
588	.long	0
5891:	jra	__start
590
591.equ	kernel_pg_dir,_stext
592
593.equ	.,_stext+PAGESIZE
594
595ENTRY(_start)
596	jra	__start
597__INIT
598ENTRY(__start)
599/*
600 * Setup initial stack pointer
601 */
602	lea	%pc@(_stext),%sp
603
604/*
605 * Record the CPU and machine type.
606 */
607	get_bi_record	BI_MACHTYPE
608	lea	%pc@(m68k_machtype),%a1
609	movel	%a0@,%a1@
610
611	get_bi_record	BI_FPUTYPE
612	lea	%pc@(m68k_fputype),%a1
613	movel	%a0@,%a1@
614
615	get_bi_record	BI_MMUTYPE
616	lea	%pc@(m68k_mmutype),%a1
617	movel	%a0@,%a1@
618
619	get_bi_record	BI_CPUTYPE
620	lea	%pc@(m68k_cputype),%a1
621	movel	%a0@,%a1@
622
623	leds	0x1
624
625#ifdef CONFIG_MAC
626/*
627 * For Macintosh, we need to determine the display parameters early (at least
628 * while debugging it).
629 */
630
631	is_not_mac(L(test_notmac))
632
633	get_bi_record	BI_MAC_VADDR
634	lea	%pc@(L(mac_videobase)),%a1
635	movel	%a0@,%a1@
636
637	get_bi_record	BI_MAC_VDEPTH
638	lea	%pc@(L(mac_videodepth)),%a1
639	movel	%a0@,%a1@
640
641	get_bi_record	BI_MAC_VDIM
642	lea	%pc@(L(mac_dimensions)),%a1
643	movel	%a0@,%a1@
644
645	get_bi_record	BI_MAC_VROW
646	lea	%pc@(L(mac_rowbytes)),%a1
647	movel	%a0@,%a1@
648
649#ifdef SERIAL_DEBUG
650	get_bi_record	BI_MAC_SCCBASE
651	lea	%pc@(L(mac_sccbase)),%a1
652	movel	%a0@,%a1@
653#endif
654
655#if 0
656	/*
657	 * Clear the screen
658	 */
659	lea	%pc@(L(mac_videobase)),%a0
660	movel	%a0@,%a1
661	lea	%pc@(L(mac_dimensions)),%a0
662	movel	%a0@,%d1
663	swap	%d1		/* #rows is high bytes */
664	andl	#0xFFFF,%d1	/* rows */
665	subl	#10,%d1
666	lea	%pc@(L(mac_rowbytes)),%a0
667loopy2:
668	movel	%a0@,%d0
669	subql	#1,%d0
670loopx2:
671	moveb	#0x55, %a1@+
672	dbra	%d0,loopx2
673	dbra	%d1,loopy2
674#endif
675
676L(test_notmac):
677#endif /* CONFIG_MAC */
678
679
680/*
681 * There are ultimately two pieces of information we want for all kinds of
682 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
683 * and is converted here from a booter type definition to a separate bit
684 * number which allows for the standard is_0x0 macro tests.
685 */
686	movel	%pc@(m68k_cputype),%d0
687	/*
688	 * Assume it's an 030
689	 */
690	clrl	%d1
691
692	/*
693	 * Test the BootInfo cputype for 060
694	 */
695	btst	#CPUB_68060,%d0
696	jeq	1f
697	bset	#CPUTYPE_060,%d1
698	bset	#CPUTYPE_0460,%d1
699	jra	3f
7001:
701	/*
702	 * Test the BootInfo cputype for 040
703	 */
704	btst	#CPUB_68040,%d0
705	jeq	2f
706	bset	#CPUTYPE_040,%d1
707	bset	#CPUTYPE_0460,%d1
708	jra	3f
7092:
710	/*
711	 * Test the BootInfo cputype for 020
712	 */
713	btst	#CPUB_68020,%d0
714	jeq	3f
715	bset	#CPUTYPE_020,%d1
716	jra	3f
7173:
718	/*
719	 * Record the cpu type
720	 */
721	lea	%pc@(L(cputype)),%a0
722	movel	%d1,%a0@
723
724	/*
725	 * NOTE:
726	 *
727	 * Now the macros are valid:
728	 *	is_040_or_060
729	 *	is_not_040_or_060
730	 *	is_040
731	 *	is_060
732	 *	is_not_060
733	 */
734
735	/*
736	 * Determine the cache mode for pages holding MMU tables
737	 * and for supervisor mode, unused for '020 and '030
738	 */
739	clrl	%d0
740	clrl	%d1
741
742	is_not_040_or_060(L(save_cachetype))
743
744	/*
745	 * '040 or '060
746	 * d1 := cacheable write-through
747	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
748	 * but we have been using write-through since at least 2.0.29 so I
749	 * guess it is OK.
750	 */
751#ifdef CONFIG_060_WRITETHROUGH
752	/*
753	 * If this is a 68060 board using drivers with cache coherency
754	 * problems, then supervisor memory accesses need to be write-through
755	 * also; otherwise, we want copyback.
756	 */
757
758	is_not_060(1f)
759	movel	#_PAGE_CACHE040W,%d0
760	jra	L(save_cachetype)
761#endif /* CONFIG_060_WRITETHROUGH */
7621:
763	movew	#_PAGE_CACHE040,%d0
764
765	movel	#_PAGE_CACHE040W,%d1
766
767L(save_cachetype):
768	/* Save cache mode for supervisor mode and page tables
769	 */
770	lea	%pc@(m68k_supervisor_cachemode),%a0
771	movel	%d0,%a0@
772	lea	%pc@(m68k_pgtable_cachemode),%a0
773	movel	%d1,%a0@
774
775/*
776 * raise interrupt level
777 */
778	movew	#0x2700,%sr
779
780/*
781   If running on an Atari, determine the I/O base of the
782   serial port and test if we are running on a Medusa or Hades.
783   This test is necessary here, because on the Hades the serial
784   port is only accessible in the high I/O memory area.
785
786   The test whether it is a Medusa is done by writing to the byte at
787   phys. 0x0. This should result in a bus error on all other machines.
788
789   ...should, but doesn't. The Afterburner040 for the Falcon has the
790   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
791   another test to distinguish Medusa and AB040. This is a
792   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
793   (+AB040), but is in the range where the Medusa always asserts DTACK.
794
795   The test for the Hades is done by reading address 0xb0000000. This
796   should give a bus error on the Medusa.
797 */
798
799#ifdef CONFIG_ATARI
800	is_not_atari(L(notypetest))
801
802	/* get special machine type (Medusa/Hades/AB40) */
803	moveq	#0,%d3 /* default if tag doesn't exist */
804	get_bi_record	BI_ATARI_MCH_TYPE
805	tstl	%d0
806	jbmi	1f
807	movel	%a0@,%d3
808	lea	%pc@(atari_mch_type),%a0
809	movel	%d3,%a0@
8101:
811	/* On the Hades, the iobase must be set up before opening the
812	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
813	moveq	#0,%d0
814	cmpl	#ATARI_MACH_HADES,%d3
815	jbne	1f
816	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
8171:	lea     %pc@(L(iobase)),%a0
818	movel   %d0,%a0@
819
820L(notypetest):
821#endif
822
823#ifdef CONFIG_VME
824	is_mvme147(L(getvmetype))
825	is_bvme6000(L(getvmetype))
826	is_not_mvme16x(L(gvtdone))
827
828	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
829	 * versions of VMELILO and TFTPLILO do this.  We have to do this
830	 * early so we know how to handle console output.  If the tag
831	 * doesn't exist then we use the Bug for output on MVME16x.
832	 */
833L(getvmetype):
834	get_bi_record	BI_VME_TYPE
835	tstl	%d0
836	jbmi	1f
837	movel	%a0@,%d3
838	lea	%pc@(vme_brdtype),%a0
839	movel	%d3,%a0@
8401:
841#ifdef CONFIG_MVME16x
842	is_not_mvme16x(L(gvtdone))
843
844	/* Need to get the BRD_ID info to differentiate between 162, 167,
845	 * etc.  This is available as a BI_VME_BRDINFO tag with later
846	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
847	 */
848	get_bi_record	BI_VME_BRDINFO
849	tstl	%d0
850	jpl	1f
851
852	/* Get pointer to board ID data from Bug */
853	movel	%d2,%sp@-
854	trap	#15
855	.word	0x70		/* trap 0x70 - .BRD_ID */
856	movel	%sp@+,%a0
8571:
858	lea	%pc@(mvme_bdid),%a1
859	/* Structure is 32 bytes long */
860	movel	%a0@+,%a1@+
861	movel	%a0@+,%a1@+
862	movel	%a0@+,%a1@+
863	movel	%a0@+,%a1@+
864	movel	%a0@+,%a1@+
865	movel	%a0@+,%a1@+
866	movel	%a0@+,%a1@+
867	movel	%a0@+,%a1@+
868#endif
869
870L(gvtdone):
871
872#endif
873
874#ifdef CONFIG_HP300
875	is_not_hp300(L(nothp))
876
877	/* Get the address of the UART for serial debugging */
878	get_bi_record	BI_HP300_UART_ADDR
879	tstl	%d0
880	jbmi	1f
881	movel	%a0@,%d3
882	lea	%pc@(L(uartbase)),%a0
883	movel	%d3,%a0@
884	get_bi_record	BI_HP300_UART_SCODE
885	tstl	%d0
886	jbmi	1f
887	movel	%a0@,%d3
888	lea	%pc@(L(uart_scode)),%a0
889	movel	%d3,%a0@
8901:
891L(nothp):
892#endif
893
894/*
895 * Initialize serial port
896 */
897	jbsr	L(serial_init)
898
899/*
900 * Initialize console
901 */
902#ifdef CONFIG_MAC
903	is_not_mac(L(nocon))
904#ifdef CONSOLE
905	console_init
906#ifdef CONSOLE_PENGUIN
907	console_put_penguin
908#endif	/* CONSOLE_PENGUIN */
909	console_put_stats
910#endif	/* CONSOLE */
911L(nocon):
912#endif	/* CONFIG_MAC */
913
914
915	putc	'\n'
916	putc	'A'
917	leds	0x2
918	dputn	%pc@(L(cputype))
919	dputn	%pc@(m68k_supervisor_cachemode)
920	dputn	%pc@(m68k_pgtable_cachemode)
921	dputc	'\n'
922
923/*
924 * Save physical start address of kernel
925 */
926	lea	%pc@(L(phys_kernel_start)),%a0
927	lea	%pc@(_stext),%a1
928	subl	#_stext,%a1
929	addl	#PAGE_OFFSET,%a1
930	movel	%a1,%a0@
931
932	putc	'B'
933
934	leds	0x4
935
936/*
937 *	mmu_init
938 *
939 *	This block of code does what's necessary to map in the various kinds
940 *	of machines for execution of Linux.
941 *	First map the first 4 MB of kernel code & data
942 */
943
944	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
945		%pc@(m68k_supervisor_cachemode)
946
947	putc	'C'
948
949#ifdef CONFIG_AMIGA
950
951L(mmu_init_amiga):
952
953	is_not_amiga(L(mmu_init_not_amiga))
954/*
955 * mmu_init_amiga
956 */
957
958	putc	'D'
959
960	is_not_040_or_060(1f)
961
962	/*
963	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
964	 */
965	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
966	/*
967	 * Map the Zorro III I/O space with transparent translation
968	 * for frame buffer memory etc.
969	 */
970	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
971
972	jbra	L(mmu_init_done)
973
9741:
975	/*
976	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
977	 */
978	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
979	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
980
981	jbra	L(mmu_init_done)
982
983L(mmu_init_not_amiga):
984#endif
985
986#ifdef CONFIG_ATARI
987
988L(mmu_init_atari):
989
990	is_not_atari(L(mmu_init_not_atari))
991
992	putc	'E'
993
994/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
995   the last 16 MB of virtual address space to the first 16 MB (i.e.
996   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
997   needed. I/O ranges are marked non-cachable.
998
999   For the Medusa it is better to map the I/O region transparently
1000   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1001   accessible only in the high area.
1002
1003   On the Hades all I/O registers are only accessible in the high
1004   area.
1005*/
1006
1007	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1008	moveq	#0,%d0
1009	movel	%pc@(atari_mch_type),%d3
1010	cmpl	#ATARI_MACH_MEDUSA,%d3
1011	jbeq	2f
1012	cmpl	#ATARI_MACH_HADES,%d3
1013	jbne	1f
10142:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
10151:	movel	%d0,%d3
1016
1017	is_040_or_060(L(spata68040))
1018
1019	/* Map everything non-cacheable, though not all parts really
1020	 * need to disable caches (crucial only for 0xff8000..0xffffff
1021	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1022	 * isn't really used, except for sometimes peeking into the
1023	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
1024	 * this. */
1025	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1026
1027	jbra	L(mmu_init_done)
1028
1029L(spata68040):
1030
1031	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1032
1033	jbra	L(mmu_init_done)
1034
1035L(mmu_init_not_atari):
1036#endif
1037
1038#ifdef CONFIG_Q40
1039	is_not_q40(L(notq40))
1040	/*
1041	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1042	 * non-cached serialized etc..
1043	 * this includes master chip, DAC, RTC and ISA ports
1044	 * 0xfe000000-0xfeffffff is for screen and ROM
1045	 */
1046
1047	putc    'Q'
1048
1049	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1050	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1051
1052	jbra	L(mmu_init_done)
1053
1054L(notq40):
1055#endif
1056
1057#ifdef CONFIG_HP300
1058	is_not_hp300(L(nothp300))
1059
1060	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1061	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1062	 * The ROM mapping is needed because the LEDs are mapped there too.
1063	 */
1064
1065	is_040(1f)
1066
1067	/*
1068	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1069	 */
1070	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1071
1072	jbra	L(mmu_init_done)
1073
10741:
1075	/*
1076	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1077	 */
1078	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1079
1080	jbra	L(mmu_init_done)
1081
1082L(nothp300):
1083#endif /* CONFIG_HP300 */
1084
1085#ifdef CONFIG_MVME147
1086
1087	is_not_mvme147(L(not147))
1088
1089	/*
1090	 * On MVME147 we have already created kernel page tables for
1091	 * 4MB of RAM at address 0, so now need to do a transparent
1092	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1093	 * so we can access on-board i/o areas.
1094	 */
1095
1096	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1097
1098	jbra	L(mmu_init_done)
1099
1100L(not147):
1101#endif /* CONFIG_MVME147 */
1102
1103#ifdef CONFIG_MVME16x
1104
1105	is_not_mvme16x(L(not16x))
1106
1107	/*
1108	 * On MVME16x we have already created kernel page tables for
1109	 * 4MB of RAM at address 0, so now need to do a transparent
1110	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1111	 * Supervisor only access, so transparent mapping doesn't
1112	 * clash with User code virtual address space.
1113	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1114	 * mapping is needed to allow 167Bug to run.
1115	 * IO is in the range 0xfff00000 to 0xfffeffff.
1116	 * PROM is 0xff800000->0xffbfffff and SRAM is
1117	 * 0xffe00000->0xffe1ffff.
1118	 */
1119
1120	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1121
1122	jbra	L(mmu_init_done)
1123
1124L(not16x):
1125#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1126
1127#ifdef CONFIG_BVME6000
1128
1129	is_not_bvme6000(L(not6000))
1130
1131	/*
1132	 * On BVME6000 we have already created kernel page tables for
1133	 * 4MB of RAM at address 0, so now need to do a transparent
1134	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1135	 * so we can access on-board i/o areas.
1136	 * Supervisor only access, so transparent mapping doesn't
1137	 * clash with User code virtual address space.
1138	 */
1139
1140	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1141
1142	jbra	L(mmu_init_done)
1143
1144L(not6000):
1145#endif /* CONFIG_BVME6000 */
1146
1147/*
1148 * mmu_init_mac
1149 *
1150 * The Macintosh mappings are less clear.
1151 *
1152 * Even as of this writing, it is unclear how the
1153 * Macintosh mappings will be done.  However, as
1154 * the first author of this code I'm proposing the
1155 * following model:
1156 *
1157 * Map the kernel (that's already done),
1158 * Map the I/O (on most machines that's the
1159 * 0x5000.0000 ... 0x5300.0000 range,
1160 * Map the video frame buffer using as few pages
1161 * as absolutely (this requirement mostly stems from
1162 * the fact that when the frame buffer is at
1163 * 0x0000.0000 then we know there is valid RAM just
1164 * above the screen that we don't want to waste!).
1165 *
1166 * By the way, if the frame buffer is at 0x0000.0000
1167 * then the Macintosh is known as an RBV based Mac.
1168 *
1169 * By the way 2, the code currently maps in a bunch of
1170 * regions.  But I'd like to cut that out.  (And move most
1171 * of the mappings up into the kernel proper ... or only
1172 * map what's necessary.)
1173 */
1174
1175#ifdef CONFIG_MAC
1176
1177L(mmu_init_mac):
1178
1179	is_not_mac(L(mmu_init_not_mac))
1180
1181	putc	'F'
1182
1183	is_not_040_or_060(1f)
1184
1185	moveq	#_PAGE_NOCACHE_S,%d3
1186	jbra	2f
11871:
1188	moveq	#_PAGE_NOCACHE030,%d3
11892:
1190	/*
1191	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1192	 *	     we simply map the 4MB that contains the videomem
1193	 */
1194
1195	movel	#VIDEOMEMMASK,%d0
1196	andl	%pc@(L(mac_videobase)),%d0
1197
1198	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1199	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1200	mmu_map_eq	#0x40000000,#0x02000000,%d3
1201	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1202	mmu_map_eq	#0x50000000,#0x03000000,%d3
1203	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1204	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1205
1206	jbra	L(mmu_init_done)
1207
1208L(mmu_init_not_mac):
1209#endif
1210
1211#ifdef CONFIG_SUN3X
1212	is_not_sun3x(L(notsun3x))
1213
1214	/* oh, the pain..  We're gonna want the prom code after
1215	 * starting the MMU, so we copy the mappings, translating
1216	 * from 8k -> 4k pages as we go.
1217	 */
1218
1219	/* copy maps from 0xfee00000 to 0xff000000 */
1220	movel	#0xfee00000, %d0
1221	moveq	#ROOT_INDEX_SHIFT, %d1
1222	lsrl	%d1,%d0
1223	mmu_get_root_table_entry	%d0
1224
1225	movel	#0xfee00000, %d0
1226	moveq	#PTR_INDEX_SHIFT, %d1
1227	lsrl	%d1,%d0
1228	andl	#PTR_TABLE_SIZE-1, %d0
1229	mmu_get_ptr_table_entry		%a0,%d0
1230
1231	movel	#0xfee00000, %d0
1232	moveq	#PAGE_INDEX_SHIFT, %d1
1233	lsrl	%d1,%d0
1234	andl	#PAGE_TABLE_SIZE-1, %d0
1235	mmu_get_page_table_entry	%a0,%d0
1236
1237	/* this is where the prom page table lives */
1238	movel	0xfefe00d4, %a1
1239	movel	%a1@, %a1
1240
1241	movel	#((0x200000 >> 13)-1), %d1
1242
12431:
1244	movel	%a1@+, %d3
1245	movel	%d3,%a0@+
1246	addl	#0x1000,%d3
1247	movel	%d3,%a0@+
1248
1249	dbra	%d1,1b
1250
1251	/* setup tt1 for I/O */
1252	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1253	jbra	L(mmu_init_done)
1254
1255L(notsun3x):
1256#endif
1257
1258#ifdef CONFIG_APOLLO
1259	is_not_apollo(L(notapollo))
1260
1261	putc	'P'
1262	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1263
1264L(notapollo):
1265	jbra	L(mmu_init_done)
1266#endif
1267
1268L(mmu_init_done):
1269
1270	putc	'G'
1271	leds	0x8
1272
1273/*
1274 * mmu_fixup
1275 *
1276 * On the 040 class machines, all pages that are used for the
1277 * mmu have to be fixed up. According to Motorola, pages holding mmu
1278 * tables should be non-cacheable on a '040 and write-through on a
1279 * '060. But analysis of the reasons for this, and practical
1280 * experience, showed that write-through also works on a '040.
1281 *
1282 * Allocated memory so far goes from kernel_end to memory_start that
1283 * is used for all kind of tables, for that the cache attributes
1284 * are now fixed.
1285 */
1286L(mmu_fixup):
1287
1288	is_not_040_or_060(L(mmu_fixup_done))
1289
1290#ifdef MMU_NOCACHE_KERNEL
1291	jbra	L(mmu_fixup_done)
1292#endif
1293
1294	/* first fix the page at the start of the kernel, that
1295	 * contains also kernel_pg_dir.
1296	 */
1297	movel	%pc@(L(phys_kernel_start)),%d0
1298	subl	#PAGE_OFFSET,%d0
1299	lea	%pc@(_stext),%a0
1300	subl	%d0,%a0
1301	mmu_fixup_page_mmu_cache	%a0
1302
1303	movel	%pc@(L(kernel_end)),%a0
1304	subl	%d0,%a0
1305	movel	%pc@(L(memory_start)),%a1
1306	subl	%d0,%a1
1307	bra	2f
13081:
1309	mmu_fixup_page_mmu_cache	%a0
1310	addw	#PAGESIZE,%a0
13112:
1312	cmpl	%a0,%a1
1313	jgt	1b
1314
1315L(mmu_fixup_done):
1316
1317#ifdef MMU_PRINT
1318	mmu_print
1319#endif
1320
1321/*
1322 * mmu_engage
1323 *
1324 * This chunk of code performs the gruesome task of engaging the MMU.
1325 * The reason its gruesome is because when the MMU becomes engaged it
1326 * maps logical addresses to physical addresses.  The Program Counter
1327 * register is then passed through the MMU before the next instruction
1328 * is fetched (the instruction following the engage MMU instruction).
1329 * This may mean one of two things:
1330 * 1. The Program Counter falls within the logical address space of
1331 *    the kernel of which there are two sub-possibilities:
1332 *    A. The PC maps to the correct instruction (logical PC == physical
1333 *       code location), or
1334 *    B. The PC does not map through and the processor will read some
1335 *       data (or instruction) which is not the logically next instr.
1336 *    As you can imagine, A is good and B is bad.
1337 * Alternatively,
1338 * 2. The Program Counter does not map through the MMU.  The processor
1339 *    will take a Bus Error.
1340 * Clearly, 2 is bad.
1341 * It doesn't take a wiz kid to figure you want 1.A.
1342 * This code creates that possibility.
1343 * There are two possible 1.A. states (we now ignore the other above states):
1344 * A. The kernel is located at physical memory addressed the same as
1345 *    the logical memory for the kernel, i.e., 0x01000.
1346 * B. The kernel is located some where else.  e.g., 0x0400.0000
1347 *
1348 *    Under some conditions the Macintosh can look like A or B.
1349 * [A friend and I once noted that Apple hardware engineers should be
1350 * wacked twice each day: once when they show up at work (as in, Whack!,
1351 * "This is for the screwy hardware we know you're going to design today."),
1352 * and also at the end of the day (as in, Whack! "I don't know what
1353 * you designed today, but I'm sure it wasn't good."). -- rst]
1354 *
1355 * This code works on the following premise:
1356 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1357 * then create a mapping for the kernel at logical 0x8000.0000 to
1358 * the physical location of the pc.  And, create a transparent
1359 * translation register for the first 16 Meg.  Then, after the MMU
1360 * is engaged, the PC can be moved up into the 0x8000.0000 range
1361 * and then the transparent translation can be turned off and then
1362 * the PC can jump to the correct logical location and it will be
1363 * home (finally).  This is essentially the code that the Amiga used
1364 * to use.  Now, it's generalized for all processors.  Which means
1365 * that a fresh (but temporary) mapping has to be created.  The mapping
1366 * is made in page 0 (an as of yet unused location -- except for the
1367 * stack!).  This temporary mapping will only require 1 pointer table
1368 * and a single page table (it can map 256K).
1369 *
1370 * OK, alternatively, imagine that the Program Counter is not within
1371 * the first 16 Meg.  Then, just use Transparent Translation registers
1372 * to do the right thing.
1373 *
1374 * Last, if _start is already at 0x01000, then there's nothing special
1375 * to do (in other words, in a degenerate case of the first case above,
1376 * do nothing).
1377 *
1378 * Let's do it.
1379 *
1380 *
1381 */
1382
1383	putc	'H'
1384
1385	mmu_engage
1386
1387/*
1388 * After this point no new memory is allocated and
1389 * the start of available memory is stored in availmem.
1390 * (The bootmem allocator requires now the physicall address.)
1391 */
1392
1393	movel	L(memory_start),availmem
1394
1395#ifdef CONFIG_AMIGA
1396	is_not_amiga(1f)
1397	/* fixup the Amiga custom register location before printing */
1398	clrl	L(custom)
13991:
1400#endif
1401
1402#ifdef CONFIG_ATARI
1403	is_not_atari(1f)
1404	/* fixup the Atari iobase register location before printing */
1405	movel	#0xff000000,L(iobase)
14061:
1407#endif
1408
1409#ifdef CONFIG_MAC
1410	is_not_mac(1f)
1411	movel	#~VIDEOMEMMASK,%d0
1412	andl	L(mac_videobase),%d0
1413	addl	#VIDEOMEMBASE,%d0
1414	movel	%d0,L(mac_videobase)
1415#if defined(CONSOLE)
1416	movel	%pc@(L(phys_kernel_start)),%d0
1417	subl	#PAGE_OFFSET,%d0
1418	subl	%d0,L(console_font)
1419	subl	%d0,L(console_font_data)
1420#endif
1421#ifdef SERIAL_DEBUG
1422	orl	#0x50000000,L(mac_sccbase)
1423#endif
14241:
1425#endif
1426
1427#ifdef CONFIG_HP300
1428	is_not_hp300(2f)
1429	/*
1430	 * Fix up the iobase register to point to the new location of the LEDs.
1431	 */
1432	movel	#0xf0000000,L(iobase)
1433
1434	/*
1435	 * Energise the FPU and caches.
1436	 */
1437	is_040(1f)
1438	movel	#0x60,0xf05f400c
1439	jbra	2f
1440
1441	/*
1442	 * 040: slightly different, apparently.
1443	 */
14441:	movew	#0,0xf05f400e
1445	movew	#0x64,0xf05f400e
14462:
1447#endif
1448
1449#ifdef CONFIG_SUN3X
1450	is_not_sun3x(1f)
1451
1452	/* enable copro */
1453	oriw	#0x4000,0x61000000
14541:
1455#endif
1456
1457#ifdef CONFIG_APOLLO
1458	is_not_apollo(1f)
1459
1460	/*
1461	 * Fix up the iobase before printing
1462	 */
1463	movel	#0x80000000,L(iobase)
14641:
1465#endif
1466
1467	putc	'I'
1468	leds	0x10
1469
1470/*
1471 * Enable caches
1472 */
1473
1474	is_not_040_or_060(L(cache_not_680460))
1475
1476L(cache680460):
1477	.chip	68040
1478	nop
1479	cpusha	%bc
1480	nop
1481
1482	is_060(L(cache68060))
1483
1484	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1485	/* MMU stuff works in copyback mode now, so enable the cache */
1486	movec	%d0,%cacr
1487	jra	L(cache_done)
1488
1489L(cache68060):
1490	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1491	/* MMU stuff works in copyback mode now, so enable the cache */
1492	movec	%d0,%cacr
1493	/* enable superscalar dispatch in PCR */
1494	moveq	#1,%d0
1495	.chip	68060
1496	movec	%d0,%pcr
1497
1498	jbra	L(cache_done)
1499L(cache_not_680460):
1500L(cache68030):
1501	.chip	68030
1502	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1503	movec	%d0,%cacr
1504
1505	jra	L(cache_done)
1506	.chip	68k
1507L(cache_done):
1508
1509	putc	'J'
1510
1511/*
1512 * Setup initial stack pointer
1513 */
1514	lea	init_task,%curptr
1515	lea	init_thread_union+THREAD_SIZE,%sp
1516
1517	putc	'K'
1518
1519	subl	%a6,%a6		/* clear a6 for gdb */
1520
1521/*
1522 * The new 64bit printf support requires an early exception initialization.
1523 */
1524	jbsr	base_trap_init
1525
1526/* jump to the kernel start */
1527
1528	putc	'\n'
1529	leds	0x55
1530
1531	jbsr	start_kernel
1532
1533/*
1534 * Find a tag record in the bootinfo structure
1535 * The bootinfo structure is located right after the kernel bss
1536 * Returns: d0: size (-1 if not found)
1537 *          a0: data pointer (end-of-records if not found)
1538 */
1539func_start	get_bi_record,%d1
1540
1541	movel	ARG1,%d0
1542	lea	%pc@(_end),%a0
15431:	tstw	%a0@(BIR_TAG)
1544	jeq	3f
1545	cmpw	%a0@(BIR_TAG),%d0
1546	jeq	2f
1547	addw	%a0@(BIR_SIZE),%a0
1548	jra	1b
15492:	moveq	#0,%d0
1550	movew	%a0@(BIR_SIZE),%d0
1551	lea	%a0@(BIR_DATA),%a0
1552	jra	4f
15533:	moveq	#-1,%d0
1554	lea	%a0@(BIR_SIZE),%a0
15554:
1556func_return	get_bi_record
1557
1558
1559/*
1560 *	MMU Initialization Begins Here
1561 *
1562 *	The structure of the MMU tables on the 68k machines
1563 *	is thus:
1564 *	Root Table
1565 *		Logical addresses are translated through
1566 *	a hierarchical translation mechanism where the high-order
1567 *	seven bits of the logical address (LA) are used as an
1568 *	index into the "root table."  Each entry in the root
1569 *	table has a bit which specifies if it's a valid pointer to a
1570 *	pointer table.  Each entry defines a 32KMeg range of memory.
1571 *	If an entry is invalid then that logical range of 32M is
1572 *	invalid and references to that range of memory (when the MMU
1573 *	is enabled) will fault.  If the entry is valid, then it does
1574 *	one of two things.  On 040/060 class machines, it points to
1575 *	a pointer table which then describes more finely the memory
1576 *	within that 32M range.  On 020/030 class machines, a technique
1577 *	called "early terminating descriptors" are used.  This technique
1578 *	allows an entire 32Meg to be described by a single entry in the
1579 *	root table.  Thus, this entry in the root table, contains the
1580 *	physical address of the memory or I/O at the logical address
1581 *	which the entry represents and it also contains the necessary
1582 *	cache bits for this region.
1583 *
1584 *	Pointer Tables
1585 *		Per the Root Table, there will be one or more
1586 *	pointer tables.  Each pointer table defines a 32M range.
1587 *	Not all of the 32M range need be defined.  Again, the next
1588 *	seven bits of the logical address are used an index into
1589 *	the pointer table to point to page tables (if the pointer
1590 *	is valid).  There will undoubtedly be more than one
1591 *	pointer table for the kernel because each pointer table
1592 *	defines a range of only 32M.  Valid pointer table entries
1593 *	point to page tables, or are early terminating entries
1594 *	themselves.
1595 *
1596 *	Page Tables
1597 *		Per the Pointer Tables, each page table entry points
1598 *	to the physical page in memory that supports the logical
1599 *	address that translates to the particular index.
1600 *
1601 *	In short, the Logical Address gets translated as follows:
1602 *		bits 31..26 - index into the Root Table
1603 *		bits 25..18 - index into the Pointer Table
1604 *		bits 17..12 - index into the Page Table
1605 *		bits 11..0  - offset into a particular 4K page
1606 *
1607 *	The algorithms which follows do one thing: they abstract
1608 *	the MMU hardware.  For example, there are three kinds of
1609 *	cache settings that are relevant.  Either, memory is
1610 *	being mapped in which case it is either Kernel Code (or
1611 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1612 *	option also describes the kernel.  Or, I/O is being mapped
1613 *	in which case it has its own kind of cache bits.  There
1614 *	are constants which abstract these notions from the code that
1615 *	actually makes the call to map some range of memory.
1616 *
1617 *
1618 *
1619 */
1620
1621#ifdef MMU_PRINT
1622/*
1623 *	mmu_print
1624 *
1625 *	This algorithm will print out the current MMU mappings.
1626 *
1627 *	Input:
1628 *		%a5 points to the root table.  Everything else is calculated
1629 *			from this.
1630 */
1631
1632#define mmu_next_valid		0
1633#define mmu_start_logical	4
1634#define mmu_next_logical	8
1635#define mmu_start_physical	12
1636#define mmu_next_physical	16
1637
1638#define MMU_PRINT_INVALID		-1
1639#define MMU_PRINT_VALID			1
1640#define MMU_PRINT_UNINITED		0
1641
1642#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1643
1644func_start	mmu_print,%a0-%a6/%d0-%d7
1645
1646	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1647	lea	%pc@(L(mmu_print_data)),%a0
1648	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1649
1650	is_not_040_or_060(mmu_030_print)
1651
1652mmu_040_print:
1653	puts	"\nMMU040\n"
1654	puts	"rp:"
1655	putn	%a5
1656	putc	'\n'
1657#if 0
1658	/*
1659	 * The following #if/#endif block is a tight algorithm for dumping the 040
1660	 * MMU Map in gory detail.  It really isn't that practical unless the
1661	 * MMU Map algorithm appears to go awry and you need to debug it at the
1662	 * entry per entry level.
1663	 */
1664	movel	#ROOT_TABLE_SIZE,%d5
1665#if 0
1666	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1667	subql	#1,%d5			| they (might) work
1668#endif
16691:	tstl	%d5
1670	jbeq	mmu_print_done
1671	subq	#1,%d5
1672	movel	%a5@+,%d7
1673	btst	#1,%d7
1674	jbeq	1b
1675
16762:	putn	%d7
1677	andil	#0xFFFFFE00,%d7
1678	movel	%d7,%a4
1679	movel	#PTR_TABLE_SIZE,%d4
1680	putc	' '
16813:	tstl	%d4
1682	jbeq	11f
1683	subq	#1,%d4
1684	movel	%a4@+,%d7
1685	btst	#1,%d7
1686	jbeq	3b
1687
16884:	putn	%d7
1689	andil	#0xFFFFFF00,%d7
1690	movel	%d7,%a3
1691	movel	#PAGE_TABLE_SIZE,%d3
16925:	movel	#8,%d2
16936:	tstl	%d3
1694	jbeq	31f
1695	subq	#1,%d3
1696	movel	%a3@+,%d6
1697	btst	#0,%d6
1698	jbeq	6b
16997:	tstl	%d2
1700	jbeq	8f
1701	subq	#1,%d2
1702	putc	' '
1703	jbra	91f
17048:	putc	'\n'
1705	movel	#8+1+8+1+1,%d2
17069:	putc	' '
1707	dbra	%d2,9b
1708	movel	#7,%d2
170991:	putn	%d6
1710	jbra	6b
1711
171231:	putc	'\n'
1713	movel	#8+1,%d2
171432:	putc	' '
1715	dbra	%d2,32b
1716	jbra	3b
1717
171811:	putc	'\n'
1719	jbra	1b
1720#endif /* MMU 040 Dumping code that's gory and detailed */
1721
1722	lea	%pc@(kernel_pg_dir),%a5
1723	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1724	movel	#0x00000000,%a4		/* logical address */
1725	moveql	#0,%d0
172640:
1727	/* Increment the logical address and preserve in d5 */
1728	movel	%a4,%d5
1729	addil	#PAGESIZE<<13,%d5
1730	movel	%a0@+,%d6
1731	btst	#1,%d6
1732	jbne	41f
1733	jbsr	mmu_print_tuple_invalidate
1734	jbra	48f
173541:
1736	movel	#0,%d1
1737	andil	#0xfffffe00,%d6
1738	movel	%d6,%a1
173942:
1740	movel	%a4,%d5
1741	addil	#PAGESIZE<<6,%d5
1742	movel	%a1@+,%d6
1743	btst	#1,%d6
1744	jbne	43f
1745	jbsr	mmu_print_tuple_invalidate
1746	jbra	47f
174743:
1748	movel	#0,%d2
1749	andil	#0xffffff00,%d6
1750	movel	%d6,%a2
175144:
1752	movel	%a4,%d5
1753	addil	#PAGESIZE,%d5
1754	movel	%a2@+,%d6
1755	btst	#0,%d6
1756	jbne	45f
1757	jbsr	mmu_print_tuple_invalidate
1758	jbra	46f
175945:
1760	moveml	%d0-%d1,%sp@-
1761	movel	%a4,%d0
1762	movel	%d6,%d1
1763	andil	#0xfffff4e0,%d1
1764	lea	%pc@(mmu_040_print_flags),%a6
1765	jbsr	mmu_print_tuple
1766	moveml	%sp@+,%d0-%d1
176746:
1768	movel	%d5,%a4
1769	addq	#1,%d2
1770	cmpib	#64,%d2
1771	jbne	44b
177247:
1773	movel	%d5,%a4
1774	addq	#1,%d1
1775	cmpib	#128,%d1
1776	jbne	42b
177748:
1778	movel	%d5,%a4			/* move to the next logical address */
1779	addq	#1,%d0
1780	cmpib	#128,%d0
1781	jbne	40b
1782
1783	.chip	68040
1784	movec	%dtt1,%d0
1785	movel	%d0,%d1
1786	andiw	#0x8000,%d1		/* is it valid ? */
1787	jbeq	1f			/* No, bail out */
1788
1789	movel	%d0,%d1
1790	andil	#0xff000000,%d1		/* Get the address */
1791	putn	%d1
1792	puts	"=="
1793	putn	%d1
1794
1795	movel	%d0,%d6
1796	jbsr	mmu_040_print_flags_tt
17971:
1798	movec	%dtt0,%d0
1799	movel	%d0,%d1
1800	andiw	#0x8000,%d1		/* is it valid ? */
1801	jbeq	1f			/* No, bail out */
1802
1803	movel	%d0,%d1
1804	andil	#0xff000000,%d1		/* Get the address */
1805	putn	%d1
1806	puts	"=="
1807	putn	%d1
1808
1809	movel	%d0,%d6
1810	jbsr	mmu_040_print_flags_tt
18111:
1812	.chip	68k
1813
1814	jbra	mmu_print_done
1815
1816mmu_040_print_flags:
1817	btstl	#10,%d6
1818	putZc(' ','G')	/* global bit */
1819	btstl	#7,%d6
1820	putZc(' ','S')	/* supervisor bit */
1821mmu_040_print_flags_tt:
1822	btstl	#6,%d6
1823	jbne	3f
1824	putc	'C'
1825	btstl	#5,%d6
1826	putZc('w','c')	/* write through or copy-back */
1827	jbra	4f
18283:
1829	putc	'N'
1830	btstl	#5,%d6
1831	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
18324:
1833	rts
1834
1835mmu_030_print_flags:
1836	btstl	#6,%d6
1837	putZc('C','I')	/* write through or copy-back */
1838	rts
1839
1840mmu_030_print:
1841	puts	"\nMMU030\n"
1842	puts	"\nrp:"
1843	putn	%a5
1844	putc	'\n'
1845	movel	%a5,%d0
1846	andil	#0xfffffff0,%d0
1847	movel	%d0,%a0
1848	movel	#0x00000000,%a4		/* logical address */
1849	movel	#0,%d0
185030:
1851	movel	%a4,%d5
1852	addil	#PAGESIZE<<13,%d5
1853	movel	%a0@+,%d6
1854	btst	#1,%d6			/* is it a table ptr? */
1855	jbne	31f			/* yes */
1856	btst	#0,%d6			/* is it early terminating? */
1857	jbeq	1f			/* no */
1858	jbsr	mmu_030_print_helper
1859	jbra	38f
18601:
1861	jbsr	mmu_print_tuple_invalidate
1862	jbra	38f
186331:
1864	movel	#0,%d1
1865	andil	#0xfffffff0,%d6
1866	movel	%d6,%a1
186732:
1868	movel	%a4,%d5
1869	addil	#PAGESIZE<<6,%d5
1870	movel	%a1@+,%d6
1871	btst	#1,%d6			/* is it a table ptr? */
1872	jbne	33f			/* yes */
1873	btst	#0,%d6			/* is it a page descriptor? */
1874	jbeq	1f			/* no */
1875	jbsr	mmu_030_print_helper
1876	jbra	37f
18771:
1878	jbsr	mmu_print_tuple_invalidate
1879	jbra	37f
188033:
1881	movel	#0,%d2
1882	andil	#0xfffffff0,%d6
1883	movel	%d6,%a2
188434:
1885	movel	%a4,%d5
1886	addil	#PAGESIZE,%d5
1887	movel	%a2@+,%d6
1888	btst	#0,%d6
1889	jbne	35f
1890	jbsr	mmu_print_tuple_invalidate
1891	jbra	36f
189235:
1893	jbsr	mmu_030_print_helper
189436:
1895	movel	%d5,%a4
1896	addq	#1,%d2
1897	cmpib	#64,%d2
1898	jbne	34b
189937:
1900	movel	%d5,%a4
1901	addq	#1,%d1
1902	cmpib	#128,%d1
1903	jbne	32b
190438:
1905	movel	%d5,%a4			/* move to the next logical address */
1906	addq	#1,%d0
1907	cmpib	#128,%d0
1908	jbne	30b
1909
1910mmu_print_done:
1911	puts	"\n"
1912
1913func_return	mmu_print
1914
1915
1916mmu_030_print_helper:
1917	moveml	%d0-%d1,%sp@-
1918	movel	%a4,%d0
1919	movel	%d6,%d1
1920	lea	%pc@(mmu_030_print_flags),%a6
1921	jbsr	mmu_print_tuple
1922	moveml	%sp@+,%d0-%d1
1923	rts
1924
1925mmu_print_tuple_invalidate:
1926	moveml	%a0/%d7,%sp@-
1927
1928	lea	%pc@(L(mmu_print_data)),%a0
1929	tstl	%a0@(mmu_next_valid)
1930	jbmi	mmu_print_tuple_invalidate_exit
1931
1932	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1933
1934	putn	%a4
1935
1936	puts	"##\n"
1937
1938mmu_print_tuple_invalidate_exit:
1939	moveml	%sp@+,%a0/%d7
1940	rts
1941
1942
1943mmu_print_tuple:
1944	moveml	%d0-%d7/%a0,%sp@-
1945
1946	lea	%pc@(L(mmu_print_data)),%a0
1947
1948	tstl	%a0@(mmu_next_valid)
1949	jble	mmu_print_tuple_print
1950
1951	cmpl	%a0@(mmu_next_physical),%d1
1952	jbeq	mmu_print_tuple_increment
1953
1954mmu_print_tuple_print:
1955	putn	%d0
1956	puts	"->"
1957	putn	%d1
1958
1959	movel	%d1,%d6
1960	jbsr	%a6@
1961
1962mmu_print_tuple_record:
1963	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1964
1965	movel	%d1,%a0@(mmu_next_physical)
1966
1967mmu_print_tuple_increment:
1968	movel	%d5,%d7
1969	subl	%a4,%d7
1970	addl	%d7,%a0@(mmu_next_physical)
1971
1972mmu_print_tuple_exit:
1973	moveml	%sp@+,%d0-%d7/%a0
1974	rts
1975
1976mmu_print_machine_cpu_types:
1977	puts	"machine: "
1978
1979	is_not_amiga(1f)
1980	puts	"amiga"
1981	jbra	9f
19821:
1983	is_not_atari(2f)
1984	puts	"atari"
1985	jbra	9f
19862:
1987	is_not_mac(3f)
1988	puts	"macintosh"
1989	jbra	9f
19903:	puts	"unknown"
19919:	putc	'\n'
1992
1993	puts	"cputype: 0"
1994	is_not_060(1f)
1995	putc	'6'
1996	jbra	9f
19971:
1998	is_not_040_or_060(2f)
1999	putc	'4'
2000	jbra	9f
20012:	putc	'3'
20029:	putc	'0'
2003	putc	'\n'
2004
2005	rts
2006#endif /* MMU_PRINT */
2007
2008/*
2009 * mmu_map_tt
2010 *
2011 * This is a specific function which works on all 680x0 machines.
2012 * On 030, 040 & 060 it will attempt to use Transparent Translation
2013 * registers (tt1).
2014 * On 020 it will call the standard mmu_map which will use early
2015 * terminating descriptors.
2016 */
2017func_start	mmu_map_tt,%d0/%d1/%a0,4
2018
2019	dputs	"mmu_map_tt:"
2020	dputn	ARG1
2021	dputn	ARG2
2022	dputn	ARG3
2023	dputn	ARG4
2024	dputc	'\n'
2025
2026	is_020(L(do_map))
2027
2028	/* Extract the highest bit set
2029	 */
2030	bfffo	ARG3{#0,#32},%d1
2031	cmpw	#8,%d1
2032	jcc	L(do_map)
2033
2034	/* And get the mask
2035	 */
2036	moveq	#-1,%d0
2037	lsrl	%d1,%d0
2038	lsrl	#1,%d0
2039
2040	/* Mask the address
2041	 */
2042	movel	%d0,%d1
2043	notl	%d1
2044	andl	ARG2,%d1
2045
2046	/* Generate the upper 16bit of the tt register
2047	 */
2048	lsrl	#8,%d0
2049	orl	%d0,%d1
2050	clrw	%d1
2051
2052	is_040_or_060(L(mmu_map_tt_040))
2053
2054	/* set 030 specific bits (read/write access for supervisor mode
2055	 * (highest function code set, lower two bits masked))
2056	 */
2057	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2058	movel	ARG4,%d0
2059	btst	#6,%d0
2060	jeq	1f
2061	orw	#TTR_CI,%d1
2062
20631:	lea	STACK,%a0
2064	dputn	%d1
2065	movel	%d1,%a0@
2066	.chip	68030
2067	tstl	ARG1
2068	jne	1f
2069	pmove	%a0@,%tt0
2070	jra	2f
20711:	pmove	%a0@,%tt1
20722:	.chip	68k
2073	jra	L(mmu_map_tt_done)
2074
2075	/* set 040 specific bits
2076	 */
2077L(mmu_map_tt_040):
2078	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2079	orl	ARG4,%d1
2080	dputn	%d1
2081
2082	.chip	68040
2083	tstl	ARG1
2084	jne	1f
2085	movec	%d1,%itt0
2086	movec	%d1,%dtt0
2087	jra	2f
20881:	movec	%d1,%itt1
2089	movec	%d1,%dtt1
20902:	.chip	68k
2091
2092	jra	L(mmu_map_tt_done)
2093
2094L(do_map):
2095	mmu_map_eq	ARG2,ARG3,ARG4
2096
2097L(mmu_map_tt_done):
2098
2099func_return	mmu_map_tt
2100
2101/*
2102 *	mmu_map
2103 *
2104 *	This routine will map a range of memory using a pointer
2105 *	table and allocating the pages on the fly from the kernel.
2106 *	The pointer table does not have to be already linked into
2107 *	the root table, this routine will do that if necessary.
2108 *
2109 *	NOTE
2110 *	This routine will assert failure and use the serial_putc
2111 *	routines in the case of a run-time error.  For example,
2112 *	if the address is already mapped.
2113 *
2114 *	NOTE-2
2115 *	This routine will use early terminating descriptors
2116 *	where possible for the 68020+68851 and 68030 type
2117 *	processors.
2118 */
2119func_start	mmu_map,%d0-%d4/%a0-%a4
2120
2121	dputs	"\nmmu_map:"
2122	dputn	ARG1
2123	dputn	ARG2
2124	dputn	ARG3
2125	dputn	ARG4
2126	dputc	'\n'
2127
2128	/* Get logical address and round it down to 256KB
2129	 */
2130	movel	ARG1,%d0
2131	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2132	movel	%d0,%a3
2133
2134	/* Get the end address
2135	 */
2136	movel	ARG1,%a4
2137	addl	ARG3,%a4
2138	subql	#1,%a4
2139
2140	/* Get physical address and round it down to 256KB
2141	 */
2142	movel	ARG2,%d0
2143	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2144	movel	%d0,%a2
2145
2146	/* Add page attributes to the physical address
2147	 */
2148	movel	ARG4,%d0
2149	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2150	addw	%d0,%a2
2151
2152	dputn	%a2
2153	dputn	%a3
2154	dputn	%a4
2155
2156	is_not_040_or_060(L(mmu_map_030))
2157
2158	addw	#_PAGE_GLOBAL040,%a2
2159/*
2160 *	MMU 040 & 060 Support
2161 *
2162 *	The MMU usage for the 040 and 060 is different enough from
2163 *	the 030 and 68851 that there is separate code.  This comment
2164 *	block describes the data structures and algorithms built by
2165 *	this code.
2166 *
2167 *	The 040 does not support early terminating descriptors, as
2168 *	the 030 does.  Therefore, a third level of table is needed
2169 *	for the 040, and that would be the page table.  In Linux,
2170 *	page tables are allocated directly from the memory above the
2171 *	kernel.
2172 *
2173 */
2174
2175L(mmu_map_040):
2176	/* Calculate the offset into the root table
2177	 */
2178	movel	%a3,%d0
2179	moveq	#ROOT_INDEX_SHIFT,%d1
2180	lsrl	%d1,%d0
2181	mmu_get_root_table_entry	%d0
2182
2183	/* Calculate the offset into the pointer table
2184	 */
2185	movel	%a3,%d0
2186	moveq	#PTR_INDEX_SHIFT,%d1
2187	lsrl	%d1,%d0
2188	andl	#PTR_TABLE_SIZE-1,%d0
2189	mmu_get_ptr_table_entry		%a0,%d0
2190
2191	/* Calculate the offset into the page table
2192	 */
2193	movel	%a3,%d0
2194	moveq	#PAGE_INDEX_SHIFT,%d1
2195	lsrl	%d1,%d0
2196	andl	#PAGE_TABLE_SIZE-1,%d0
2197	mmu_get_page_table_entry	%a0,%d0
2198
2199	/* The page table entry must not no be busy
2200	 */
2201	tstl	%a0@
2202	jne	L(mmu_map_error)
2203
2204	/* Do the mapping and advance the pointers
2205	 */
2206	movel	%a2,%a0@
22072:
2208	addw	#PAGESIZE,%a2
2209	addw	#PAGESIZE,%a3
2210
2211	/* Ready with mapping?
2212	 */
2213	lea	%a3@(-1),%a0
2214	cmpl	%a0,%a4
2215	jhi	L(mmu_map_040)
2216	jra	L(mmu_map_done)
2217
2218L(mmu_map_030):
2219	/* Calculate the offset into the root table
2220	 */
2221	movel	%a3,%d0
2222	moveq	#ROOT_INDEX_SHIFT,%d1
2223	lsrl	%d1,%d0
2224	mmu_get_root_table_entry	%d0
2225
2226	/* Check if logical address 32MB aligned,
2227	 * so we can try to map it once
2228	 */
2229	movel	%a3,%d0
2230	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2231	jne	1f
2232
2233	/* Is there enough to map for 32MB at once
2234	 */
2235	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2236	cmpl	%a1,%a4
2237	jcs	1f
2238
2239	addql	#1,%a1
2240
2241	/* The root table entry must not no be busy
2242	 */
2243	tstl	%a0@
2244	jne	L(mmu_map_error)
2245
2246	/* Do the mapping and advance the pointers
2247	 */
2248	dputs	"early term1"
2249	dputn	%a2
2250	dputn	%a3
2251	dputn	%a1
2252	dputc	'\n'
2253	movel	%a2,%a0@
2254
2255	movel	%a1,%a3
2256	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2257	jra	L(mmu_mapnext_030)
22581:
2259	/* Calculate the offset into the pointer table
2260	 */
2261	movel	%a3,%d0
2262	moveq	#PTR_INDEX_SHIFT,%d1
2263	lsrl	%d1,%d0
2264	andl	#PTR_TABLE_SIZE-1,%d0
2265	mmu_get_ptr_table_entry		%a0,%d0
2266
2267	/* The pointer table entry must not no be busy
2268	 */
2269	tstl	%a0@
2270	jne	L(mmu_map_error)
2271
2272	/* Do the mapping and advance the pointers
2273	 */
2274	dputs	"early term2"
2275	dputn	%a2
2276	dputn	%a3
2277	dputc	'\n'
2278	movel	%a2,%a0@
2279
2280	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2281	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2282
2283L(mmu_mapnext_030):
2284	/* Ready with mapping?
2285	 */
2286	lea	%a3@(-1),%a0
2287	cmpl	%a0,%a4
2288	jhi	L(mmu_map_030)
2289	jra	L(mmu_map_done)
2290
2291L(mmu_map_error):
2292
2293	dputs	"mmu_map error:"
2294	dputn	%a2
2295	dputn	%a3
2296	dputc	'\n'
2297
2298L(mmu_map_done):
2299
2300func_return	mmu_map
2301
2302/*
2303 *	mmu_fixup
2304 *
2305 *	On the 040 class machines, all pages that are used for the
2306 *	mmu have to be fixed up.
2307 */
2308
2309func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2310
2311	dputs	"mmu_fixup_page_mmu_cache"
2312	dputn	ARG1
2313
2314	/* Calculate the offset into the root table
2315	 */
2316	movel	ARG1,%d0
2317	moveq	#ROOT_INDEX_SHIFT,%d1
2318	lsrl	%d1,%d0
2319	mmu_get_root_table_entry	%d0
2320
2321	/* Calculate the offset into the pointer table
2322	 */
2323	movel	ARG1,%d0
2324	moveq	#PTR_INDEX_SHIFT,%d1
2325	lsrl	%d1,%d0
2326	andl	#PTR_TABLE_SIZE-1,%d0
2327	mmu_get_ptr_table_entry		%a0,%d0
2328
2329	/* Calculate the offset into the page table
2330	 */
2331	movel	ARG1,%d0
2332	moveq	#PAGE_INDEX_SHIFT,%d1
2333	lsrl	%d1,%d0
2334	andl	#PAGE_TABLE_SIZE-1,%d0
2335	mmu_get_page_table_entry	%a0,%d0
2336
2337	movel	%a0@,%d0
2338	andil	#_CACHEMASK040,%d0
2339	orl	%pc@(m68k_pgtable_cachemode),%d0
2340	movel	%d0,%a0@
2341
2342	dputc	'\n'
2343
2344func_return	mmu_fixup_page_mmu_cache
2345
2346/*
2347 *	mmu_temp_map
2348 *
2349 *	create a temporary mapping to enable the mmu,
2350 *	this we don't need any transparation translation tricks.
2351 */
2352
2353func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2354
2355	dputs	"mmu_temp_map"
2356	dputn	ARG1
2357	dputn	ARG2
2358	dputc	'\n'
2359
2360	lea	%pc@(L(temp_mmap_mem)),%a1
2361
2362	/* Calculate the offset in the root table
2363	 */
2364	movel	ARG2,%d0
2365	moveq	#ROOT_INDEX_SHIFT,%d1
2366	lsrl	%d1,%d0
2367	mmu_get_root_table_entry	%d0
2368
2369	/* Check if the table is temporary allocated, so we have to reuse it
2370	 */
2371	movel	%a0@,%d0
2372	cmpl	%pc@(L(memory_start)),%d0
2373	jcc	1f
2374
2375	/* Temporary allocate a ptr table and insert it into the root table
2376	 */
2377	movel	%a1@,%d0
2378	addl	#PTR_TABLE_SIZE*4,%a1@
2379	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2380	movel	%d0,%a0@
2381	dputs	" (new)"
23821:
2383	dputn	%d0
2384	/* Mask the root table entry for the ptr table
2385	 */
2386	andw	#-ROOT_TABLE_SIZE,%d0
2387	movel	%d0,%a0
2388
2389	/* Calculate the offset into the pointer table
2390	 */
2391	movel	ARG2,%d0
2392	moveq	#PTR_INDEX_SHIFT,%d1
2393	lsrl	%d1,%d0
2394	andl	#PTR_TABLE_SIZE-1,%d0
2395	lea	%a0@(%d0*4),%a0
2396	dputn	%a0
2397
2398	/* Check if a temporary page table is already allocated
2399	 */
2400	movel	%a0@,%d0
2401	jne	1f
2402
2403	/* Temporary allocate a page table and insert it into the ptr table
2404	 */
2405	movel	%a1@,%d0
2406	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2407	   alignment restriction for pointer tables on the '0[46]0.  */
2408	addl	#512,%a1@
2409	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2410	movel	%d0,%a0@
2411	dputs	" (new)"
24121:
2413	dputn	%d0
2414	/* Mask the ptr table entry for the page table
2415	 */
2416	andw	#-PTR_TABLE_SIZE,%d0
2417	movel	%d0,%a0
2418
2419	/* Calculate the offset into the page table
2420	 */
2421	movel	ARG2,%d0
2422	moveq	#PAGE_INDEX_SHIFT,%d1
2423	lsrl	%d1,%d0
2424	andl	#PAGE_TABLE_SIZE-1,%d0
2425	lea	%a0@(%d0*4),%a0
2426	dputn	%a0
2427
2428	/* Insert the address into the page table
2429	 */
2430	movel	ARG1,%d0
2431	andw	#-PAGESIZE,%d0
2432	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2433	movel	%d0,%a0@
2434	dputn	%d0
2435
2436	dputc	'\n'
2437
2438func_return	mmu_temp_map
2439
2440func_start	mmu_engage,%d0-%d2/%a0-%a3
2441
2442	moveq	#ROOT_TABLE_SIZE-1,%d0
2443	/* Temporarily use a different root table.  */
2444	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2445	movel	%a0@,%a2
2446	movel	%pc@(L(memory_start)),%a1
2447	movel	%a1,%a0@
2448	movel	%a2,%a0
24491:
2450	movel	%a0@+,%a1@+
2451	dbra	%d0,1b
2452
2453	lea	%pc@(L(temp_mmap_mem)),%a0
2454	movel	%a1,%a0@
2455
2456	movew	#PAGESIZE-1,%d0
24571:
2458	clrl	%a1@+
2459	dbra	%d0,1b
2460
2461	lea	%pc@(1b),%a0
2462	movel	#1b,%a1
2463	/* Skip temp mappings if phys == virt */
2464	cmpl	%a0,%a1
2465	jeq	1f
2466
2467	mmu_temp_map	%a0,%a0
2468	mmu_temp_map	%a0,%a1
2469
2470	addw	#PAGESIZE,%a0
2471	addw	#PAGESIZE,%a1
2472	mmu_temp_map	%a0,%a0
2473	mmu_temp_map	%a0,%a1
24741:
2475	movel	%pc@(L(memory_start)),%a3
2476	movel	%pc@(L(phys_kernel_start)),%d2
2477
2478	is_not_040_or_060(L(mmu_engage_030))
2479
2480L(mmu_engage_040):
2481	.chip	68040
2482	nop
2483	cinva	%bc
2484	nop
2485	pflusha
2486	nop
2487	movec	%a3,%srp
2488	movel	#TC_ENABLE+TC_PAGE4K,%d0
2489	movec	%d0,%tc		/* enable the MMU */
2490	jmp	1f:l
24911:	nop
2492	movec	%a2,%srp
2493	nop
2494	cinva	%bc
2495	nop
2496	pflusha
2497	.chip	68k
2498	jra	L(mmu_engage_cleanup)
2499
2500L(mmu_engage_030_temp):
2501	.space	12
2502L(mmu_engage_030):
2503	.chip	68030
2504	lea	%pc@(L(mmu_engage_030_temp)),%a0
2505	movel	#0x80000002,%a0@
2506	movel	%a3,%a0@(4)
2507	movel	#0x0808,%d0
2508	movec	%d0,%cacr
2509	pmove	%a0@,%srp
2510	pflusha
2511	/*
2512	 * enable,super root enable,4096 byte pages,7 bit root index,
2513	 * 7 bit pointer index, 6 bit page table index.
2514	 */
2515	movel	#0x82c07760,%a0@(8)
2516	pmove	%a0@(8),%tc	/* enable the MMU */
2517	jmp	1f:l
25181:	movel	%a2,%a0@(4)
2519	movel	#0x0808,%d0
2520	movec	%d0,%cacr
2521	pmove	%a0@,%srp
2522	pflusha
2523	.chip	68k
2524
2525L(mmu_engage_cleanup):
2526	subl	#PAGE_OFFSET,%d2
2527	subl	%d2,%a2
2528	movel	%a2,L(kernel_pgdir_ptr)
2529	subl	%d2,%fp
2530	subl	%d2,%sp
2531	subl	%d2,ARG0
2532
2533func_return	mmu_engage
2534
2535func_start	mmu_get_root_table_entry,%d0/%a1
2536
2537#if 0
2538	dputs	"mmu_get_root_table_entry:"
2539	dputn	ARG1
2540	dputs	" ="
2541#endif
2542
2543	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2544	tstl	%a0
2545	jne	2f
2546
2547	dputs	"\nmmu_init:"
2548
2549	/* Find the start of free memory, get_bi_record does this for us,
2550	 * as the bootinfo structure is located directly behind the kernel
2551	 * and and we simply search for the last entry.
2552	 */
2553	get_bi_record	BI_LAST
2554	addw	#PAGESIZE-1,%a0
2555	movel	%a0,%d0
2556	andw	#-PAGESIZE,%d0
2557
2558	dputn	%d0
2559
2560	lea	%pc@(L(memory_start)),%a0
2561	movel	%d0,%a0@
2562	lea	%pc@(L(kernel_end)),%a0
2563	movel	%d0,%a0@
2564
2565	/* we have to return the first page at _stext since the init code
2566	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2567	 * page is used for further ptr tables in get_ptr_table.
2568	 */
2569	lea	%pc@(_stext),%a0
2570	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2571	movel	%a0,%a1@
2572	addl	#ROOT_TABLE_SIZE*4,%a1@
2573
2574	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2575	addql	#1,%a1@
2576
2577	/* clear the page
2578	 */
2579	movel	%a0,%a1
2580	movew	#PAGESIZE/4-1,%d0
25811:
2582	clrl	%a1@+
2583	dbra	%d0,1b
2584
2585	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2586	movel	%a0,%a1@
2587
2588	dputn	%a0
2589	dputc	'\n'
25902:
2591	movel	ARG1,%d0
2592	lea	%a0@(%d0*4),%a0
2593
2594#if 0
2595	dputn	%a0
2596	dputc	'\n'
2597#endif
2598
2599func_return	mmu_get_root_table_entry
2600
2601
2602
2603func_start	mmu_get_ptr_table_entry,%d0/%a1
2604
2605#if 0
2606	dputs	"mmu_get_ptr_table_entry:"
2607	dputn	ARG1
2608	dputn	ARG2
2609	dputs	" ="
2610#endif
2611
2612	movel	ARG1,%a0
2613	movel	%a0@,%d0
2614	jne	2f
2615
2616	/* Keep track of the number of pointer tables we use
2617	 */
2618	dputs	"\nmmu_get_new_ptr_table:"
2619	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2620	movel	%a0@,%d0
2621	addql	#1,%a0@
2622
2623	/* See if there is a free pointer table in our cache of pointer tables
2624	 */
2625	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2626	andw	#7,%d0
2627	jne	1f
2628
2629	/* Get a new pointer table page from above the kernel memory
2630	 */
2631	get_new_page
2632	movel	%a0,%a1@
26331:
2634	/* There is an unused pointer table in our cache... use it
2635	 */
2636	movel	%a1@,%d0
2637	addl	#PTR_TABLE_SIZE*4,%a1@
2638
2639	dputn	%d0
2640	dputc	'\n'
2641
2642	/* Insert the new pointer table into the root table
2643	 */
2644	movel	ARG1,%a0
2645	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2646	movel	%d0,%a0@
26472:
2648	/* Extract the pointer table entry
2649	 */
2650	andw	#-PTR_TABLE_SIZE,%d0
2651	movel	%d0,%a0
2652	movel	ARG2,%d0
2653	lea	%a0@(%d0*4),%a0
2654
2655#if 0
2656	dputn	%a0
2657	dputc	'\n'
2658#endif
2659
2660func_return	mmu_get_ptr_table_entry
2661
2662
2663func_start	mmu_get_page_table_entry,%d0/%a1
2664
2665#if 0
2666	dputs	"mmu_get_page_table_entry:"
2667	dputn	ARG1
2668	dputn	ARG2
2669	dputs	" ="
2670#endif
2671
2672	movel	ARG1,%a0
2673	movel	%a0@,%d0
2674	jne	2f
2675
2676	/* If the page table entry doesn't exist, we allocate a complete new
2677	 * page and use it as one continues big page table which can cover
2678	 * 4MB of memory, nearly almost all mappings have that alignment.
2679	 */
2680	get_new_page
2681	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2682
2683	/* align pointer table entry for a page of page tables
2684	 */
2685	movel	ARG1,%d0
2686	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2687	movel	%d0,%a1
2688
2689	/* Insert the page tables into the pointer entries
2690	 */
2691	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26921:
2693	movel	%a0,%a1@+
2694	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2695	dbra	%d0,1b
2696
2697	/* Now we can get the initialized pointer table entry
2698	 */
2699	movel	ARG1,%a0
2700	movel	%a0@,%d0
27012:
2702	/* Extract the page table entry
2703	 */
2704	andw	#-PAGE_TABLE_SIZE,%d0
2705	movel	%d0,%a0
2706	movel	ARG2,%d0
2707	lea	%a0@(%d0*4),%a0
2708
2709#if 0
2710	dputn	%a0
2711	dputc	'\n'
2712#endif
2713
2714func_return	mmu_get_page_table_entry
2715
2716/*
2717 *	get_new_page
2718 *
2719 *	Return a new page from the memory start and clear it.
2720 */
2721func_start	get_new_page,%d0/%a1
2722
2723	dputs	"\nget_new_page:"
2724
2725	/* allocate the page and adjust memory_start
2726	 */
2727	lea	%pc@(L(memory_start)),%a0
2728	movel	%a0@,%a1
2729	addl	#PAGESIZE,%a0@
2730
2731	/* clear the new page
2732	 */
2733	movel	%a1,%a0
2734	movew	#PAGESIZE/4-1,%d0
27351:
2736	clrl	%a1@+
2737	dbra	%d0,1b
2738
2739	dputn	%a0
2740	dputc	'\n'
2741
2742func_return	get_new_page
2743
2744
2745
2746/*
2747 * Debug output support
2748 * Atarians have a choice between the parallel port, the serial port
2749 * from the MFP or a serial port of the SCC
2750 */
2751
2752#ifdef CONFIG_MAC
2753
2754L(scc_initable_mac):
2755	.byte	9,12		/* Reset */
2756	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2757	.byte	3,0xc0		/* receiver: 8 bpc */
2758	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2759	.byte	9,0		/* no interrupts */
2760	.byte	10,0		/* NRZ */
2761	.byte	11,0x50		/* use baud rate generator */
2762	.byte	12,1,13,0	/* 38400 baud */
2763	.byte	14,1		/* Baud rate generator enable */
2764	.byte	3,0xc1		/* enable receiver */
2765	.byte	5,0xea		/* enable transmitter */
2766	.byte	-1
2767	.even
2768#endif
2769
2770#ifdef CONFIG_ATARI
2771/* #define USE_PRINTER */
2772/* #define USE_SCC_B */
2773/* #define USE_SCC_A */
2774#define USE_MFP
2775
2776#if defined(USE_SCC_A) || defined(USE_SCC_B)
2777#define USE_SCC
2778/* Initialisation table for SCC */
2779L(scc_initable):
2780	.byte	9,12		/* Reset */
2781	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2782	.byte	3,0xc0		/* receiver: 8 bpc */
2783	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2784	.byte	9,0		/* no interrupts */
2785	.byte	10,0		/* NRZ */
2786	.byte	11,0x50		/* use baud rate generator */
2787	.byte	12,24,13,0	/* 9600 baud */
2788	.byte	14,2,14,3	/* use master clock for BRG, enable */
2789	.byte	3,0xc1		/* enable receiver */
2790	.byte	5,0xea		/* enable transmitter */
2791	.byte	-1
2792	.even
2793#endif
2794
2795#ifdef USE_PRINTER
2796
2797LPSG_SELECT	= 0xff8800
2798LPSG_READ	= 0xff8800
2799LPSG_WRITE	= 0xff8802
2800LPSG_IO_A	= 14
2801LPSG_IO_B	= 15
2802LPSG_CONTROL	= 7
2803LSTMFP_GPIP	= 0xfffa01
2804LSTMFP_DDR	= 0xfffa05
2805LSTMFP_IERB	= 0xfffa09
2806
2807#elif defined(USE_SCC_B)
2808
2809LSCC_CTRL	= 0xff8c85
2810LSCC_DATA	= 0xff8c87
2811
2812#elif defined(USE_SCC_A)
2813
2814LSCC_CTRL	= 0xff8c81
2815LSCC_DATA	= 0xff8c83
2816
2817#elif defined(USE_MFP)
2818
2819LMFP_UCR     = 0xfffa29
2820LMFP_TDCDR   = 0xfffa1d
2821LMFP_TDDR    = 0xfffa25
2822LMFP_TSR     = 0xfffa2d
2823LMFP_UDR     = 0xfffa2f
2824
2825#endif
2826#endif	/* CONFIG_ATARI */
2827
2828/*
2829 * Serial port output support.
2830 */
2831
2832/*
2833 * Initialize serial port hardware for 9600/8/1
2834 */
2835func_start	serial_init,%d0/%d1/%a0/%a1
2836	/*
2837	 *	Some of the register usage that follows
2838	 *	CONFIG_AMIGA
2839	 *		a0 = pointer to boot info record
2840	 *		d0 = boot info offset
2841	 *	CONFIG_ATARI
2842	 *		a0 = address of SCC
2843	 *		a1 = Liobase address/address of scc_initable
2844	 *		d0 = init data for serial port
2845	 *	CONFIG_MAC
2846	 *		a0 = address of SCC
2847	 *		a1 = address of scc_initable_mac
2848	 *		d0 = init data for serial port
2849	 */
2850
2851#ifdef CONFIG_AMIGA
2852#define SERIAL_DTR	7
2853#define SERIAL_CNTRL	CIABBASE+C_PRA
2854
2855	is_not_amiga(1f)
2856	lea	%pc@(L(custom)),%a0
2857	movel	#-ZTWOBASE,%a0@
2858	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2859	get_bi_record	BI_AMIGA_SERPER
2860	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2861|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28621:
2863#endif
2864#ifdef CONFIG_ATARI
2865	is_not_atari(4f)
2866	movel	%pc@(L(iobase)),%a1
2867#if defined(USE_PRINTER)
2868	bclr	#0,%a1@(LSTMFP_IERB)
2869	bclr	#0,%a1@(LSTMFP_DDR)
2870	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2871	moveb	#0xff,%a1@(LPSG_WRITE)
2872	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2873	clrb	%a1@(LPSG_WRITE)
2874	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2875	moveb	%a1@(LPSG_READ),%d0
2876	bset	#5,%d0
2877	moveb	%d0,%a1@(LPSG_WRITE)
2878#elif defined(USE_SCC)
2879	lea	%a1@(LSCC_CTRL),%a0
2880	lea	%pc@(L(scc_initable)),%a1
28812:	moveb	%a1@+,%d0
2882	jmi	3f
2883	moveb	%d0,%a0@
2884	moveb	%a1@+,%a0@
2885	jra	2b
28863:	clrb	%a0@
2887#elif defined(USE_MFP)
2888	bclr	#1,%a1@(LMFP_TSR)
2889	moveb   #0x88,%a1@(LMFP_UCR)
2890	andb	#0x70,%a1@(LMFP_TDCDR)
2891	moveb   #2,%a1@(LMFP_TDDR)
2892	orb	#1,%a1@(LMFP_TDCDR)
2893	bset	#1,%a1@(LMFP_TSR)
2894#endif
2895	jra	L(serial_init_done)
28964:
2897#endif
2898#ifdef CONFIG_MAC
2899	is_not_mac(L(serial_init_not_mac))
2900
2901#ifdef SERIAL_DEBUG
2902/* You may define either or both of these. */
2903#define MAC_USE_SCC_A /* Modem port */
2904#define MAC_USE_SCC_B /* Printer port */
2905
2906#define mac_scc_cha_b_ctrl_offset	0x0
2907#define mac_scc_cha_a_ctrl_offset	0x2
2908#define mac_scc_cha_b_data_offset	0x4
2909#define mac_scc_cha_a_data_offset	0x6
2910
2911#ifdef MAC_USE_SCC_A
2912	/* Initialize channel A */
2913	movel	%pc@(L(mac_sccbase)),%a0
2914	lea	%pc@(L(scc_initable_mac)),%a1
29155:	moveb	%a1@+,%d0
2916	jmi	6f
2917	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2918	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2919	jra	5b
29206:
2921#endif	/* MAC_USE_SCC_A */
2922
2923#ifdef MAC_USE_SCC_B
2924	/* Initialize channel B */
2925#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
2926	movel	%pc@(L(mac_sccbase)),%a0
2927#endif	/* MAC_USE_SCC_A */
2928	lea	%pc@(L(scc_initable_mac)),%a1
29297:	moveb	%a1@+,%d0
2930	jmi	8f
2931	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2932	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2933	jra	7b
29348:
2935#endif	/* MAC_USE_SCC_B */
2936#endif	/* SERIAL_DEBUG */
2937
2938	jra	L(serial_init_done)
2939L(serial_init_not_mac):
2940#endif	/* CONFIG_MAC */
2941
2942#ifdef CONFIG_Q40
2943	is_not_q40(2f)
2944/* debug output goes into SRAM, so we don't do it unless requested
2945   - check for '%LX$' signature in SRAM   */
2946	lea	%pc@(q40_mem_cptr),%a1
2947	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2948	move.l	#0xff020000,%a1
2949	cmp.b	#'%',%a1@
2950	bne	2f	/*nodbg*/
2951	addq.w	#4,%a1
2952	cmp.b	#'L',%a1@
2953	bne	2f	/*nodbg*/
2954	addq.w	#4,%a1
2955	cmp.b	#'X',%a1@
2956	bne	2f	/*nodbg*/
2957	addq.w	#4,%a1
2958	cmp.b	#'$',%a1@
2959	bne	2f	/*nodbg*/
2960	/* signature OK */
2961	lea	%pc@(L(q40_do_debug)),%a1
2962	tas	%a1@
2963/*nodbg: q40_do_debug is 0 by default*/
29642:
2965#endif
2966
2967#ifdef CONFIG_APOLLO
2968/* We count on the PROM initializing SIO1 */
2969#endif
2970
2971#ifdef CONFIG_HP300
2972/* We count on the boot loader initialising the UART */
2973#endif
2974
2975L(serial_init_done):
2976func_return	serial_init
2977
2978/*
2979 * Output character on serial port.
2980 */
2981func_start	serial_putc,%d0/%d1/%a0/%a1
2982
2983	movel	ARG1,%d0
2984	cmpib	#'\n',%d0
2985	jbne	1f
2986
2987	/* A little safe recursion is good for the soul */
2988	serial_putc	#'\r'
29891:
2990
2991#ifdef CONFIG_AMIGA
2992	is_not_amiga(2f)
2993	andw	#0x00ff,%d0
2994	oriw	#0x0100,%d0
2995	movel	%pc@(L(custom)),%a0
2996	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
29971:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
2998	andw	#0x2000,%d0
2999	jeq	1b
3000	jra	L(serial_putc_done)
30012:
3002#endif
3003
3004#ifdef CONFIG_MAC
3005	is_not_mac(5f)
3006
3007#ifdef SERIAL_DEBUG
3008
3009#ifdef MAC_USE_SCC_A
3010	movel	%pc@(L(mac_sccbase)),%a1
30113:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
3012	jeq	3b
3013	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
3014#endif	/* MAC_USE_SCC_A */
3015
3016#ifdef MAC_USE_SCC_B
3017#ifndef MAC_USE_SCC_A	/* Load mac_sccbase only if needed */
3018	movel	%pc@(L(mac_sccbase)),%a1
3019#endif	/* MAC_USE_SCC_A */
30204:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
3021	jeq	4b
3022	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
3023#endif	/* MAC_USE_SCC_B */
3024
3025#endif	/* SERIAL_DEBUG */
3026
3027	jra	L(serial_putc_done)
30285:
3029#endif	/* CONFIG_MAC */
3030
3031#ifdef CONFIG_ATARI
3032	is_not_atari(4f)
3033	movel	%pc@(L(iobase)),%a1
3034#if defined(USE_PRINTER)
30353:	btst	#0,%a1@(LSTMFP_GPIP)
3036	jne	3b
3037	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3038	moveb	%d0,%a1@(LPSG_WRITE)
3039	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3040	moveb	%a1@(LPSG_READ),%d0
3041	bclr	#5,%d0
3042	moveb	%d0,%a1@(LPSG_WRITE)
3043	nop
3044	nop
3045	bset	#5,%d0
3046	moveb	%d0,%a1@(LPSG_WRITE)
3047#elif defined(USE_SCC)
30483:	btst	#2,%a1@(LSCC_CTRL)
3049	jeq	3b
3050	moveb	%d0,%a1@(LSCC_DATA)
3051#elif defined(USE_MFP)
30523:	btst	#7,%a1@(LMFP_TSR)
3053	jeq	3b
3054	moveb	%d0,%a1@(LMFP_UDR)
3055#endif
3056	jra	L(serial_putc_done)
30574:
3058#endif	/* CONFIG_ATARI */
3059
3060#ifdef CONFIG_MVME147
3061	is_not_mvme147(2f)
30621:	btst	#2,M147_SCC_CTRL_A
3063	jeq	1b
3064	moveb	%d0,M147_SCC_DATA_A
3065	jbra	L(serial_putc_done)
30662:
3067#endif
3068
3069#ifdef CONFIG_MVME16x
3070	is_not_mvme16x(2f)
3071	/*
3072	 * If the loader gave us a board type then we can use that to
3073	 * select an appropriate output routine; otherwise we just use
3074	 * the Bug code.  If we have to use the Bug that means the Bug
3075	 * workspace has to be valid, which means the Bug has to use
3076	 * the SRAM, which is non-standard.
3077	 */
3078	moveml	%d0-%d7/%a2-%a6,%sp@-
3079	movel	vme_brdtype,%d1
3080	jeq	1f			| No tag - use the Bug
3081	cmpi	#VME_TYPE_MVME162,%d1
3082	jeq	6f
3083	cmpi	#VME_TYPE_MVME172,%d1
3084	jne	5f
3085	/* 162/172; it's an SCC */
30866:	btst	#2,M162_SCC_CTRL_A
3087	nop
3088	nop
3089	nop
3090	jeq	6b
3091	moveb	#8,M162_SCC_CTRL_A
3092	nop
3093	nop
3094	nop
3095	moveb	%d0,M162_SCC_CTRL_A
3096	jra	3f
30975:
3098	/* 166/167/177; it's a CD2401 */
3099	moveb	#0,M167_CYCAR
3100	moveb	M167_CYIER,%d2
3101	moveb	#0x02,M167_CYIER
31027:
3103	btst	#5,M167_PCSCCTICR
3104	jeq	7b
3105	moveb	M167_PCTPIACKR,%d1
3106	moveb	M167_CYLICR,%d1
3107	jeq	8f
3108	moveb	#0x08,M167_CYTEOIR
3109	jra	7b
31108:
3111	moveb	%d0,M167_CYTDR
3112	moveb	#0,M167_CYTEOIR
3113	moveb	%d2,M167_CYIER
3114	jra	3f
31151:
3116	moveb	%d0,%sp@-
3117	trap	#15
3118	.word	0x0020	/* TRAP 0x020 */
31193:
3120	moveml	%sp@+,%d0-%d7/%a2-%a6
3121	jbra	L(serial_putc_done)
31222:
3123#endif /* CONFIG_MVME16x */
3124
3125#ifdef CONFIG_BVME6000
3126	is_not_bvme6000(2f)
3127	/*
3128	 * The BVME6000 machine has a serial port ...
3129	 */
31301:	btst	#2,BVME_SCC_CTRL_A
3131	jeq	1b
3132	moveb	%d0,BVME_SCC_DATA_A
3133	jbra	L(serial_putc_done)
31342:
3135#endif
3136
3137#ifdef CONFIG_SUN3X
3138	is_not_sun3x(2f)
3139	movel	%d0,-(%sp)
3140	movel	0xFEFE0018,%a1
3141	jbsr	(%a1)
3142	addq	#4,%sp
3143	jbra	L(serial_putc_done)
31442:
3145#endif
3146
3147#ifdef CONFIG_Q40
3148	is_not_q40(2f)
3149	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3150	beq	2f
3151	lea	%pc@(q40_mem_cptr),%a1
3152	move.l	%a1@,%a0
3153	move.b	%d0,%a0@
3154	addq.l	#4,%a0
3155	move.l	%a0,%a1@
3156	jbra    L(serial_putc_done)
31572:
3158#endif
3159
3160#ifdef CONFIG_APOLLO
3161	is_not_apollo(2f)
3162	movl    %pc@(L(iobase)),%a1
3163	moveb	%d0,%a1@(LTHRB0)
31641:      moveb   %a1@(LSRB0),%d0
3165	andb	#0x4,%d0
3166	beq	1b
3167	jbra	L(serial_putc_done)
31682:
3169#endif
3170
3171#ifdef CONFIG_HP300
3172	is_not_hp300(3f)
3173	movl    %pc@(L(iobase)),%a1
3174	addl	%pc@(L(uartbase)),%a1
3175	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3176	jmi	3f			/* Unset? Exit */
3177	cmpi	#256,%d1		/* APCI scode? */
3178	jeq	2f
31791:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3180	andb	#0x20,%d1
3181	beq	1b
3182	moveb	%d0,%a1@(DCADATA)
3183	jbra	L(serial_putc_done)
31842:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3185	andb	#0x20,%d1
3186	beq	2b
3187	moveb	%d0,%a1@(APCIDATA)
3188	jbra	L(serial_putc_done)
31893:
3190#endif
3191
3192L(serial_putc_done):
3193func_return	serial_putc
3194
3195/*
3196 * Output a string.
3197 */
3198func_start	puts,%d0/%a0
3199
3200	movel	ARG1,%a0
3201	jra	2f
32021:
3203#ifdef CONSOLE
3204	console_putc	%d0
3205#endif
3206#ifdef SERIAL_DEBUG
3207	serial_putc	%d0
3208#endif
32092:	moveb	%a0@+,%d0
3210	jne	1b
3211
3212func_return	puts
3213
3214/*
3215 * Output number in hex notation.
3216 */
3217
3218func_start	putn,%d0-%d2
3219
3220	putc	' '
3221
3222	movel	ARG1,%d0
3223	moveq	#7,%d1
32241:	roll	#4,%d0
3225	move	%d0,%d2
3226	andb	#0x0f,%d2
3227	addb	#'0',%d2
3228	cmpb	#'9',%d2
3229	jls	2f
3230	addb	#'A'-('9'+1),%d2
32312:
3232#ifdef CONSOLE
3233	console_putc	%d2
3234#endif
3235#ifdef SERIAL_DEBUG
3236	serial_putc	%d2
3237#endif
3238	dbra	%d1,1b
3239
3240func_return	putn
3241
3242#ifdef CONFIG_MAC
3243/*
3244 *	mac_early_print
3245 *
3246 *	This routine takes its parameters on the stack.  It then
3247 *	turns around and calls the internal routines.  This routine
3248 *	is used by the boot console.
3249 *
3250 *	The calling parameters are:
3251 *		void mac_early_print(const char *str, unsigned length);
3252 *
3253 *	This routine does NOT understand variable arguments only
3254 *	simple strings!
3255 */
3256ENTRY(mac_early_print)
3257	moveml	%d0/%d1/%a0,%sp@-
3258	movew	%sr,%sp@-
3259	ori	#0x0700,%sr
3260	movel	%sp@(18),%a0		/* fetch parameter */
3261	movel	%sp@(22),%d1		/* fetch parameter */
3262	jra	2f
32631:
3264#ifdef CONSOLE
3265	console_putc	%d0
3266#endif
3267#ifdef SERIAL_DEBUG
3268	serial_putc	%d0
3269#endif
3270	subq	#1,%d1
32712:	jeq	3f
3272	moveb	%a0@+,%d0
3273	jne	1b
32743:
3275	movew	%sp@+,%sr
3276	moveml	%sp@+,%d0/%d1/%a0
3277	rts
3278#endif /* CONFIG_MAC */
3279
3280#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3281func_start	set_leds,%d0/%a0
3282	movel	ARG1,%d0
3283#ifdef CONFIG_HP300
3284	is_not_hp300(1f)
3285	movel	%pc@(L(iobase)),%a0
3286	moveb	%d0,%a0@(0x1ffff)
3287	jra	2f
3288#endif
32891:
3290#ifdef CONFIG_APOLLO
3291	movel   %pc@(L(iobase)),%a0
3292	lsll    #8,%d0
3293	eorw    #0xff00,%d0
3294	moveb	%d0,%a0@(LCPUCTRL)
3295#endif
32962:
3297func_return	set_leds
3298#endif
3299
3300#ifdef CONSOLE
3301/*
3302 *	For continuity, see the data alignment
3303 *	to which this structure is tied.
3304 */
3305#define Lconsole_struct_cur_column	0
3306#define Lconsole_struct_cur_row		4
3307#define Lconsole_struct_num_columns	8
3308#define Lconsole_struct_num_rows	12
3309#define Lconsole_struct_left_edge	16
3310#define Lconsole_struct_penguin_putc	20
3311
3312func_start	console_init,%a0-%a4/%d0-%d7
3313	/*
3314	 *	Some of the register usage that follows
3315	 *		a0 = pointer to boot_info
3316	 *		a1 = pointer to screen
3317	 *		a2 = pointer to Lconsole_globals
3318	 *		d3 = pixel width of screen
3319	 *		d4 = pixel height of screen
3320	 *		(d3,d4) ~= (x,y) of a point just below
3321	 *			and to the right of the screen
3322	 *			NOT on the screen!
3323	 *		d5 = number of bytes per scan line
3324	 *		d6 = number of bytes on the entire screen
3325	 */
3326
3327	lea	%pc@(L(console_globals)),%a2
3328	movel	%pc@(L(mac_videobase)),%a1
3329	movel	%pc@(L(mac_rowbytes)),%d5
3330	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3331	movel	%d3,%d4
3332	swap	%d4		/* -> high byte */
3333	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3334	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3335
3336	movel	%d5,%d6
3337|	subl	#20,%d6
3338	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3339	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3340	moveq	#-1,%d0		/* Mac_black */
3341	subq	#1,%d6
3342
3343L(console_clear_loop):
3344	movel	%d0,%a1@+
3345	movel	%d0,%a1@+
3346	dbra	%d6,L(console_clear_loop)
3347
3348	/* Calculate font size */
3349
3350#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3351	lea	%pc@(font_vga_8x8),%a0
3352#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3353	lea	%pc@(font_vga_8x16),%a0
3354#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3355	lea	%pc@(font_vga_6x11),%a0
3356#elif defined(CONFIG_FONT_8x8) /* default */
3357	lea	%pc@(font_vga_8x8),%a0
3358#else /* no compiled-in font */
3359	lea	0,%a0
3360#endif
3361
3362	/*
3363	 *	At this point we make a shift in register usage
3364	 *	a1 = address of console_font pointer
3365	 */
3366	lea	%pc@(L(console_font)),%a1
3367	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3368	tstl	%a0
3369	jeq	1f
3370	lea	%pc@(L(console_font_data)),%a4
3371	movel	%a0@(FONT_DESC_DATA),%d0
3372	subl	#L(console_font),%a1
3373	addl	%a1,%d0
3374	movel	%d0,%a4@
3375
3376	/*
3377	 *	Calculate global maxs
3378	 *	Note - we can use either an
3379	 *	8 x 16 or 8 x 8 character font
3380	 *	6 x 11 also supported
3381	 */
3382		/* ASSERT: a0 = contents of Lconsole_font */
3383	movel	%d3,%d0				/* screen width in pixels */
3384	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3385
3386	movel	%d4,%d1				/* screen height in pixels */
3387	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3388
3389	movel	%d0,%a2@(Lconsole_struct_num_columns)
3390	movel	%d1,%a2@(Lconsole_struct_num_rows)
3391
3392	/*
3393	 *	Clear the current row and column
3394	 */
3395	clrl	%a2@(Lconsole_struct_cur_column)
3396	clrl	%a2@(Lconsole_struct_cur_row)
3397	clrl	%a2@(Lconsole_struct_left_edge)
3398
3399	/*
3400	 * Initialization is complete
3401	 */
34021:
3403func_return	console_init
3404
3405func_start	console_put_stats,%a0/%d7
3406	/*
3407	 *	Some of the register usage that follows
3408	 *		a0 = pointer to boot_info
3409	 *		d7 = value of boot_info fields
3410	 */
3411	puts	"\nMacLinux\n"
3412
3413#ifdef SERIAL_DEBUG
3414	puts	"\n vidaddr:"
3415	putn	%pc@(L(mac_videobase))		/* video addr. */
3416
3417	puts	"\n  _stext:"
3418	lea	%pc@(_stext),%a0
3419	putn	%a0
3420
3421	puts	"\nbootinfo:"
3422	lea	%pc@(_end),%a0
3423	putn	%a0
3424
3425	puts	"\n   cpuid:"
3426	putn	%pc@(L(cputype))
3427
3428#  ifdef CONFIG_MAC
3429	puts	"\n sccbase:"
3430	putn	%pc@(L(mac_sccbase))
3431#  endif
3432#  ifdef MMU_PRINT
3433	putc	'\n'
3434	jbsr	mmu_print_machine_cpu_types
3435#  endif
3436#endif /* SERIAL_DEBUG */
3437
3438	putc	'\n'
3439
3440func_return	console_put_stats
3441
3442#ifdef CONSOLE_PENGUIN
3443func_start	console_put_penguin,%a0-%a1/%d0-%d7
3444	/*
3445	 *	Get 'that_penguin' onto the screen in the upper right corner
3446	 *	penguin is 64 x 74 pixels, align against right edge of screen
3447	 */
3448	lea	%pc@(L(mac_dimensions)),%a0
3449	movel	%a0@,%d0
3450	andil	#0xffff,%d0
3451	subil	#64,%d0		/* snug up against the right edge */
3452	clrl	%d1		/* start at the top */
3453	movel	#73,%d7
3454	lea	%pc@(L(that_penguin)),%a1
3455L(console_penguin_row):
3456	movel	#31,%d6
3457L(console_penguin_pixel_pair):
3458	moveb	%a1@,%d2
3459	lsrb	#4,%d2
3460	console_plot_pixel %d0,%d1,%d2
3461	addq	#1,%d0
3462	moveb	%a1@+,%d2
3463	console_plot_pixel %d0,%d1,%d2
3464	addq	#1,%d0
3465	dbra	%d6,L(console_penguin_pixel_pair)
3466
3467	subil	#64,%d0
3468	addq	#1,%d1
3469	dbra	%d7,L(console_penguin_row)
3470
3471func_return	console_put_penguin
3472
3473/* include penguin bitmap */
3474L(that_penguin):
3475#include "../mac/mac_penguin.S"
3476#endif
3477
3478	/*
3479	 * Calculate source and destination addresses
3480	 *	output	a1 = dest
3481	 *		a2 = source
3482	 */
3483
3484func_start	console_scroll,%a0-%a4/%d0-%d7
3485	lea	%pc@(L(mac_videobase)),%a0
3486	movel	%a0@,%a1
3487	movel	%a1,%a2
3488	lea	%pc@(L(mac_rowbytes)),%a0
3489	movel	%a0@,%d5
3490	movel	%pc@(L(console_font)),%a0
3491	tstl	%a0
3492	jeq	1f
3493	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3494	addal	%d5,%a2
3495
3496	/*
3497	 * Get dimensions
3498	 */
3499	lea	%pc@(L(mac_dimensions)),%a0
3500	movel	%a0@,%d3
3501	movel	%d3,%d4
3502	swap	%d4
3503	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3504	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3505
3506	/*
3507	 * Calculate number of bytes to move
3508	 */
3509	lea	%pc@(L(mac_rowbytes)),%a0
3510	movel	%a0@,%d6
3511	movel	%pc@(L(console_font)),%a0
3512	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3513	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3514	divul	#32,%d6		/* we'll move 8 longs at a time */
3515	subq	#1,%d6
3516
3517L(console_scroll_loop):
3518	movel	%a2@+,%a1@+
3519	movel	%a2@+,%a1@+
3520	movel	%a2@+,%a1@+
3521	movel	%a2@+,%a1@+
3522	movel	%a2@+,%a1@+
3523	movel	%a2@+,%a1@+
3524	movel	%a2@+,%a1@+
3525	movel	%a2@+,%a1@+
3526	dbra	%d6,L(console_scroll_loop)
3527
3528	lea	%pc@(L(mac_rowbytes)),%a0
3529	movel	%a0@,%d6
3530	movel	%pc@(L(console_font)),%a0
3531	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3532	divul	#32,%d6			/* we'll move 8 words at a time */
3533	subq	#1,%d6
3534
3535	moveq	#-1,%d0
3536L(console_scroll_clear_loop):
3537	movel	%d0,%a1@+
3538	movel	%d0,%a1@+
3539	movel	%d0,%a1@+
3540	movel	%d0,%a1@+
3541	movel	%d0,%a1@+
3542	movel	%d0,%a1@+
3543	movel	%d0,%a1@+
3544	movel	%d0,%a1@+
3545	dbra	%d6,L(console_scroll_clear_loop)
3546
35471:
3548func_return	console_scroll
3549
3550
3551func_start	console_putc,%a0/%a1/%d0-%d7
3552
3553	is_not_mac(L(console_exit))
3554	tstl	%pc@(L(console_font))
3555	jeq	L(console_exit)
3556
3557	/* Output character in d7 on console.
3558	 */
3559	movel	ARG1,%d7
3560	cmpib	#'\n',%d7
3561	jbne	1f
3562
3563	/* A little safe recursion is good for the soul */
3564	console_putc	#'\r'
35651:
3566	lea	%pc@(L(console_globals)),%a0
3567
3568	cmpib	#10,%d7
3569	jne	L(console_not_lf)
3570	movel	%a0@(Lconsole_struct_cur_row),%d0
3571	addil	#1,%d0
3572	movel	%d0,%a0@(Lconsole_struct_cur_row)
3573	movel	%a0@(Lconsole_struct_num_rows),%d1
3574	cmpl	%d1,%d0
3575	jcs	1f
3576	subil	#1,%d0
3577	movel	%d0,%a0@(Lconsole_struct_cur_row)
3578	console_scroll
35791:
3580	jra	L(console_exit)
3581
3582L(console_not_lf):
3583	cmpib	#13,%d7
3584	jne	L(console_not_cr)
3585	clrl	%a0@(Lconsole_struct_cur_column)
3586	jra	L(console_exit)
3587
3588L(console_not_cr):
3589	cmpib	#1,%d7
3590	jne	L(console_not_home)
3591	clrl	%a0@(Lconsole_struct_cur_row)
3592	clrl	%a0@(Lconsole_struct_cur_column)
3593	jra	L(console_exit)
3594
3595/*
3596 *	At this point we know that the %d7 character is going to be
3597 *	rendered on the screen.  Register usage is -
3598 *		a0 = pointer to console globals
3599 *		a1 = font data
3600 *		d0 = cursor column
3601 *		d1 = cursor row to draw the character
3602 *		d7 = character number
3603 */
3604L(console_not_home):
3605	movel	%a0@(Lconsole_struct_cur_column),%d0
3606	addql	#1,%a0@(Lconsole_struct_cur_column)
3607	movel	%a0@(Lconsole_struct_num_columns),%d1
3608	cmpl	%d1,%d0
3609	jcs	1f
3610	console_putc	#'\n'	/* recursion is OK! */
36111:
3612	movel	%a0@(Lconsole_struct_cur_row),%d1
3613
3614	/*
3615	 *	At this point we make a shift in register usage
3616	 *	a0 = address of pointer to font data (fbcon_font_desc)
3617	 */
3618	movel	%pc@(L(console_font)),%a0
3619	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3620	andl	#0x000000ff,%d7
3621		/* ASSERT: a0 = contents of Lconsole_font */
3622	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3623	addl	%d7,%a1			/* a1 = points to char image */
3624
3625	/*
3626	 *	At this point we make a shift in register usage
3627	 *	d0 = pixel coordinate, x
3628	 *	d1 = pixel coordinate, y
3629	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3630	 *	d3 = font scan line data (8 pixels)
3631	 *	d6 = count down for the font's pixel width (8)
3632	 *	d7 = count down for the font's pixel count in height
3633	 */
3634		/* ASSERT: a0 = contents of Lconsole_font */
3635	mulul	%a0@(FONT_DESC_WIDTH),%d0
3636	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3637	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3638	subq	#1,%d7
3639L(console_read_char_scanline):
3640	moveb	%a1@+,%d3
3641
3642		/* ASSERT: a0 = contents of Lconsole_font */
3643	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3644	subql	#1,%d6
3645
3646L(console_do_font_scanline):
3647	lslb	#1,%d3
3648	scsb	%d2		/* convert 1 bit into a byte */
3649	console_plot_pixel %d0,%d1,%d2
3650	addq	#1,%d0
3651	dbra	%d6,L(console_do_font_scanline)
3652
3653		/* ASSERT: a0 = contents of Lconsole_font */
3654	subl	%a0@(FONT_DESC_WIDTH),%d0
3655	addq	#1,%d1
3656	dbra	%d7,L(console_read_char_scanline)
3657
3658L(console_exit):
3659func_return	console_putc
3660
3661	/*
3662	 *	Input:
3663	 *		d0 = x coordinate
3664	 *		d1 = y coordinate
3665	 *		d2 = (bit 0) 1/0 for white/black (!)
3666	 *	All registers are preserved
3667	 */
3668func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3669
3670	movel	%pc@(L(mac_videobase)),%a1
3671	movel	%pc@(L(mac_videodepth)),%d3
3672	movel	ARG1,%d0
3673	movel	ARG2,%d1
3674	mulul	%pc@(L(mac_rowbytes)),%d1
3675	movel	ARG3,%d2
3676
3677	/*
3678	 *	Register usage:
3679	 *		d0 = x coord becomes byte offset into frame buffer
3680	 *		d1 = y coord
3681	 *		d2 = black or white (0/1)
3682	 *		d3 = video depth
3683	 *		d4 = temp of x (d0) for many bit depths
3684	 */
3685L(test_1bit):
3686	cmpb	#1,%d3
3687	jbne	L(test_2bit)
3688	movel	%d0,%d4		/* we need the low order 3 bits! */
3689	divul	#8,%d0
3690	addal	%d0,%a1
3691	addal	%d1,%a1
3692	andb	#7,%d4
3693	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3694	andb	#1,%d2
3695	jbne	L(white_1)
3696	bsetb	%d4,%a1@
3697	jbra	L(console_plot_pixel_exit)
3698L(white_1):
3699	bclrb	%d4,%a1@
3700	jbra	L(console_plot_pixel_exit)
3701
3702L(test_2bit):
3703	cmpb	#2,%d3
3704	jbne	L(test_4bit)
3705	movel	%d0,%d4		/* we need the low order 2 bits! */
3706	divul	#4,%d0
3707	addal	%d0,%a1
3708	addal	%d1,%a1
3709	andb	#3,%d4
3710	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3711	lsll	#1,%d4		/* ! */
3712	andb	#1,%d2
3713	jbne	L(white_2)
3714	bsetb	%d4,%a1@
3715	addq	#1,%d4
3716	bsetb	%d4,%a1@
3717	jbra	L(console_plot_pixel_exit)
3718L(white_2):
3719	bclrb	%d4,%a1@
3720	addq	#1,%d4
3721	bclrb	%d4,%a1@
3722	jbra	L(console_plot_pixel_exit)
3723
3724L(test_4bit):
3725	cmpb	#4,%d3
3726	jbne	L(test_8bit)
3727	movel	%d0,%d4		/* we need the low order bit! */
3728	divul	#2,%d0
3729	addal	%d0,%a1
3730	addal	%d1,%a1
3731	andb	#1,%d4
3732	eorb	#1,%d4
3733	lsll	#2,%d4		/* ! */
3734	andb	#1,%d2
3735	jbne	L(white_4)
3736	bsetb	%d4,%a1@
3737	addq	#1,%d4
3738	bsetb	%d4,%a1@
3739	addq	#1,%d4
3740	bsetb	%d4,%a1@
3741	addq	#1,%d4
3742	bsetb	%d4,%a1@
3743	jbra	L(console_plot_pixel_exit)
3744L(white_4):
3745	bclrb	%d4,%a1@
3746	addq	#1,%d4
3747	bclrb	%d4,%a1@
3748	addq	#1,%d4
3749	bclrb	%d4,%a1@
3750	addq	#1,%d4
3751	bclrb	%d4,%a1@
3752	jbra	L(console_plot_pixel_exit)
3753
3754L(test_8bit):
3755	cmpb	#8,%d3
3756	jbne	L(test_16bit)
3757	addal	%d0,%a1
3758	addal	%d1,%a1
3759	andb	#1,%d2
3760	jbne	L(white_8)
3761	moveb	#0xff,%a1@
3762	jbra	L(console_plot_pixel_exit)
3763L(white_8):
3764	clrb	%a1@
3765	jbra	L(console_plot_pixel_exit)
3766
3767L(test_16bit):
3768	cmpb	#16,%d3
3769	jbne	L(console_plot_pixel_exit)
3770	addal	%d0,%a1
3771	addal	%d0,%a1
3772	addal	%d1,%a1
3773	andb	#1,%d2
3774	jbne	L(white_16)
3775	clrw	%a1@
3776	jbra	L(console_plot_pixel_exit)
3777L(white_16):
3778	movew	#0x0fff,%a1@
3779	jbra	L(console_plot_pixel_exit)
3780
3781L(console_plot_pixel_exit):
3782func_return	console_plot_pixel
3783#endif /* CONSOLE */
3784
3785#if 0
3786/*
3787 * This is some old code lying around.  I don't believe
3788 * it's used or important anymore.  My guess is it contributed
3789 * to getting to this point, but it's done for now.
3790 * It was still in the 2.1.77 head.S, so it's still here.
3791 * (And still not used!)
3792 */
3793L(showtest):
3794	moveml	%a0/%d7,%sp@-
3795	puts	"A="
3796	putn	%a1
3797
3798	.long	0xf0119f15		| ptestr	#5,%a1@,#7,%a0
3799
3800	puts	"DA="
3801	putn	%a0
3802
3803	puts	"D="
3804	putn	%a0@
3805
3806	puts	"S="
3807	lea	%pc@(L(mmu)),%a0
3808	.long	0xf0106200		| pmove		%psr,%a0@
3809	clrl	%d7
3810	movew	%a0@,%d7
3811	putn	%d7
3812
3813	putc	'\n'
3814	moveml	%sp@+,%a0/%d7
3815	rts
3816#endif	/* 0 */
3817
3818__INITDATA
3819	.align	4
3820
3821#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3822    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3823L(custom):
3824L(iobase):
3825	.long 0
3826#endif
3827
3828#if defined(CONSOLE)
3829L(console_globals):
3830	.long	0		/* cursor column */
3831	.long	0		/* cursor row */
3832	.long	0		/* max num columns */
3833	.long	0		/* max num rows */
3834	.long	0		/* left edge */
3835	.long	0		/* mac putc */
3836L(console_font):
3837	.long	0		/* pointer to console font (struct font_desc) */
3838L(console_font_data):
3839	.long	0		/* pointer to console font data */
3840#endif /* CONSOLE */
3841
3842#if defined(MMU_PRINT)
3843L(mmu_print_data):
3844	.long	0		/* valid flag */
3845	.long	0		/* start logical */
3846	.long	0		/* next logical */
3847	.long	0		/* start physical */
3848	.long	0		/* next physical */
3849#endif /* MMU_PRINT */
3850
3851L(cputype):
3852	.long	0
3853L(mmu_cached_pointer_tables):
3854	.long	0
3855L(mmu_num_pointer_tables):
3856	.long	0
3857L(phys_kernel_start):
3858	.long	0
3859L(kernel_end):
3860	.long	0
3861L(memory_start):
3862	.long	0
3863L(kernel_pgdir_ptr):
3864	.long	0
3865L(temp_mmap_mem):
3866	.long	0
3867
3868#if defined (CONFIG_MVME147)
3869M147_SCC_CTRL_A = 0xfffe3002
3870M147_SCC_DATA_A = 0xfffe3003
3871#endif
3872
3873#if defined (CONFIG_MVME16x)
3874M162_SCC_CTRL_A = 0xfff45005
3875M167_CYCAR = 0xfff450ee
3876M167_CYIER = 0xfff45011
3877M167_CYLICR = 0xfff45026
3878M167_CYTEOIR = 0xfff45085
3879M167_CYTDR = 0xfff450f8
3880M167_PCSCCTICR = 0xfff4201e
3881M167_PCTPIACKR = 0xfff42025
3882#endif
3883
3884#if defined (CONFIG_BVME6000)
3885BVME_SCC_CTRL_A	= 0xffb0000b
3886BVME_SCC_DATA_A	= 0xffb0000f
3887#endif
3888
3889#if defined(CONFIG_MAC)
3890L(mac_booter_data):
3891	.long	0
3892L(mac_videobase):
3893	.long	0
3894L(mac_videodepth):
3895	.long	0
3896L(mac_dimensions):
3897	.long	0
3898L(mac_rowbytes):
3899	.long	0
3900#ifdef SERIAL_DEBUG
3901L(mac_sccbase):
3902	.long	0
3903#endif
3904#endif /* CONFIG_MAC */
3905
3906#if defined (CONFIG_APOLLO)
3907LSRB0        = 0x10412
3908LTHRB0       = 0x10416
3909LCPUCTRL     = 0x10100
3910#endif
3911
3912#if defined(CONFIG_HP300)
3913DCADATA	     = 0x11
3914DCALSR	     = 0x1b
3915APCIDATA     = 0x00
3916APCILSR      = 0x14
3917L(uartbase):
3918	.long	0
3919L(uart_scode):
3920	.long	-1
3921#endif
3922
3923__FINIT
3924	.data
3925	.align	4
3926
3927availmem:
3928	.long	0
3929m68k_pgtable_cachemode:
3930	.long	0
3931m68k_supervisor_cachemode:
3932	.long	0
3933#if defined(CONFIG_MVME16x)
3934mvme_bdid:
3935	.long	0,0,0,0,0,0,0,0
3936#endif
3937#if defined(CONFIG_Q40)
3938q40_mem_cptr:
3939	.long	0
3940L(q40_do_debug):
3941	.long	0
3942#endif
3943