1/* -*- mode: asm -*- 2** 3** head.S -- This file contains the initial boot code for the 4** Linux/68k kernel. 5** 6** Copyright 1993 by Hamish Macdonald 7** 8** 68040 fixes by Michael Rausch 9** 68060 fixes by Roman Hodek 10** MMU cleanup by Randy Thelen 11** Final MMU cleanup by Roman Zippel 12** 13** Atari support by Andreas Schwab, using ideas of Robert de Vries 14** and Bjoern Brauel 15** VME Support by Richard Hirst 16** 17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE 18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari 19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa 20** 95/11/18 Richard Hirst: Added MVME166 support 21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with 22** Magnum- and FX-alternate ram 23** 98/04/25 Phil Blundell: added HP300 support 24** 1998/08/30 David Kilzer: Added support for font_desc structures 25** for linux-2.1.115 26** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01) 27** 2004/05/13 Kars de Jong: Finalised HP300 support 28** 29** This file is subject to the terms and conditions of the GNU General Public 30** License. See the file README.legal in the main directory of this archive 31** for more details. 32** 33*/ 34 35/* 36 * Linux startup code. 37 * 38 * At this point, the boot loader has: 39 * Disabled interrupts 40 * Disabled caches 41 * Put us in supervisor state. 42 * 43 * The kernel setup code takes the following steps: 44 * . Raise interrupt level 45 * . Set up initial kernel memory mapping. 46 * . This sets up a mapping of the 4M of memory the kernel is located in. 47 * . It also does a mapping of any initial machine specific areas. 48 * . Enable the MMU 49 * . Enable cache memories 50 * . Jump to kernel startup 51 * 52 * Much of the file restructuring was to accomplish: 53 * 1) Remove register dependency through-out the file. 54 * 2) Increase use of subroutines to perform functions 55 * 3) Increase readability of the code 56 * 57 * Of course, readability is a subjective issue, so it will never be 58 * argued that that goal was accomplished. It was merely a goal. 59 * A key way to help make code more readable is to give good 60 * documentation. So, the first thing you will find is exaustive 61 * write-ups on the structure of the file, and the features of the 62 * functional subroutines. 63 * 64 * General Structure: 65 * ------------------ 66 * Without a doubt the single largest chunk of head.S is spent 67 * mapping the kernel and I/O physical space into the logical range 68 * for the kernel. 69 * There are new subroutines and data structures to make MMU 70 * support cleaner and easier to understand. 71 * First, you will find a routine call "mmu_map" which maps 72 * a logical to a physical region for some length given a cache 73 * type on behalf of the caller. This routine makes writing the 74 * actual per-machine specific code very simple. 75 * A central part of the code, but not a subroutine in itself, 76 * is the mmu_init code which is broken down into mapping the kernel 77 * (the same for all machines) and mapping machine-specific I/O 78 * regions. 79 * Also, there will be a description of engaging the MMU and 80 * caches. 81 * You will notice that there is a chunk of code which 82 * can emit the entire MMU mapping of the machine. This is present 83 * only in debug modes and can be very helpful. 84 * Further, there is a new console driver in head.S that is 85 * also only engaged in debug mode. Currently, it's only supported 86 * on the Macintosh class of machines. However, it is hoped that 87 * others will plug-in support for specific machines. 88 * 89 * ###################################################################### 90 * 91 * mmu_map 92 * ------- 93 * mmu_map was written for two key reasons. First, it was clear 94 * that it was very difficult to read the previous code for mapping 95 * regions of memory. Second, the Macintosh required such extensive 96 * memory allocations that it didn't make sense to propagate the 97 * existing code any further. 98 * mmu_map requires some parameters: 99 * 100 * mmu_map (logical, physical, length, cache_type) 101 * 102 * While this essentially describes the function in the abstract, you'll 103 * find more indepth description of other parameters at the implementation site. 104 * 105 * mmu_get_root_table_entry 106 * ------------------------ 107 * mmu_get_ptr_table_entry 108 * ----------------------- 109 * mmu_get_page_table_entry 110 * ------------------------ 111 * 112 * These routines are used by other mmu routines to get a pointer into 113 * a table, if necessary a new table is allocated. These routines are working 114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root 115 * table needs of course only to be allocated once in mmu_get_root_table_entry, 116 * so that here also some mmu specific initialization is done. The second page 117 * at the start of the kernel (the first page is unmapped later) is used for 118 * the kernel_pg_dir. It must be at a position known at link time (as it's used 119 * to initialize the init task struct) and since it needs special cache 120 * settings, it's the easiest to use this page, the rest of the page is used 121 * for further pointer tables. 122 * mmu_get_page_table_entry allocates always a whole page for page tables, this 123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense 124 * to manage page tables in smaller pieces as nearly all mappings have that 125 * size. 126 * 127 * ###################################################################### 128 * 129 * 130 * ###################################################################### 131 * 132 * mmu_engage 133 * ---------- 134 * Thanks to a small helping routine enabling the mmu got quite simple 135 * and there is only one way left. mmu_engage makes a complete a new mapping 136 * that only includes the absolute necessary to be able to jump to the final 137 * postion and to restore the original mapping. 138 * As this code doesn't need a transparent translation register anymore this 139 * means all registers are free to be used by machines that needs them for 140 * other purposes. 141 * 142 * ###################################################################### 143 * 144 * mmu_print 145 * --------- 146 * This algorithm will print out the page tables of the system as 147 * appropriate for an 030 or an 040. This is useful for debugging purposes 148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses. 149 * 150 * ###################################################################### 151 * 152 * console_init 153 * ------------ 154 * The console is also able to be turned off. The console in head.S 155 * is specifically for debugging and can be very useful. It is surrounded by 156 * #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good 157 * kernels. It's basic algorithm is to determine the size of the screen 158 * (in height/width and bit depth) and then use that information for 159 * displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for 160 * debugging so I can see more good data. But it was trivial to add support 161 * for both fonts, so I included it. 162 * Also, the algorithm for plotting pixels is abstracted so that in 163 * theory other platforms could add support for different kinds of frame 164 * buffers. This could be very useful. 165 * 166 * console_put_penguin 167 * ------------------- 168 * An important part of any Linux bring up is the penguin and there's 169 * nothing like getting the Penguin on the screen! This algorithm will work 170 * on any machine for which there is a console_plot_pixel. 171 * 172 * console_scroll 173 * -------------- 174 * My hope is that the scroll algorithm does the right thing on the 175 * various platforms, but it wouldn't be hard to add the test conditions 176 * and new code if it doesn't. 177 * 178 * console_putc 179 * ------------- 180 * 181 * ###################################################################### 182 * 183 * Register usage has greatly simplified within head.S. Every subroutine 184 * saves and restores all registers that it modifies (except it returns a 185 * value in there of course). So the only register that needs to be initialized 186 * is the stack pointer. 187 * All other init code and data is now placed in the init section, so it will 188 * be automatically freed at the end of the kernel initialization. 189 * 190 * ###################################################################### 191 * 192 * options 193 * ------- 194 * There are many options available in a build of this file. I've 195 * taken the time to describe them here to save you the time of searching 196 * for them and trying to understand what they mean. 197 * 198 * CONFIG_xxx: These are the obvious machine configuration defines created 199 * during configuration. These are defined in include/linux/autoconf.h. 200 * 201 * CONSOLE: There is support for head.S console in this file. This 202 * console can talk to a Mac frame buffer, but could easily be extrapolated 203 * to extend it to support other platforms. 204 * 205 * TEST_MMU: This is a test harness for running on any given machine but 206 * getting an MMU dump for another class of machine. The classes of machines 207 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.) 208 * and any of the models (030, 040, 060, etc.). 209 * 210 * NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed 211 * When head.S boots on Atari, Amiga, Macintosh, and VME 212 * machines. At that point the underlying logic will be 213 * believed to be solid enough to be trusted, and TEST_MMU 214 * can be dropped. Do note that that will clean up the 215 * head.S code significantly as large blocks of #if/#else 216 * clauses can be removed. 217 * 218 * MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into 219 * determing why devices don't appear to work. A test case was to remove 220 * the cacheability of the kernel bits. 221 * 222 * MMU_PRINT: There is a routine built into head.S that can display the 223 * MMU data structures. It outputs its result through the serial_putc 224 * interface. So where ever that winds up driving data, that's where the 225 * mmu struct will appear. On the Macintosh that's typically the console. 226 * 227 * SERIAL_DEBUG: There are a series of putc() macro statements 228 * scattered through out the code to give progress of status to the 229 * person sitting at the console. This constant determines whether those 230 * are used. 231 * 232 * DEBUG: This is the standard DEBUG flag that can be set for building 233 * the kernel. It has the effect adding additional tests into 234 * the code. 235 * 236 * FONT_6x11: 237 * FONT_8x8: 238 * FONT_8x16: 239 * In theory these could be determined at run time or handed 240 * over by the booter. But, let's be real, it's a fine hard 241 * coded value. (But, you will notice the code is run-time 242 * flexible!) A pointer to the font's struct font_desc 243 * is kept locally in Lconsole_font. It is used to determine 244 * font size information dynamically. 245 * 246 * Atari constants: 247 * USE_PRINTER: Use the printer port for serial debug. 248 * USE_SCC_B: Use the SCC port A (Serial2) for serial debug. 249 * USE_SCC_A: Use the SCC port B (Modem2) for serial debug. 250 * USE_MFP: Use the ST-MFP port (Modem1) for serial debug. 251 * 252 * Macintosh constants: 253 * MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh. 254 * MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug. 255 * MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default). 256 */ 257 258#include <linux/linkage.h> 259#include <linux/init.h> 260#include <asm/bootinfo.h> 261#include <asm/setup.h> 262#include <asm/entry.h> 263#include <asm/pgtable.h> 264#include <asm/page.h> 265#include <asm/asm-offsets.h> 266 267#ifdef CONFIG_MAC 268 269#include <asm/machw.h> 270 271/* 272 * Macintosh console support 273 */ 274 275#ifdef CONFIG_FRAMEBUFFER_CONSOLE 276#define CONSOLE 277#define CONSOLE_PENGUIN 278#endif 279 280/* 281 * Macintosh serial debug support; outputs boot info to the printer 282 * and/or modem serial ports 283 */ 284#undef MAC_SERIAL_DEBUG 285 286/* 287 * Macintosh serial debug port selection; define one or both; 288 * requires MAC_SERIAL_DEBUG to be defined 289 */ 290#define MAC_USE_SCC_A /* Macintosh modem serial port */ 291#define MAC_USE_SCC_B /* Macintosh printer serial port */ 292 293#endif /* CONFIG_MAC */ 294 295#undef MMU_PRINT 296#undef MMU_NOCACHE_KERNEL 297#define SERIAL_DEBUG 298#undef DEBUG 299 300/* 301 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8. 302 * The 8x8 font is harder to read but fits more on the screen. 303 */ 304#define FONT_8x8 /* default */ 305/* #define FONT_8x16 */ /* 2nd choice */ 306/* #define FONT_6x11 */ /* 3rd choice */ 307 308.globl kernel_pg_dir 309.globl availmem 310.globl m68k_pgtable_cachemode 311.globl m68k_supervisor_cachemode 312#ifdef CONFIG_MVME16x 313.globl mvme_bdid 314#endif 315#ifdef CONFIG_Q40 316.globl q40_mem_cptr 317#endif 318 319CPUTYPE_040 = 1 /* indicates an 040 */ 320CPUTYPE_060 = 2 /* indicates an 060 */ 321CPUTYPE_0460 = 3 /* if either above are set, this is set */ 322CPUTYPE_020 = 4 /* indicates an 020 */ 323 324/* Translation control register */ 325TC_ENABLE = 0x8000 326TC_PAGE8K = 0x4000 327TC_PAGE4K = 0x0000 328 329/* Transparent translation registers */ 330TTR_ENABLE = 0x8000 /* enable transparent translation */ 331TTR_ANYMODE = 0x4000 /* user and kernel mode access */ 332TTR_KERNELMODE = 0x2000 /* only kernel mode access */ 333TTR_USERMODE = 0x0000 /* only user mode access */ 334TTR_CI = 0x0400 /* inhibit cache */ 335TTR_RW = 0x0200 /* read/write mode */ 336TTR_RWM = 0x0100 /* read/write mask */ 337TTR_FCB2 = 0x0040 /* function code base bit 2 */ 338TTR_FCB1 = 0x0020 /* function code base bit 1 */ 339TTR_FCB0 = 0x0010 /* function code base bit 0 */ 340TTR_FCM2 = 0x0004 /* function code mask bit 2 */ 341TTR_FCM1 = 0x0002 /* function code mask bit 1 */ 342TTR_FCM0 = 0x0001 /* function code mask bit 0 */ 343 344/* Cache Control registers */ 345CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */ 346CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */ 347CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */ 348CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */ 349CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */ 350CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */ 351CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */ 352CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */ 353CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */ 354CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */ 355CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */ 356CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */ 357CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */ 358CC3_CLR_D = 0x00000800 /* clear data cache (68030) */ 359CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */ 360CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */ 361CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */ 362CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */ 363CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */ 364CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */ 365CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */ 366CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */ 367 368/* Miscellaneous definitions */ 369PAGESIZE = 4096 370PAGESHIFT = 12 371 372ROOT_TABLE_SIZE = 128 373PTR_TABLE_SIZE = 128 374PAGE_TABLE_SIZE = 64 375ROOT_INDEX_SHIFT = 25 376PTR_INDEX_SHIFT = 18 377PAGE_INDEX_SHIFT = 12 378 379#ifdef DEBUG 380/* When debugging use readable names for labels */ 381#ifdef __STDC__ 382#define L(name) .head.S.##name 383#else 384#define L(name) .head.S./**/name 385#endif 386#else 387#ifdef __STDC__ 388#define L(name) .L##name 389#else 390#define L(name) .L/**/name 391#endif 392#endif 393 394/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */ 395#ifndef __INITDATA 396#define __INITDATA .data 397#define __FINIT .previous 398#endif 399 400/* Several macros to make the writing of subroutines easier: 401 * - func_start marks the beginning of the routine which setups the frame 402 * register and saves the registers, it also defines another macro 403 * to automatically restore the registers again. 404 * - func_return marks the end of the routine and simply calls the prepared 405 * macro to restore registers and jump back to the caller. 406 * - func_define generates another macro to automatically put arguments 407 * onto the stack call the subroutine and cleanup the stack again. 408 */ 409 410/* Within subroutines these macros can be used to access the arguments 411 * on the stack. With STACK some allocated memory on the stack can be 412 * accessed and ARG0 points to the return address (used by mmu_engage). 413 */ 414#define STACK %a6@(stackstart) 415#define ARG0 %a6@(4) 416#define ARG1 %a6@(8) 417#define ARG2 %a6@(12) 418#define ARG3 %a6@(16) 419#define ARG4 %a6@(20) 420 421.macro func_start name,saveregs,stack=0 422L(\name): 423 linkw %a6,#-\stack 424 moveml \saveregs,%sp@- 425.set stackstart,-\stack 426 427.macro func_return_\name 428 moveml %sp@+,\saveregs 429 unlk %a6 430 rts 431.endm 432.endm 433 434.macro func_return name 435 func_return_\name 436.endm 437 438.macro func_call name 439 jbsr L(\name) 440.endm 441 442.macro move_stack nr,arg1,arg2,arg3,arg4 443.if \nr 444 move_stack "(\nr-1)",\arg2,\arg3,\arg4 445 movel \arg1,%sp@- 446.endif 447.endm 448 449.macro func_define name,nr=0 450.macro \name arg1,arg2,arg3,arg4 451 move_stack \nr,\arg1,\arg2,\arg3,\arg4 452 func_call \name 453.if \nr 454 lea %sp@(\nr*4),%sp 455.endif 456.endm 457.endm 458 459func_define mmu_map,4 460func_define mmu_map_tt,4 461func_define mmu_fixup_page_mmu_cache,1 462func_define mmu_temp_map,2 463func_define mmu_engage 464func_define mmu_get_root_table_entry,1 465func_define mmu_get_ptr_table_entry,2 466func_define mmu_get_page_table_entry,2 467func_define mmu_print 468func_define get_new_page 469#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 470func_define set_leds 471#endif 472 473.macro mmu_map_eq arg1,arg2,arg3 474 mmu_map \arg1,\arg1,\arg2,\arg3 475.endm 476 477.macro get_bi_record record 478 pea \record 479 func_call get_bi_record 480 addql #4,%sp 481.endm 482 483func_define serial_putc,1 484func_define console_putc,1 485 486func_define console_init 487func_define console_put_stats 488func_define console_put_penguin 489func_define console_plot_pixel,3 490func_define console_scroll 491 492.macro putc ch 493#if defined(CONSOLE) || defined(SERIAL_DEBUG) 494 pea \ch 495#endif 496#ifdef CONSOLE 497 func_call console_putc 498#endif 499#ifdef SERIAL_DEBUG 500 func_call serial_putc 501#endif 502#if defined(CONSOLE) || defined(SERIAL_DEBUG) 503 addql #4,%sp 504#endif 505.endm 506 507.macro dputc ch 508#ifdef DEBUG 509 putc \ch 510#endif 511.endm 512 513func_define putn,1 514 515.macro dputn nr 516#ifdef DEBUG 517 putn \nr 518#endif 519.endm 520 521.macro puts string 522#if defined(CONSOLE) || defined(SERIAL_DEBUG) 523 __INITDATA 524.Lstr\@: 525 .string "\string" 526 __FINIT 527 pea %pc@(.Lstr\@) 528 func_call puts 529 addql #4,%sp 530#endif 531.endm 532 533.macro dputs string 534#ifdef DEBUG 535 puts "\string" 536#endif 537.endm 538 539#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab 540#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab 541#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab 542#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab 543#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab 544#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab 545#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab 546#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab 547#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab 548#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab 549#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab 550#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab 551#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab 552 553#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \ 554 jeq 42f; \ 555 cmpl &MACH_APOLLO,%pc@(m68k_machtype); \ 556 jne lab ;\ 557 42:\ 558 559#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab 560#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab 561#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab 562#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab 563#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab 564#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab 565#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab 566 567/* On the HP300 we use the on-board LEDs for debug output before 568 the console is running. Writing a 1 bit turns the corresponding LED 569 _off_ - on the 340 bit 7 is towards the back panel of the machine. */ 570.macro leds mask 571#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 572 hasnt_leds(.Lled\@) 573 pea \mask 574 func_call set_leds 575 addql #4,%sp 576.Lled\@: 577#endif 578.endm 579 580.section ".text.head","ax" 581ENTRY(_stext) 582/* 583 * Version numbers of the bootinfo interface 584 * The area from _stext to _start will later be used as kernel pointer table 585 */ 586 bras 1f /* Jump over bootinfo version numbers */ 587 588 .long BOOTINFOV_MAGIC 589 .long MACH_AMIGA, AMIGA_BOOTI_VERSION 590 .long MACH_ATARI, ATARI_BOOTI_VERSION 591 .long MACH_MVME147, MVME147_BOOTI_VERSION 592 .long MACH_MVME16x, MVME16x_BOOTI_VERSION 593 .long MACH_BVME6000, BVME6000_BOOTI_VERSION 594 .long MACH_MAC, MAC_BOOTI_VERSION 595 .long MACH_Q40, Q40_BOOTI_VERSION 596 .long MACH_HP300, HP300_BOOTI_VERSION 597 .long 0 5981: jra __start 599 600.equ kernel_pg_dir,_stext 601 602.equ .,_stext+PAGESIZE 603 604ENTRY(_start) 605 jra __start 606__INIT 607ENTRY(__start) 608/* 609 * Setup initial stack pointer 610 */ 611 lea %pc@(_stext),%sp 612 613/* 614 * Record the CPU and machine type. 615 */ 616 get_bi_record BI_MACHTYPE 617 lea %pc@(m68k_machtype),%a1 618 movel %a0@,%a1@ 619 620 get_bi_record BI_FPUTYPE 621 lea %pc@(m68k_fputype),%a1 622 movel %a0@,%a1@ 623 624 get_bi_record BI_MMUTYPE 625 lea %pc@(m68k_mmutype),%a1 626 movel %a0@,%a1@ 627 628 get_bi_record BI_CPUTYPE 629 lea %pc@(m68k_cputype),%a1 630 movel %a0@,%a1@ 631 632 leds 0x1 633 634#ifdef CONFIG_MAC 635/* 636 * For Macintosh, we need to determine the display parameters early (at least 637 * while debugging it). 638 */ 639 640 is_not_mac(L(test_notmac)) 641 642 get_bi_record BI_MAC_VADDR 643 lea %pc@(L(mac_videobase)),%a1 644 movel %a0@,%a1@ 645 646 get_bi_record BI_MAC_VDEPTH 647 lea %pc@(L(mac_videodepth)),%a1 648 movel %a0@,%a1@ 649 650 get_bi_record BI_MAC_VDIM 651 lea %pc@(L(mac_dimensions)),%a1 652 movel %a0@,%a1@ 653 654 get_bi_record BI_MAC_VROW 655 lea %pc@(L(mac_rowbytes)),%a1 656 movel %a0@,%a1@ 657 658#ifdef MAC_SERIAL_DEBUG 659 get_bi_record BI_MAC_SCCBASE 660 lea %pc@(L(mac_sccbase)),%a1 661 movel %a0@,%a1@ 662#endif /* MAC_SERIAL_DEBUG */ 663 664#if 0 665 /* 666 * Clear the screen 667 */ 668 lea %pc@(L(mac_videobase)),%a0 669 movel %a0@,%a1 670 lea %pc@(L(mac_dimensions)),%a0 671 movel %a0@,%d1 672 swap %d1 /* #rows is high bytes */ 673 andl #0xFFFF,%d1 /* rows */ 674 subl #10,%d1 675 lea %pc@(L(mac_rowbytes)),%a0 676loopy2: 677 movel %a0@,%d0 678 subql #1,%d0 679loopx2: 680 moveb #0x55, %a1@+ 681 dbra %d0,loopx2 682 dbra %d1,loopy2 683#endif 684 685L(test_notmac): 686#endif /* CONFIG_MAC */ 687 688 689/* 690 * There are ultimately two pieces of information we want for all kinds of 691 * processors CpuType and CacheBits. The CPUTYPE was passed in from booter 692 * and is converted here from a booter type definition to a separate bit 693 * number which allows for the standard is_0x0 macro tests. 694 */ 695 movel %pc@(m68k_cputype),%d0 696 /* 697 * Assume it's an 030 698 */ 699 clrl %d1 700 701 /* 702 * Test the BootInfo cputype for 060 703 */ 704 btst #CPUB_68060,%d0 705 jeq 1f 706 bset #CPUTYPE_060,%d1 707 bset #CPUTYPE_0460,%d1 708 jra 3f 7091: 710 /* 711 * Test the BootInfo cputype for 040 712 */ 713 btst #CPUB_68040,%d0 714 jeq 2f 715 bset #CPUTYPE_040,%d1 716 bset #CPUTYPE_0460,%d1 717 jra 3f 7182: 719 /* 720 * Test the BootInfo cputype for 020 721 */ 722 btst #CPUB_68020,%d0 723 jeq 3f 724 bset #CPUTYPE_020,%d1 725 jra 3f 7263: 727 /* 728 * Record the cpu type 729 */ 730 lea %pc@(L(cputype)),%a0 731 movel %d1,%a0@ 732 733 /* 734 * NOTE: 735 * 736 * Now the macros are valid: 737 * is_040_or_060 738 * is_not_040_or_060 739 * is_040 740 * is_060 741 * is_not_060 742 */ 743 744 /* 745 * Determine the cache mode for pages holding MMU tables 746 * and for supervisor mode, unused for '020 and '030 747 */ 748 clrl %d0 749 clrl %d1 750 751 is_not_040_or_060(L(save_cachetype)) 752 753 /* 754 * '040 or '060 755 * d1 := cacheable write-through 756 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables, 757 * but we have been using write-through since at least 2.0.29 so I 758 * guess it is OK. 759 */ 760#ifdef CONFIG_060_WRITETHROUGH 761 /* 762 * If this is a 68060 board using drivers with cache coherency 763 * problems, then supervisor memory accesses need to be write-through 764 * also; otherwise, we want copyback. 765 */ 766 767 is_not_060(1f) 768 movel #_PAGE_CACHE040W,%d0 769 jra L(save_cachetype) 770#endif /* CONFIG_060_WRITETHROUGH */ 7711: 772 movew #_PAGE_CACHE040,%d0 773 774 movel #_PAGE_CACHE040W,%d1 775 776L(save_cachetype): 777 /* Save cache mode for supervisor mode and page tables 778 */ 779 lea %pc@(m68k_supervisor_cachemode),%a0 780 movel %d0,%a0@ 781 lea %pc@(m68k_pgtable_cachemode),%a0 782 movel %d1,%a0@ 783 784/* 785 * raise interrupt level 786 */ 787 movew #0x2700,%sr 788 789/* 790 If running on an Atari, determine the I/O base of the 791 serial port and test if we are running on a Medusa or Hades. 792 This test is necessary here, because on the Hades the serial 793 port is only accessible in the high I/O memory area. 794 795 The test whether it is a Medusa is done by writing to the byte at 796 phys. 0x0. This should result in a bus error on all other machines. 797 798 ...should, but doesn't. The Afterburner040 for the Falcon has the 799 same behaviour (0x0..0x7 are no ROM shadow). So we have to do 800 another test to distinguish Medusa and AB040. This is a 801 read attempt for 0x00ff82fe phys. that should bus error on a Falcon 802 (+AB040), but is in the range where the Medusa always asserts DTACK. 803 804 The test for the Hades is done by reading address 0xb0000000. This 805 should give a bus error on the Medusa. 806 */ 807 808#ifdef CONFIG_ATARI 809 is_not_atari(L(notypetest)) 810 811 /* get special machine type (Medusa/Hades/AB40) */ 812 moveq #0,%d3 /* default if tag doesn't exist */ 813 get_bi_record BI_ATARI_MCH_TYPE 814 tstl %d0 815 jbmi 1f 816 movel %a0@,%d3 817 lea %pc@(atari_mch_type),%a0 818 movel %d3,%a0@ 8191: 820 /* On the Hades, the iobase must be set up before opening the 821 * serial port. There are no I/O regs at 0x00ffxxxx at all. */ 822 moveq #0,%d0 823 cmpl #ATARI_MACH_HADES,%d3 824 jbne 1f 825 movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */ 8261: lea %pc@(L(iobase)),%a0 827 movel %d0,%a0@ 828 829L(notypetest): 830#endif 831 832#ifdef CONFIG_VME 833 is_mvme147(L(getvmetype)) 834 is_bvme6000(L(getvmetype)) 835 is_not_mvme16x(L(gvtdone)) 836 837 /* See if the loader has specified the BI_VME_TYPE tag. Recent 838 * versions of VMELILO and TFTPLILO do this. We have to do this 839 * early so we know how to handle console output. If the tag 840 * doesn't exist then we use the Bug for output on MVME16x. 841 */ 842L(getvmetype): 843 get_bi_record BI_VME_TYPE 844 tstl %d0 845 jbmi 1f 846 movel %a0@,%d3 847 lea %pc@(vme_brdtype),%a0 848 movel %d3,%a0@ 8491: 850#ifdef CONFIG_MVME16x 851 is_not_mvme16x(L(gvtdone)) 852 853 /* Need to get the BRD_ID info to differentiate between 162, 167, 854 * etc. This is available as a BI_VME_BRDINFO tag with later 855 * versions of VMELILO and TFTPLILO, otherwise we call the Bug. 856 */ 857 get_bi_record BI_VME_BRDINFO 858 tstl %d0 859 jpl 1f 860 861 /* Get pointer to board ID data from Bug */ 862 movel %d2,%sp@- 863 trap #15 864 .word 0x70 /* trap 0x70 - .BRD_ID */ 865 movel %sp@+,%a0 8661: 867 lea %pc@(mvme_bdid),%a1 868 /* Structure is 32 bytes long */ 869 movel %a0@+,%a1@+ 870 movel %a0@+,%a1@+ 871 movel %a0@+,%a1@+ 872 movel %a0@+,%a1@+ 873 movel %a0@+,%a1@+ 874 movel %a0@+,%a1@+ 875 movel %a0@+,%a1@+ 876 movel %a0@+,%a1@+ 877#endif 878 879L(gvtdone): 880 881#endif 882 883#ifdef CONFIG_HP300 884 is_not_hp300(L(nothp)) 885 886 /* Get the address of the UART for serial debugging */ 887 get_bi_record BI_HP300_UART_ADDR 888 tstl %d0 889 jbmi 1f 890 movel %a0@,%d3 891 lea %pc@(L(uartbase)),%a0 892 movel %d3,%a0@ 893 get_bi_record BI_HP300_UART_SCODE 894 tstl %d0 895 jbmi 1f 896 movel %a0@,%d3 897 lea %pc@(L(uart_scode)),%a0 898 movel %d3,%a0@ 8991: 900L(nothp): 901#endif 902 903/* 904 * Initialize serial port 905 */ 906 jbsr L(serial_init) 907 908/* 909 * Initialize console 910 */ 911#ifdef CONFIG_MAC 912 is_not_mac(L(nocon)) 913#ifdef CONSOLE 914 console_init 915#ifdef CONSOLE_PENGUIN 916 console_put_penguin 917#endif /* CONSOLE_PENGUIN */ 918 console_put_stats 919#endif /* CONSOLE */ 920L(nocon): 921#endif /* CONFIG_MAC */ 922 923 924 putc '\n' 925 putc 'A' 926 leds 0x2 927 dputn %pc@(L(cputype)) 928 dputn %pc@(m68k_supervisor_cachemode) 929 dputn %pc@(m68k_pgtable_cachemode) 930 dputc '\n' 931 932/* 933 * Save physical start address of kernel 934 */ 935 lea %pc@(L(phys_kernel_start)),%a0 936 lea %pc@(_stext),%a1 937 subl #_stext,%a1 938 addl #PAGE_OFFSET,%a1 939 movel %a1,%a0@ 940 941 putc 'B' 942 943 leds 0x4 944 945/* 946 * mmu_init 947 * 948 * This block of code does what's necessary to map in the various kinds 949 * of machines for execution of Linux. 950 * First map the first 4 MB of kernel code & data 951 */ 952 953 mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\ 954 %pc@(m68k_supervisor_cachemode) 955 956 putc 'C' 957 958#ifdef CONFIG_AMIGA 959 960L(mmu_init_amiga): 961 962 is_not_amiga(L(mmu_init_not_amiga)) 963/* 964 * mmu_init_amiga 965 */ 966 967 putc 'D' 968 969 is_not_040_or_060(1f) 970 971 /* 972 * 040: Map the 16Meg range physical 0x0 upto logical 0x8000.0000 973 */ 974 mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S 975 /* 976 * Map the Zorro III I/O space with transparent translation 977 * for frame buffer memory etc. 978 */ 979 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S 980 981 jbra L(mmu_init_done) 982 9831: 984 /* 985 * 030: Map the 32Meg range physical 0x0 upto logical 0x8000.0000 986 */ 987 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 988 mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030 989 990 jbra L(mmu_init_done) 991 992L(mmu_init_not_amiga): 993#endif 994 995#ifdef CONFIG_ATARI 996 997L(mmu_init_atari): 998 999 is_not_atari(L(mmu_init_not_atari)) 1000 1001 putc 'E' 1002 1003/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping 1004 the last 16 MB of virtual address space to the first 16 MB (i.e. 1005 0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is 1006 needed. I/O ranges are marked non-cachable. 1007 1008 For the Medusa it is better to map the I/O region transparently 1009 (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are 1010 accessible only in the high area. 1011 1012 On the Hades all I/O registers are only accessible in the high 1013 area. 1014*/ 1015 1016 /* I/O base addr for non-Medusa, non-Hades: 0x00000000 */ 1017 moveq #0,%d0 1018 movel %pc@(atari_mch_type),%d3 1019 cmpl #ATARI_MACH_MEDUSA,%d3 1020 jbeq 2f 1021 cmpl #ATARI_MACH_HADES,%d3 1022 jbne 1f 10232: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */ 10241: movel %d0,%d3 1025 1026 is_040_or_060(L(spata68040)) 1027 1028 /* Map everything non-cacheable, though not all parts really 1029 * need to disable caches (crucial only for 0xff8000..0xffffff 1030 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder 1031 * isn't really used, except for sometimes peeking into the 1032 * ROMs (mirror at phys. 0x0), so caching isn't necessary for 1033 * this. */ 1034 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030 1035 1036 jbra L(mmu_init_done) 1037 1038L(spata68040): 1039 1040 mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S 1041 1042 jbra L(mmu_init_done) 1043 1044L(mmu_init_not_atari): 1045#endif 1046 1047#ifdef CONFIG_Q40 1048 is_not_q40(L(notq40)) 1049 /* 1050 * add transparent mapping for 0xff00 0000 - 0xffff ffff 1051 * non-cached serialized etc.. 1052 * this includes master chip, DAC, RTC and ISA ports 1053 * 0xfe000000-0xfeffffff is for screen and ROM 1054 */ 1055 1056 putc 'Q' 1057 1058 mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W 1059 mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S 1060 1061 jbra L(mmu_init_done) 1062 1063L(notq40): 1064#endif 1065 1066#ifdef CONFIG_HP300 1067 is_not_hp300(L(nothp300)) 1068 1069 /* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx) 1070 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx). 1071 * The ROM mapping is needed because the LEDs are mapped there too. 1072 */ 1073 1074 is_040(1f) 1075 1076 /* 1077 * 030: Map the 32Meg range physical 0x0 upto logical 0xf000.0000 1078 */ 1079 mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030 1080 1081 jbra L(mmu_init_done) 1082 10831: 1084 /* 1085 * 040: Map the 16Meg range physical 0x0 upto logical 0xf000.0000 1086 */ 1087 mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S 1088 1089 jbra L(mmu_init_done) 1090 1091L(nothp300): 1092#endif /* CONFIG_HP300 */ 1093 1094#ifdef CONFIG_MVME147 1095 1096 is_not_mvme147(L(not147)) 1097 1098 /* 1099 * On MVME147 we have already created kernel page tables for 1100 * 4MB of RAM at address 0, so now need to do a transparent 1101 * mapping of the top of memory space. Make it 0.5GByte for now, 1102 * so we can access on-board i/o areas. 1103 */ 1104 1105 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030 1106 1107 jbra L(mmu_init_done) 1108 1109L(not147): 1110#endif /* CONFIG_MVME147 */ 1111 1112#ifdef CONFIG_MVME16x 1113 1114 is_not_mvme16x(L(not16x)) 1115 1116 /* 1117 * On MVME16x we have already created kernel page tables for 1118 * 4MB of RAM at address 0, so now need to do a transparent 1119 * mapping of the top of memory space. Make it 0.5GByte for now. 1120 * Supervisor only access, so transparent mapping doesn't 1121 * clash with User code virtual address space. 1122 * this covers IO devices, PROM and SRAM. The PROM and SRAM 1123 * mapping is needed to allow 167Bug to run. 1124 * IO is in the range 0xfff00000 to 0xfffeffff. 1125 * PROM is 0xff800000->0xffbfffff and SRAM is 1126 * 0xffe00000->0xffe1ffff. 1127 */ 1128 1129 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1130 1131 jbra L(mmu_init_done) 1132 1133L(not16x): 1134#endif /* CONFIG_MVME162 | CONFIG_MVME167 */ 1135 1136#ifdef CONFIG_BVME6000 1137 1138 is_not_bvme6000(L(not6000)) 1139 1140 /* 1141 * On BVME6000 we have already created kernel page tables for 1142 * 4MB of RAM at address 0, so now need to do a transparent 1143 * mapping of the top of memory space. Make it 0.5GByte for now, 1144 * so we can access on-board i/o areas. 1145 * Supervisor only access, so transparent mapping doesn't 1146 * clash with User code virtual address space. 1147 */ 1148 1149 mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S 1150 1151 jbra L(mmu_init_done) 1152 1153L(not6000): 1154#endif /* CONFIG_BVME6000 */ 1155 1156/* 1157 * mmu_init_mac 1158 * 1159 * The Macintosh mappings are less clear. 1160 * 1161 * Even as of this writing, it is unclear how the 1162 * Macintosh mappings will be done. However, as 1163 * the first author of this code I'm proposing the 1164 * following model: 1165 * 1166 * Map the kernel (that's already done), 1167 * Map the I/O (on most machines that's the 1168 * 0x5000.0000 ... 0x5300.0000 range, 1169 * Map the video frame buffer using as few pages 1170 * as absolutely (this requirement mostly stems from 1171 * the fact that when the frame buffer is at 1172 * 0x0000.0000 then we know there is valid RAM just 1173 * above the screen that we don't want to waste!). 1174 * 1175 * By the way, if the frame buffer is at 0x0000.0000 1176 * then the Macintosh is known as an RBV based Mac. 1177 * 1178 * By the way 2, the code currently maps in a bunch of 1179 * regions. But I'd like to cut that out. (And move most 1180 * of the mappings up into the kernel proper ... or only 1181 * map what's necessary.) 1182 */ 1183 1184#ifdef CONFIG_MAC 1185 1186L(mmu_init_mac): 1187 1188 is_not_mac(L(mmu_init_not_mac)) 1189 1190 putc 'F' 1191 1192 is_not_040_or_060(1f) 1193 1194 moveq #_PAGE_NOCACHE_S,%d3 1195 jbra 2f 11961: 1197 moveq #_PAGE_NOCACHE030,%d3 11982: 1199 /* 1200 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical> 1201 * we simply map the 4MB that contains the videomem 1202 */ 1203 1204 movel #VIDEOMEMMASK,%d0 1205 andl %pc@(L(mac_videobase)),%d0 1206 1207 mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3 1208 /* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */ 1209 mmu_map_eq #0x40000000,#0x02000000,%d3 1210 /* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */ 1211 mmu_map_eq #0x50000000,#0x03000000,%d3 1212 /* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */ 1213 mmu_map_tt #1,#0xf8000000,#0x08000000,%d3 1214 1215 jbra L(mmu_init_done) 1216 1217L(mmu_init_not_mac): 1218#endif 1219 1220#ifdef CONFIG_SUN3X 1221 is_not_sun3x(L(notsun3x)) 1222 1223 /* oh, the pain.. We're gonna want the prom code after 1224 * starting the MMU, so we copy the mappings, translating 1225 * from 8k -> 4k pages as we go. 1226 */ 1227 1228 /* copy maps from 0xfee00000 to 0xff000000 */ 1229 movel #0xfee00000, %d0 1230 moveq #ROOT_INDEX_SHIFT, %d1 1231 lsrl %d1,%d0 1232 mmu_get_root_table_entry %d0 1233 1234 movel #0xfee00000, %d0 1235 moveq #PTR_INDEX_SHIFT, %d1 1236 lsrl %d1,%d0 1237 andl #PTR_TABLE_SIZE-1, %d0 1238 mmu_get_ptr_table_entry %a0,%d0 1239 1240 movel #0xfee00000, %d0 1241 moveq #PAGE_INDEX_SHIFT, %d1 1242 lsrl %d1,%d0 1243 andl #PAGE_TABLE_SIZE-1, %d0 1244 mmu_get_page_table_entry %a0,%d0 1245 1246 /* this is where the prom page table lives */ 1247 movel 0xfefe00d4, %a1 1248 movel %a1@, %a1 1249 1250 movel #((0x200000 >> 13)-1), %d1 1251 12521: 1253 movel %a1@+, %d3 1254 movel %d3,%a0@+ 1255 addl #0x1000,%d3 1256 movel %d3,%a0@+ 1257 1258 dbra %d1,1b 1259 1260 /* setup tt1 for I/O */ 1261 mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S 1262 jbra L(mmu_init_done) 1263 1264L(notsun3x): 1265#endif 1266 1267#ifdef CONFIG_APOLLO 1268 is_not_apollo(L(notapollo)) 1269 1270 putc 'P' 1271 mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030 1272 1273L(notapollo): 1274 jbra L(mmu_init_done) 1275#endif 1276 1277L(mmu_init_done): 1278 1279 putc 'G' 1280 leds 0x8 1281 1282/* 1283 * mmu_fixup 1284 * 1285 * On the 040 class machines, all pages that are used for the 1286 * mmu have to be fixed up. According to Motorola, pages holding mmu 1287 * tables should be non-cacheable on a '040 and write-through on a 1288 * '060. But analysis of the reasons for this, and practical 1289 * experience, showed that write-through also works on a '040. 1290 * 1291 * Allocated memory so far goes from kernel_end to memory_start that 1292 * is used for all kind of tables, for that the cache attributes 1293 * are now fixed. 1294 */ 1295L(mmu_fixup): 1296 1297 is_not_040_or_060(L(mmu_fixup_done)) 1298 1299#ifdef MMU_NOCACHE_KERNEL 1300 jbra L(mmu_fixup_done) 1301#endif 1302 1303 /* first fix the page at the start of the kernel, that 1304 * contains also kernel_pg_dir. 1305 */ 1306 movel %pc@(L(phys_kernel_start)),%d0 1307 subl #PAGE_OFFSET,%d0 1308 lea %pc@(_stext),%a0 1309 subl %d0,%a0 1310 mmu_fixup_page_mmu_cache %a0 1311 1312 movel %pc@(L(kernel_end)),%a0 1313 subl %d0,%a0 1314 movel %pc@(L(memory_start)),%a1 1315 subl %d0,%a1 1316 bra 2f 13171: 1318 mmu_fixup_page_mmu_cache %a0 1319 addw #PAGESIZE,%a0 13202: 1321 cmpl %a0,%a1 1322 jgt 1b 1323 1324L(mmu_fixup_done): 1325 1326#ifdef MMU_PRINT 1327 mmu_print 1328#endif 1329 1330/* 1331 * mmu_engage 1332 * 1333 * This chunk of code performs the gruesome task of engaging the MMU. 1334 * The reason its gruesome is because when the MMU becomes engaged it 1335 * maps logical addresses to physical addresses. The Program Counter 1336 * register is then passed through the MMU before the next instruction 1337 * is fetched (the instruction following the engage MMU instruction). 1338 * This may mean one of two things: 1339 * 1. The Program Counter falls within the logical address space of 1340 * the kernel of which there are two sub-possibilities: 1341 * A. The PC maps to the correct instruction (logical PC == physical 1342 * code location), or 1343 * B. The PC does not map through and the processor will read some 1344 * data (or instruction) which is not the logically next instr. 1345 * As you can imagine, A is good and B is bad. 1346 * Alternatively, 1347 * 2. The Program Counter does not map through the MMU. The processor 1348 * will take a Bus Error. 1349 * Clearly, 2 is bad. 1350 * It doesn't take a wiz kid to figure you want 1.A. 1351 * This code creates that possibility. 1352 * There are two possible 1.A. states (we now ignore the other above states): 1353 * A. The kernel is located at physical memory addressed the same as 1354 * the logical memory for the kernel, i.e., 0x01000. 1355 * B. The kernel is located some where else. e.g., 0x0400.0000 1356 * 1357 * Under some conditions the Macintosh can look like A or B. 1358 * [A friend and I once noted that Apple hardware engineers should be 1359 * wacked twice each day: once when they show up at work (as in, Whack!, 1360 * "This is for the screwy hardware we know you're going to design today."), 1361 * and also at the end of the day (as in, Whack! "I don't know what 1362 * you designed today, but I'm sure it wasn't good."). -- rst] 1363 * 1364 * This code works on the following premise: 1365 * If the kernel start (%d5) is within the first 16 Meg of RAM, 1366 * then create a mapping for the kernel at logical 0x8000.0000 to 1367 * the physical location of the pc. And, create a transparent 1368 * translation register for the first 16 Meg. Then, after the MMU 1369 * is engaged, the PC can be moved up into the 0x8000.0000 range 1370 * and then the transparent translation can be turned off and then 1371 * the PC can jump to the correct logical location and it will be 1372 * home (finally). This is essentially the code that the Amiga used 1373 * to use. Now, it's generalized for all processors. Which means 1374 * that a fresh (but temporary) mapping has to be created. The mapping 1375 * is made in page 0 (an as of yet unused location -- except for the 1376 * stack!). This temporary mapping will only require 1 pointer table 1377 * and a single page table (it can map 256K). 1378 * 1379 * OK, alternatively, imagine that the Program Counter is not within 1380 * the first 16 Meg. Then, just use Transparent Translation registers 1381 * to do the right thing. 1382 * 1383 * Last, if _start is already at 0x01000, then there's nothing special 1384 * to do (in other words, in a degenerate case of the first case above, 1385 * do nothing). 1386 * 1387 * Let's do it. 1388 * 1389 * 1390 */ 1391 1392 putc 'H' 1393 1394 mmu_engage 1395 1396/* 1397 * After this point no new memory is allocated and 1398 * the start of available memory is stored in availmem. 1399 * (The bootmem allocator requires now the physicall address.) 1400 */ 1401 1402 movel L(memory_start),availmem 1403 1404#ifdef CONFIG_AMIGA 1405 is_not_amiga(1f) 1406 /* fixup the Amiga custom register location before printing */ 1407 clrl L(custom) 14081: 1409#endif 1410 1411#ifdef CONFIG_ATARI 1412 is_not_atari(1f) 1413 /* fixup the Atari iobase register location before printing */ 1414 movel #0xff000000,L(iobase) 14151: 1416#endif 1417 1418#ifdef CONFIG_MAC 1419 is_not_mac(1f) 1420 movel #~VIDEOMEMMASK,%d0 1421 andl L(mac_videobase),%d0 1422 addl #VIDEOMEMBASE,%d0 1423 movel %d0,L(mac_videobase) 1424#if defined(CONSOLE) 1425 movel %pc@(L(phys_kernel_start)),%d0 1426 subl #PAGE_OFFSET,%d0 1427 subl %d0,L(console_font) 1428 subl %d0,L(console_font_data) 1429#endif 1430#ifdef MAC_SERIAL_DEBUG 1431 orl #0x50000000,L(mac_sccbase) 1432#endif 14331: 1434#endif 1435 1436#ifdef CONFIG_HP300 1437 is_not_hp300(1f) 1438 /* 1439 * Fix up the iobase register to point to the new location of the LEDs. 1440 */ 1441 movel #0xf0000000,L(iobase) 1442 1443 /* 1444 * Energise the FPU and caches. 1445 */ 1446 is_040(1f) 1447 movel #0x60,0xf05f400c 1448 jbra 2f 1449 1450 /* 1451 * 040: slightly different, apparently. 1452 */ 14531: movew #0,0xf05f400e 1454 movew #0x64,0xf05f400e 14552: 1456#endif 1457 1458#ifdef CONFIG_SUN3X 1459 is_not_sun3x(1f) 1460 1461 /* enable copro */ 1462 oriw #0x4000,0x61000000 14631: 1464#endif 1465 1466#ifdef CONFIG_APOLLO 1467 is_not_apollo(1f) 1468 1469 /* 1470 * Fix up the iobase before printing 1471 */ 1472 movel #0x80000000,L(iobase) 14731: 1474#endif 1475 1476 putc 'I' 1477 leds 0x10 1478 1479/* 1480 * Enable caches 1481 */ 1482 1483 is_not_040_or_060(L(cache_not_680460)) 1484 1485L(cache680460): 1486 .chip 68040 1487 nop 1488 cpusha %bc 1489 nop 1490 1491 is_060(L(cache68060)) 1492 1493 movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0 1494 /* MMU stuff works in copyback mode now, so enable the cache */ 1495 movec %d0,%cacr 1496 jra L(cache_done) 1497 1498L(cache68060): 1499 movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0 1500 /* MMU stuff works in copyback mode now, so enable the cache */ 1501 movec %d0,%cacr 1502 /* enable superscalar dispatch in PCR */ 1503 moveq #1,%d0 1504 .chip 68060 1505 movec %d0,%pcr 1506 1507 jbra L(cache_done) 1508L(cache_not_680460): 1509L(cache68030): 1510 .chip 68030 1511 movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0 1512 movec %d0,%cacr 1513 1514 jra L(cache_done) 1515 .chip 68k 1516L(cache_done): 1517 1518 putc 'J' 1519 1520/* 1521 * Setup initial stack pointer 1522 */ 1523 lea init_task,%curptr 1524 lea init_thread_union+THREAD_SIZE,%sp 1525 1526 putc 'K' 1527 1528 subl %a6,%a6 /* clear a6 for gdb */ 1529 1530/* 1531 * The new 64bit printf support requires an early exception initialization. 1532 */ 1533 jbsr base_trap_init 1534 1535/* jump to the kernel start */ 1536 1537 putc '\n' 1538 leds 0x55 1539 1540 jbsr start_kernel 1541 1542/* 1543 * Find a tag record in the bootinfo structure 1544 * The bootinfo structure is located right after the kernel bss 1545 * Returns: d0: size (-1 if not found) 1546 * a0: data pointer (end-of-records if not found) 1547 */ 1548func_start get_bi_record,%d1 1549 1550 movel ARG1,%d0 1551 lea %pc@(_end),%a0 15521: tstw %a0@(BIR_TAG) 1553 jeq 3f 1554 cmpw %a0@(BIR_TAG),%d0 1555 jeq 2f 1556 addw %a0@(BIR_SIZE),%a0 1557 jra 1b 15582: moveq #0,%d0 1559 movew %a0@(BIR_SIZE),%d0 1560 lea %a0@(BIR_DATA),%a0 1561 jra 4f 15623: moveq #-1,%d0 1563 lea %a0@(BIR_SIZE),%a0 15644: 1565func_return get_bi_record 1566 1567 1568/* 1569 * MMU Initialization Begins Here 1570 * 1571 * The structure of the MMU tables on the 68k machines 1572 * is thus: 1573 * Root Table 1574 * Logical addresses are translated through 1575 * a hierarchical translation mechanism where the high-order 1576 * seven bits of the logical address (LA) are used as an 1577 * index into the "root table." Each entry in the root 1578 * table has a bit which specifies if it's a valid pointer to a 1579 * pointer table. Each entry defines a 32KMeg range of memory. 1580 * If an entry is invalid then that logical range of 32M is 1581 * invalid and references to that range of memory (when the MMU 1582 * is enabled) will fault. If the entry is valid, then it does 1583 * one of two things. On 040/060 class machines, it points to 1584 * a pointer table which then describes more finely the memory 1585 * within that 32M range. On 020/030 class machines, a technique 1586 * called "early terminating descriptors" are used. This technique 1587 * allows an entire 32Meg to be described by a single entry in the 1588 * root table. Thus, this entry in the root table, contains the 1589 * physical address of the memory or I/O at the logical address 1590 * which the entry represents and it also contains the necessary 1591 * cache bits for this region. 1592 * 1593 * Pointer Tables 1594 * Per the Root Table, there will be one or more 1595 * pointer tables. Each pointer table defines a 32M range. 1596 * Not all of the 32M range need be defined. Again, the next 1597 * seven bits of the logical address are used an index into 1598 * the pointer table to point to page tables (if the pointer 1599 * is valid). There will undoubtedly be more than one 1600 * pointer table for the kernel because each pointer table 1601 * defines a range of only 32M. Valid pointer table entries 1602 * point to page tables, or are early terminating entries 1603 * themselves. 1604 * 1605 * Page Tables 1606 * Per the Pointer Tables, each page table entry points 1607 * to the physical page in memory that supports the logical 1608 * address that translates to the particular index. 1609 * 1610 * In short, the Logical Address gets translated as follows: 1611 * bits 31..26 - index into the Root Table 1612 * bits 25..18 - index into the Pointer Table 1613 * bits 17..12 - index into the Page Table 1614 * bits 11..0 - offset into a particular 4K page 1615 * 1616 * The algorithms which follows do one thing: they abstract 1617 * the MMU hardware. For example, there are three kinds of 1618 * cache settings that are relevant. Either, memory is 1619 * being mapped in which case it is either Kernel Code (or 1620 * the RamDisk) or it is MMU data. On the 030, the MMU data 1621 * option also describes the kernel. Or, I/O is being mapped 1622 * in which case it has its own kind of cache bits. There 1623 * are constants which abstract these notions from the code that 1624 * actually makes the call to map some range of memory. 1625 * 1626 * 1627 * 1628 */ 1629 1630#ifdef MMU_PRINT 1631/* 1632 * mmu_print 1633 * 1634 * This algorithm will print out the current MMU mappings. 1635 * 1636 * Input: 1637 * %a5 points to the root table. Everything else is calculated 1638 * from this. 1639 */ 1640 1641#define mmu_next_valid 0 1642#define mmu_start_logical 4 1643#define mmu_next_logical 8 1644#define mmu_start_physical 12 1645#define mmu_next_physical 16 1646 1647#define MMU_PRINT_INVALID -1 1648#define MMU_PRINT_VALID 1 1649#define MMU_PRINT_UNINITED 0 1650 1651#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2: 1652 1653func_start mmu_print,%a0-%a6/%d0-%d7 1654 1655 movel %pc@(L(kernel_pgdir_ptr)),%a5 1656 lea %pc@(L(mmu_print_data)),%a0 1657 movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid) 1658 1659 is_not_040_or_060(mmu_030_print) 1660 1661mmu_040_print: 1662 puts "\nMMU040\n" 1663 puts "rp:" 1664 putn %a5 1665 putc '\n' 1666#if 0 1667 /* 1668 * The following #if/#endif block is a tight algorithm for dumping the 040 1669 * MMU Map in gory detail. It really isn't that practical unless the 1670 * MMU Map algorithm appears to go awry and you need to debug it at the 1671 * entry per entry level. 1672 */ 1673 movel #ROOT_TABLE_SIZE,%d5 1674#if 0 1675 movel %a5@+,%d7 | Burn an entry to skip the kernel mappings, 1676 subql #1,%d5 | they (might) work 1677#endif 16781: tstl %d5 1679 jbeq mmu_print_done 1680 subq #1,%d5 1681 movel %a5@+,%d7 1682 btst #1,%d7 1683 jbeq 1b 1684 16852: putn %d7 1686 andil #0xFFFFFE00,%d7 1687 movel %d7,%a4 1688 movel #PTR_TABLE_SIZE,%d4 1689 putc ' ' 16903: tstl %d4 1691 jbeq 11f 1692 subq #1,%d4 1693 movel %a4@+,%d7 1694 btst #1,%d7 1695 jbeq 3b 1696 16974: putn %d7 1698 andil #0xFFFFFF00,%d7 1699 movel %d7,%a3 1700 movel #PAGE_TABLE_SIZE,%d3 17015: movel #8,%d2 17026: tstl %d3 1703 jbeq 31f 1704 subq #1,%d3 1705 movel %a3@+,%d6 1706 btst #0,%d6 1707 jbeq 6b 17087: tstl %d2 1709 jbeq 8f 1710 subq #1,%d2 1711 putc ' ' 1712 jbra 91f 17138: putc '\n' 1714 movel #8+1+8+1+1,%d2 17159: putc ' ' 1716 dbra %d2,9b 1717 movel #7,%d2 171891: putn %d6 1719 jbra 6b 1720 172131: putc '\n' 1722 movel #8+1,%d2 172332: putc ' ' 1724 dbra %d2,32b 1725 jbra 3b 1726 172711: putc '\n' 1728 jbra 1b 1729#endif /* MMU 040 Dumping code that's gory and detailed */ 1730 1731 lea %pc@(kernel_pg_dir),%a5 1732 movel %a5,%a0 /* a0 has the address of the root table ptr */ 1733 movel #0x00000000,%a4 /* logical address */ 1734 moveql #0,%d0 173540: 1736 /* Increment the logical address and preserve in d5 */ 1737 movel %a4,%d5 1738 addil #PAGESIZE<<13,%d5 1739 movel %a0@+,%d6 1740 btst #1,%d6 1741 jbne 41f 1742 jbsr mmu_print_tuple_invalidate 1743 jbra 48f 174441: 1745 movel #0,%d1 1746 andil #0xfffffe00,%d6 1747 movel %d6,%a1 174842: 1749 movel %a4,%d5 1750 addil #PAGESIZE<<6,%d5 1751 movel %a1@+,%d6 1752 btst #1,%d6 1753 jbne 43f 1754 jbsr mmu_print_tuple_invalidate 1755 jbra 47f 175643: 1757 movel #0,%d2 1758 andil #0xffffff00,%d6 1759 movel %d6,%a2 176044: 1761 movel %a4,%d5 1762 addil #PAGESIZE,%d5 1763 movel %a2@+,%d6 1764 btst #0,%d6 1765 jbne 45f 1766 jbsr mmu_print_tuple_invalidate 1767 jbra 46f 176845: 1769 moveml %d0-%d1,%sp@- 1770 movel %a4,%d0 1771 movel %d6,%d1 1772 andil #0xfffff4e0,%d1 1773 lea %pc@(mmu_040_print_flags),%a6 1774 jbsr mmu_print_tuple 1775 moveml %sp@+,%d0-%d1 177646: 1777 movel %d5,%a4 1778 addq #1,%d2 1779 cmpib #64,%d2 1780 jbne 44b 178147: 1782 movel %d5,%a4 1783 addq #1,%d1 1784 cmpib #128,%d1 1785 jbne 42b 178648: 1787 movel %d5,%a4 /* move to the next logical address */ 1788 addq #1,%d0 1789 cmpib #128,%d0 1790 jbne 40b 1791 1792 .chip 68040 1793 movec %dtt1,%d0 1794 movel %d0,%d1 1795 andiw #0x8000,%d1 /* is it valid ? */ 1796 jbeq 1f /* No, bail out */ 1797 1798 movel %d0,%d1 1799 andil #0xff000000,%d1 /* Get the address */ 1800 putn %d1 1801 puts "==" 1802 putn %d1 1803 1804 movel %d0,%d6 1805 jbsr mmu_040_print_flags_tt 18061: 1807 movec %dtt0,%d0 1808 movel %d0,%d1 1809 andiw #0x8000,%d1 /* is it valid ? */ 1810 jbeq 1f /* No, bail out */ 1811 1812 movel %d0,%d1 1813 andil #0xff000000,%d1 /* Get the address */ 1814 putn %d1 1815 puts "==" 1816 putn %d1 1817 1818 movel %d0,%d6 1819 jbsr mmu_040_print_flags_tt 18201: 1821 .chip 68k 1822 1823 jbra mmu_print_done 1824 1825mmu_040_print_flags: 1826 btstl #10,%d6 1827 putZc(' ','G') /* global bit */ 1828 btstl #7,%d6 1829 putZc(' ','S') /* supervisor bit */ 1830mmu_040_print_flags_tt: 1831 btstl #6,%d6 1832 jbne 3f 1833 putc 'C' 1834 btstl #5,%d6 1835 putZc('w','c') /* write through or copy-back */ 1836 jbra 4f 18373: 1838 putc 'N' 1839 btstl #5,%d6 1840 putZc('s',' ') /* serialized non-cacheable, or non-cacheable */ 18414: 1842 rts 1843 1844mmu_030_print_flags: 1845 btstl #6,%d6 1846 putZc('C','I') /* write through or copy-back */ 1847 rts 1848 1849mmu_030_print: 1850 puts "\nMMU030\n" 1851 puts "\nrp:" 1852 putn %a5 1853 putc '\n' 1854 movel %a5,%d0 1855 andil #0xfffffff0,%d0 1856 movel %d0,%a0 1857 movel #0x00000000,%a4 /* logical address */ 1858 movel #0,%d0 185930: 1860 movel %a4,%d5 1861 addil #PAGESIZE<<13,%d5 1862 movel %a0@+,%d6 1863 btst #1,%d6 /* is it a table ptr? */ 1864 jbne 31f /* yes */ 1865 btst #0,%d6 /* is it early terminating? */ 1866 jbeq 1f /* no */ 1867 jbsr mmu_030_print_helper 1868 jbra 38f 18691: 1870 jbsr mmu_print_tuple_invalidate 1871 jbra 38f 187231: 1873 movel #0,%d1 1874 andil #0xfffffff0,%d6 1875 movel %d6,%a1 187632: 1877 movel %a4,%d5 1878 addil #PAGESIZE<<6,%d5 1879 movel %a1@+,%d6 1880 btst #1,%d6 /* is it a table ptr? */ 1881 jbne 33f /* yes */ 1882 btst #0,%d6 /* is it a page descriptor? */ 1883 jbeq 1f /* no */ 1884 jbsr mmu_030_print_helper 1885 jbra 37f 18861: 1887 jbsr mmu_print_tuple_invalidate 1888 jbra 37f 188933: 1890 movel #0,%d2 1891 andil #0xfffffff0,%d6 1892 movel %d6,%a2 189334: 1894 movel %a4,%d5 1895 addil #PAGESIZE,%d5 1896 movel %a2@+,%d6 1897 btst #0,%d6 1898 jbne 35f 1899 jbsr mmu_print_tuple_invalidate 1900 jbra 36f 190135: 1902 jbsr mmu_030_print_helper 190336: 1904 movel %d5,%a4 1905 addq #1,%d2 1906 cmpib #64,%d2 1907 jbne 34b 190837: 1909 movel %d5,%a4 1910 addq #1,%d1 1911 cmpib #128,%d1 1912 jbne 32b 191338: 1914 movel %d5,%a4 /* move to the next logical address */ 1915 addq #1,%d0 1916 cmpib #128,%d0 1917 jbne 30b 1918 1919mmu_print_done: 1920 puts "\n\n" 1921 1922func_return mmu_print 1923 1924 1925mmu_030_print_helper: 1926 moveml %d0-%d1,%sp@- 1927 movel %a4,%d0 1928 movel %d6,%d1 1929 lea %pc@(mmu_030_print_flags),%a6 1930 jbsr mmu_print_tuple 1931 moveml %sp@+,%d0-%d1 1932 rts 1933 1934mmu_print_tuple_invalidate: 1935 moveml %a0/%d7,%sp@- 1936 1937 lea %pc@(L(mmu_print_data)),%a0 1938 tstl %a0@(mmu_next_valid) 1939 jbmi mmu_print_tuple_invalidate_exit 1940 1941 movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid) 1942 1943 putn %a4 1944 1945 puts "##\n" 1946 1947mmu_print_tuple_invalidate_exit: 1948 moveml %sp@+,%a0/%d7 1949 rts 1950 1951 1952mmu_print_tuple: 1953 moveml %d0-%d7/%a0,%sp@- 1954 1955 lea %pc@(L(mmu_print_data)),%a0 1956 1957 tstl %a0@(mmu_next_valid) 1958 jble mmu_print_tuple_print 1959 1960 cmpl %a0@(mmu_next_physical),%d1 1961 jbeq mmu_print_tuple_increment 1962 1963mmu_print_tuple_print: 1964 putn %d0 1965 puts "->" 1966 putn %d1 1967 1968 movel %d1,%d6 1969 jbsr %a6@ 1970 1971mmu_print_tuple_record: 1972 movel #MMU_PRINT_VALID,%a0@(mmu_next_valid) 1973 1974 movel %d1,%a0@(mmu_next_physical) 1975 1976mmu_print_tuple_increment: 1977 movel %d5,%d7 1978 subl %a4,%d7 1979 addl %d7,%a0@(mmu_next_physical) 1980 1981mmu_print_tuple_exit: 1982 moveml %sp@+,%d0-%d7/%a0 1983 rts 1984 1985mmu_print_machine_cpu_types: 1986 puts "machine: " 1987 1988 is_not_amiga(1f) 1989 puts "amiga" 1990 jbra 9f 19911: 1992 is_not_atari(2f) 1993 puts "atari" 1994 jbra 9f 19952: 1996 is_not_mac(3f) 1997 puts "macintosh" 1998 jbra 9f 19993: puts "unknown" 20009: putc '\n' 2001 2002 puts "cputype: 0" 2003 is_not_060(1f) 2004 putc '6' 2005 jbra 9f 20061: 2007 is_not_040_or_060(2f) 2008 putc '4' 2009 jbra 9f 20102: putc '3' 20119: putc '0' 2012 putc '\n' 2013 2014 rts 2015#endif /* MMU_PRINT */ 2016 2017/* 2018 * mmu_map_tt 2019 * 2020 * This is a specific function which works on all 680x0 machines. 2021 * On 030, 040 & 060 it will attempt to use Transparent Translation 2022 * registers (tt1). 2023 * On 020 it will call the standard mmu_map which will use early 2024 * terminating descriptors. 2025 */ 2026func_start mmu_map_tt,%d0/%d1/%a0,4 2027 2028 dputs "mmu_map_tt:" 2029 dputn ARG1 2030 dputn ARG2 2031 dputn ARG3 2032 dputn ARG4 2033 dputc '\n' 2034 2035 is_020(L(do_map)) 2036 2037 /* Extract the highest bit set 2038 */ 2039 bfffo ARG3{#0,#32},%d1 2040 cmpw #8,%d1 2041 jcc L(do_map) 2042 2043 /* And get the mask 2044 */ 2045 moveq #-1,%d0 2046 lsrl %d1,%d0 2047 lsrl #1,%d0 2048 2049 /* Mask the address 2050 */ 2051 movel %d0,%d1 2052 notl %d1 2053 andl ARG2,%d1 2054 2055 /* Generate the upper 16bit of the tt register 2056 */ 2057 lsrl #8,%d0 2058 orl %d0,%d1 2059 clrw %d1 2060 2061 is_040_or_060(L(mmu_map_tt_040)) 2062 2063 /* set 030 specific bits (read/write access for supervisor mode 2064 * (highest function code set, lower two bits masked)) 2065 */ 2066 orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1 2067 movel ARG4,%d0 2068 btst #6,%d0 2069 jeq 1f 2070 orw #TTR_CI,%d1 2071 20721: lea STACK,%a0 2073 dputn %d1 2074 movel %d1,%a0@ 2075 .chip 68030 2076 tstl ARG1 2077 jne 1f 2078 pmove %a0@,%tt0 2079 jra 2f 20801: pmove %a0@,%tt1 20812: .chip 68k 2082 jra L(mmu_map_tt_done) 2083 2084 /* set 040 specific bits 2085 */ 2086L(mmu_map_tt_040): 2087 orw #TTR_ENABLE+TTR_KERNELMODE,%d1 2088 orl ARG4,%d1 2089 dputn %d1 2090 2091 .chip 68040 2092 tstl ARG1 2093 jne 1f 2094 movec %d1,%itt0 2095 movec %d1,%dtt0 2096 jra 2f 20971: movec %d1,%itt1 2098 movec %d1,%dtt1 20992: .chip 68k 2100 2101 jra L(mmu_map_tt_done) 2102 2103L(do_map): 2104 mmu_map_eq ARG2,ARG3,ARG4 2105 2106L(mmu_map_tt_done): 2107 2108func_return mmu_map_tt 2109 2110/* 2111 * mmu_map 2112 * 2113 * This routine will map a range of memory using a pointer 2114 * table and allocating the pages on the fly from the kernel. 2115 * The pointer table does not have to be already linked into 2116 * the root table, this routine will do that if necessary. 2117 * 2118 * NOTE 2119 * This routine will assert failure and use the serial_putc 2120 * routines in the case of a run-time error. For example, 2121 * if the address is already mapped. 2122 * 2123 * NOTE-2 2124 * This routine will use early terminating descriptors 2125 * where possible for the 68020+68851 and 68030 type 2126 * processors. 2127 */ 2128func_start mmu_map,%d0-%d4/%a0-%a4 2129 2130 dputs "\nmmu_map:" 2131 dputn ARG1 2132 dputn ARG2 2133 dputn ARG3 2134 dputn ARG4 2135 dputc '\n' 2136 2137 /* Get logical address and round it down to 256KB 2138 */ 2139 movel ARG1,%d0 2140 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2141 movel %d0,%a3 2142 2143 /* Get the end address 2144 */ 2145 movel ARG1,%a4 2146 addl ARG3,%a4 2147 subql #1,%a4 2148 2149 /* Get physical address and round it down to 256KB 2150 */ 2151 movel ARG2,%d0 2152 andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0 2153 movel %d0,%a2 2154 2155 /* Add page attributes to the physical address 2156 */ 2157 movel ARG4,%d0 2158 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2159 addw %d0,%a2 2160 2161 dputn %a2 2162 dputn %a3 2163 dputn %a4 2164 2165 is_not_040_or_060(L(mmu_map_030)) 2166 2167 addw #_PAGE_GLOBAL040,%a2 2168/* 2169 * MMU 040 & 060 Support 2170 * 2171 * The MMU usage for the 040 and 060 is different enough from 2172 * the 030 and 68851 that there is separate code. This comment 2173 * block describes the data structures and algorithms built by 2174 * this code. 2175 * 2176 * The 040 does not support early terminating descriptors, as 2177 * the 030 does. Therefore, a third level of table is needed 2178 * for the 040, and that would be the page table. In Linux, 2179 * page tables are allocated directly from the memory above the 2180 * kernel. 2181 * 2182 */ 2183 2184L(mmu_map_040): 2185 /* Calculate the offset into the root table 2186 */ 2187 movel %a3,%d0 2188 moveq #ROOT_INDEX_SHIFT,%d1 2189 lsrl %d1,%d0 2190 mmu_get_root_table_entry %d0 2191 2192 /* Calculate the offset into the pointer table 2193 */ 2194 movel %a3,%d0 2195 moveq #PTR_INDEX_SHIFT,%d1 2196 lsrl %d1,%d0 2197 andl #PTR_TABLE_SIZE-1,%d0 2198 mmu_get_ptr_table_entry %a0,%d0 2199 2200 /* Calculate the offset into the page table 2201 */ 2202 movel %a3,%d0 2203 moveq #PAGE_INDEX_SHIFT,%d1 2204 lsrl %d1,%d0 2205 andl #PAGE_TABLE_SIZE-1,%d0 2206 mmu_get_page_table_entry %a0,%d0 2207 2208 /* The page table entry must not no be busy 2209 */ 2210 tstl %a0@ 2211 jne L(mmu_map_error) 2212 2213 /* Do the mapping and advance the pointers 2214 */ 2215 movel %a2,%a0@ 22162: 2217 addw #PAGESIZE,%a2 2218 addw #PAGESIZE,%a3 2219 2220 /* Ready with mapping? 2221 */ 2222 lea %a3@(-1),%a0 2223 cmpl %a0,%a4 2224 jhi L(mmu_map_040) 2225 jra L(mmu_map_done) 2226 2227L(mmu_map_030): 2228 /* Calculate the offset into the root table 2229 */ 2230 movel %a3,%d0 2231 moveq #ROOT_INDEX_SHIFT,%d1 2232 lsrl %d1,%d0 2233 mmu_get_root_table_entry %d0 2234 2235 /* Check if logical address 32MB aligned, 2236 * so we can try to map it once 2237 */ 2238 movel %a3,%d0 2239 andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0 2240 jne 1f 2241 2242 /* Is there enough to map for 32MB at once 2243 */ 2244 lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1 2245 cmpl %a1,%a4 2246 jcs 1f 2247 2248 addql #1,%a1 2249 2250 /* The root table entry must not no be busy 2251 */ 2252 tstl %a0@ 2253 jne L(mmu_map_error) 2254 2255 /* Do the mapping and advance the pointers 2256 */ 2257 dputs "early term1" 2258 dputn %a2 2259 dputn %a3 2260 dputn %a1 2261 dputc '\n' 2262 movel %a2,%a0@ 2263 2264 movel %a1,%a3 2265 lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2 2266 jra L(mmu_mapnext_030) 22671: 2268 /* Calculate the offset into the pointer table 2269 */ 2270 movel %a3,%d0 2271 moveq #PTR_INDEX_SHIFT,%d1 2272 lsrl %d1,%d0 2273 andl #PTR_TABLE_SIZE-1,%d0 2274 mmu_get_ptr_table_entry %a0,%d0 2275 2276 /* The pointer table entry must not no be busy 2277 */ 2278 tstl %a0@ 2279 jne L(mmu_map_error) 2280 2281 /* Do the mapping and advance the pointers 2282 */ 2283 dputs "early term2" 2284 dputn %a2 2285 dputn %a3 2286 dputc '\n' 2287 movel %a2,%a0@ 2288 2289 addl #PAGE_TABLE_SIZE*PAGESIZE,%a2 2290 addl #PAGE_TABLE_SIZE*PAGESIZE,%a3 2291 2292L(mmu_mapnext_030): 2293 /* Ready with mapping? 2294 */ 2295 lea %a3@(-1),%a0 2296 cmpl %a0,%a4 2297 jhi L(mmu_map_030) 2298 jra L(mmu_map_done) 2299 2300L(mmu_map_error): 2301 2302 dputs "mmu_map error:" 2303 dputn %a2 2304 dputn %a3 2305 dputc '\n' 2306 2307L(mmu_map_done): 2308 2309func_return mmu_map 2310 2311/* 2312 * mmu_fixup 2313 * 2314 * On the 040 class machines, all pages that are used for the 2315 * mmu have to be fixed up. 2316 */ 2317 2318func_start mmu_fixup_page_mmu_cache,%d0/%a0 2319 2320 dputs "mmu_fixup_page_mmu_cache" 2321 dputn ARG1 2322 2323 /* Calculate the offset into the root table 2324 */ 2325 movel ARG1,%d0 2326 moveq #ROOT_INDEX_SHIFT,%d1 2327 lsrl %d1,%d0 2328 mmu_get_root_table_entry %d0 2329 2330 /* Calculate the offset into the pointer table 2331 */ 2332 movel ARG1,%d0 2333 moveq #PTR_INDEX_SHIFT,%d1 2334 lsrl %d1,%d0 2335 andl #PTR_TABLE_SIZE-1,%d0 2336 mmu_get_ptr_table_entry %a0,%d0 2337 2338 /* Calculate the offset into the page table 2339 */ 2340 movel ARG1,%d0 2341 moveq #PAGE_INDEX_SHIFT,%d1 2342 lsrl %d1,%d0 2343 andl #PAGE_TABLE_SIZE-1,%d0 2344 mmu_get_page_table_entry %a0,%d0 2345 2346 movel %a0@,%d0 2347 andil #_CACHEMASK040,%d0 2348 orl %pc@(m68k_pgtable_cachemode),%d0 2349 movel %d0,%a0@ 2350 2351 dputc '\n' 2352 2353func_return mmu_fixup_page_mmu_cache 2354 2355/* 2356 * mmu_temp_map 2357 * 2358 * create a temporary mapping to enable the mmu, 2359 * this we don't need any transparation translation tricks. 2360 */ 2361 2362func_start mmu_temp_map,%d0/%d1/%a0/%a1 2363 2364 dputs "mmu_temp_map" 2365 dputn ARG1 2366 dputn ARG2 2367 dputc '\n' 2368 2369 lea %pc@(L(temp_mmap_mem)),%a1 2370 2371 /* Calculate the offset in the root table 2372 */ 2373 movel ARG2,%d0 2374 moveq #ROOT_INDEX_SHIFT,%d1 2375 lsrl %d1,%d0 2376 mmu_get_root_table_entry %d0 2377 2378 /* Check if the table is temporary allocated, so we have to reuse it 2379 */ 2380 movel %a0@,%d0 2381 cmpl %pc@(L(memory_start)),%d0 2382 jcc 1f 2383 2384 /* Temporary allocate a ptr table and insert it into the root table 2385 */ 2386 movel %a1@,%d0 2387 addl #PTR_TABLE_SIZE*4,%a1@ 2388 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2389 movel %d0,%a0@ 2390 dputs " (new)" 23911: 2392 dputn %d0 2393 /* Mask the root table entry for the ptr table 2394 */ 2395 andw #-ROOT_TABLE_SIZE,%d0 2396 movel %d0,%a0 2397 2398 /* Calculate the offset into the pointer table 2399 */ 2400 movel ARG2,%d0 2401 moveq #PTR_INDEX_SHIFT,%d1 2402 lsrl %d1,%d0 2403 andl #PTR_TABLE_SIZE-1,%d0 2404 lea %a0@(%d0*4),%a0 2405 dputn %a0 2406 2407 /* Check if a temporary page table is already allocated 2408 */ 2409 movel %a0@,%d0 2410 jne 1f 2411 2412 /* Temporary allocate a page table and insert it into the ptr table 2413 */ 2414 movel %a1@,%d0 2415 /* The 512 should be PAGE_TABLE_SIZE*4, but that violates the 2416 alignment restriction for pointer tables on the '0[46]0. */ 2417 addl #512,%a1@ 2418 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2419 movel %d0,%a0@ 2420 dputs " (new)" 24211: 2422 dputn %d0 2423 /* Mask the ptr table entry for the page table 2424 */ 2425 andw #-PTR_TABLE_SIZE,%d0 2426 movel %d0,%a0 2427 2428 /* Calculate the offset into the page table 2429 */ 2430 movel ARG2,%d0 2431 moveq #PAGE_INDEX_SHIFT,%d1 2432 lsrl %d1,%d0 2433 andl #PAGE_TABLE_SIZE-1,%d0 2434 lea %a0@(%d0*4),%a0 2435 dputn %a0 2436 2437 /* Insert the address into the page table 2438 */ 2439 movel ARG1,%d0 2440 andw #-PAGESIZE,%d0 2441 orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0 2442 movel %d0,%a0@ 2443 dputn %d0 2444 2445 dputc '\n' 2446 2447func_return mmu_temp_map 2448 2449func_start mmu_engage,%d0-%d2/%a0-%a3 2450 2451 moveq #ROOT_TABLE_SIZE-1,%d0 2452 /* Temporarily use a different root table. */ 2453 lea %pc@(L(kernel_pgdir_ptr)),%a0 2454 movel %a0@,%a2 2455 movel %pc@(L(memory_start)),%a1 2456 movel %a1,%a0@ 2457 movel %a2,%a0 24581: 2459 movel %a0@+,%a1@+ 2460 dbra %d0,1b 2461 2462 lea %pc@(L(temp_mmap_mem)),%a0 2463 movel %a1,%a0@ 2464 2465 movew #PAGESIZE-1,%d0 24661: 2467 clrl %a1@+ 2468 dbra %d0,1b 2469 2470 lea %pc@(1b),%a0 2471 movel #1b,%a1 2472 /* Skip temp mappings if phys == virt */ 2473 cmpl %a0,%a1 2474 jeq 1f 2475 2476 mmu_temp_map %a0,%a0 2477 mmu_temp_map %a0,%a1 2478 2479 addw #PAGESIZE,%a0 2480 addw #PAGESIZE,%a1 2481 mmu_temp_map %a0,%a0 2482 mmu_temp_map %a0,%a1 24831: 2484 movel %pc@(L(memory_start)),%a3 2485 movel %pc@(L(phys_kernel_start)),%d2 2486 2487 is_not_040_or_060(L(mmu_engage_030)) 2488 2489L(mmu_engage_040): 2490 .chip 68040 2491 nop 2492 cinva %bc 2493 nop 2494 pflusha 2495 nop 2496 movec %a3,%srp 2497 movel #TC_ENABLE+TC_PAGE4K,%d0 2498 movec %d0,%tc /* enable the MMU */ 2499 jmp 1f:l 25001: nop 2501 movec %a2,%srp 2502 nop 2503 cinva %bc 2504 nop 2505 pflusha 2506 .chip 68k 2507 jra L(mmu_engage_cleanup) 2508 2509L(mmu_engage_030_temp): 2510 .space 12 2511L(mmu_engage_030): 2512 .chip 68030 2513 lea %pc@(L(mmu_engage_030_temp)),%a0 2514 movel #0x80000002,%a0@ 2515 movel %a3,%a0@(4) 2516 movel #0x0808,%d0 2517 movec %d0,%cacr 2518 pmove %a0@,%srp 2519 pflusha 2520 /* 2521 * enable,super root enable,4096 byte pages,7 bit root index, 2522 * 7 bit pointer index, 6 bit page table index. 2523 */ 2524 movel #0x82c07760,%a0@(8) 2525 pmove %a0@(8),%tc /* enable the MMU */ 2526 jmp 1f:l 25271: movel %a2,%a0@(4) 2528 movel #0x0808,%d0 2529 movec %d0,%cacr 2530 pmove %a0@,%srp 2531 pflusha 2532 .chip 68k 2533 2534L(mmu_engage_cleanup): 2535 subl #PAGE_OFFSET,%d2 2536 subl %d2,%a2 2537 movel %a2,L(kernel_pgdir_ptr) 2538 subl %d2,%fp 2539 subl %d2,%sp 2540 subl %d2,ARG0 2541 2542func_return mmu_engage 2543 2544func_start mmu_get_root_table_entry,%d0/%a1 2545 2546#if 0 2547 dputs "mmu_get_root_table_entry:" 2548 dputn ARG1 2549 dputs " =" 2550#endif 2551 2552 movel %pc@(L(kernel_pgdir_ptr)),%a0 2553 tstl %a0 2554 jne 2f 2555 2556 dputs "\nmmu_init:" 2557 2558 /* Find the start of free memory, get_bi_record does this for us, 2559 * as the bootinfo structure is located directly behind the kernel 2560 * and and we simply search for the last entry. 2561 */ 2562 get_bi_record BI_LAST 2563 addw #PAGESIZE-1,%a0 2564 movel %a0,%d0 2565 andw #-PAGESIZE,%d0 2566 2567 dputn %d0 2568 2569 lea %pc@(L(memory_start)),%a0 2570 movel %d0,%a0@ 2571 lea %pc@(L(kernel_end)),%a0 2572 movel %d0,%a0@ 2573 2574 /* we have to return the first page at _stext since the init code 2575 * in mm/init.c simply expects kernel_pg_dir there, the rest of 2576 * page is used for further ptr tables in get_ptr_table. 2577 */ 2578 lea %pc@(_stext),%a0 2579 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2580 movel %a0,%a1@ 2581 addl #ROOT_TABLE_SIZE*4,%a1@ 2582 2583 lea %pc@(L(mmu_num_pointer_tables)),%a1 2584 addql #1,%a1@ 2585 2586 /* clear the page 2587 */ 2588 movel %a0,%a1 2589 movew #PAGESIZE/4-1,%d0 25901: 2591 clrl %a1@+ 2592 dbra %d0,1b 2593 2594 lea %pc@(L(kernel_pgdir_ptr)),%a1 2595 movel %a0,%a1@ 2596 2597 dputn %a0 2598 dputc '\n' 25992: 2600 movel ARG1,%d0 2601 lea %a0@(%d0*4),%a0 2602 2603#if 0 2604 dputn %a0 2605 dputc '\n' 2606#endif 2607 2608func_return mmu_get_root_table_entry 2609 2610 2611 2612func_start mmu_get_ptr_table_entry,%d0/%a1 2613 2614#if 0 2615 dputs "mmu_get_ptr_table_entry:" 2616 dputn ARG1 2617 dputn ARG2 2618 dputs " =" 2619#endif 2620 2621 movel ARG1,%a0 2622 movel %a0@,%d0 2623 jne 2f 2624 2625 /* Keep track of the number of pointer tables we use 2626 */ 2627 dputs "\nmmu_get_new_ptr_table:" 2628 lea %pc@(L(mmu_num_pointer_tables)),%a0 2629 movel %a0@,%d0 2630 addql #1,%a0@ 2631 2632 /* See if there is a free pointer table in our cache of pointer tables 2633 */ 2634 lea %pc@(L(mmu_cached_pointer_tables)),%a1 2635 andw #7,%d0 2636 jne 1f 2637 2638 /* Get a new pointer table page from above the kernel memory 2639 */ 2640 get_new_page 2641 movel %a0,%a1@ 26421: 2643 /* There is an unused pointer table in our cache... use it 2644 */ 2645 movel %a1@,%d0 2646 addl #PTR_TABLE_SIZE*4,%a1@ 2647 2648 dputn %d0 2649 dputc '\n' 2650 2651 /* Insert the new pointer table into the root table 2652 */ 2653 movel ARG1,%a0 2654 orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0 2655 movel %d0,%a0@ 26562: 2657 /* Extract the pointer table entry 2658 */ 2659 andw #-PTR_TABLE_SIZE,%d0 2660 movel %d0,%a0 2661 movel ARG2,%d0 2662 lea %a0@(%d0*4),%a0 2663 2664#if 0 2665 dputn %a0 2666 dputc '\n' 2667#endif 2668 2669func_return mmu_get_ptr_table_entry 2670 2671 2672func_start mmu_get_page_table_entry,%d0/%a1 2673 2674#if 0 2675 dputs "mmu_get_page_table_entry:" 2676 dputn ARG1 2677 dputn ARG2 2678 dputs " =" 2679#endif 2680 2681 movel ARG1,%a0 2682 movel %a0@,%d0 2683 jne 2f 2684 2685 /* If the page table entry doesn't exist, we allocate a complete new 2686 * page and use it as one continues big page table which can cover 2687 * 4MB of memory, nearly almost all mappings have that alignment. 2688 */ 2689 get_new_page 2690 addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0 2691 2692 /* align pointer table entry for a page of page tables 2693 */ 2694 movel ARG1,%d0 2695 andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0 2696 movel %d0,%a1 2697 2698 /* Insert the page tables into the pointer entries 2699 */ 2700 moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0 27011: 2702 movel %a0,%a1@+ 2703 lea %a0@(PAGE_TABLE_SIZE*4),%a0 2704 dbra %d0,1b 2705 2706 /* Now we can get the initialized pointer table entry 2707 */ 2708 movel ARG1,%a0 2709 movel %a0@,%d0 27102: 2711 /* Extract the page table entry 2712 */ 2713 andw #-PAGE_TABLE_SIZE,%d0 2714 movel %d0,%a0 2715 movel ARG2,%d0 2716 lea %a0@(%d0*4),%a0 2717 2718#if 0 2719 dputn %a0 2720 dputc '\n' 2721#endif 2722 2723func_return mmu_get_page_table_entry 2724 2725/* 2726 * get_new_page 2727 * 2728 * Return a new page from the memory start and clear it. 2729 */ 2730func_start get_new_page,%d0/%a1 2731 2732 dputs "\nget_new_page:" 2733 2734 /* allocate the page and adjust memory_start 2735 */ 2736 lea %pc@(L(memory_start)),%a0 2737 movel %a0@,%a1 2738 addl #PAGESIZE,%a0@ 2739 2740 /* clear the new page 2741 */ 2742 movel %a1,%a0 2743 movew #PAGESIZE/4-1,%d0 27441: 2745 clrl %a1@+ 2746 dbra %d0,1b 2747 2748 dputn %a0 2749 dputc '\n' 2750 2751func_return get_new_page 2752 2753 2754 2755/* 2756 * Debug output support 2757 * Atarians have a choice between the parallel port, the serial port 2758 * from the MFP or a serial port of the SCC 2759 */ 2760 2761#ifdef CONFIG_MAC 2762 2763L(scc_initable_mac): 2764 .byte 9,12 /* Reset */ 2765 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2766 .byte 3,0xc0 /* receiver: 8 bpc */ 2767 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2768 .byte 9,0 /* no interrupts */ 2769 .byte 10,0 /* NRZ */ 2770 .byte 11,0x50 /* use baud rate generator */ 2771 .byte 12,10,13,0 /* 9600 baud */ 2772 .byte 14,1 /* Baud rate generator enable */ 2773 .byte 3,0xc1 /* enable receiver */ 2774 .byte 5,0xea /* enable transmitter */ 2775 .byte -1 2776 .even 2777#endif 2778 2779#ifdef CONFIG_ATARI 2780/* #define USE_PRINTER */ 2781/* #define USE_SCC_B */ 2782/* #define USE_SCC_A */ 2783#define USE_MFP 2784 2785#if defined(USE_SCC_A) || defined(USE_SCC_B) 2786#define USE_SCC 2787/* Initialisation table for SCC */ 2788L(scc_initable): 2789 .byte 9,12 /* Reset */ 2790 .byte 4,0x44 /* x16, 1 stopbit, no parity */ 2791 .byte 3,0xc0 /* receiver: 8 bpc */ 2792 .byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */ 2793 .byte 9,0 /* no interrupts */ 2794 .byte 10,0 /* NRZ */ 2795 .byte 11,0x50 /* use baud rate generator */ 2796 .byte 12,24,13,0 /* 9600 baud */ 2797 .byte 14,2,14,3 /* use master clock for BRG, enable */ 2798 .byte 3,0xc1 /* enable receiver */ 2799 .byte 5,0xea /* enable transmitter */ 2800 .byte -1 2801 .even 2802#endif 2803 2804#ifdef USE_PRINTER 2805 2806LPSG_SELECT = 0xff8800 2807LPSG_READ = 0xff8800 2808LPSG_WRITE = 0xff8802 2809LPSG_IO_A = 14 2810LPSG_IO_B = 15 2811LPSG_CONTROL = 7 2812LSTMFP_GPIP = 0xfffa01 2813LSTMFP_DDR = 0xfffa05 2814LSTMFP_IERB = 0xfffa09 2815 2816#elif defined(USE_SCC_B) 2817 2818LSCC_CTRL = 0xff8c85 2819LSCC_DATA = 0xff8c87 2820 2821#elif defined(USE_SCC_A) 2822 2823LSCC_CTRL = 0xff8c81 2824LSCC_DATA = 0xff8c83 2825 2826#elif defined(USE_MFP) 2827 2828LMFP_UCR = 0xfffa29 2829LMFP_TDCDR = 0xfffa1d 2830LMFP_TDDR = 0xfffa25 2831LMFP_TSR = 0xfffa2d 2832LMFP_UDR = 0xfffa2f 2833 2834#endif 2835#endif /* CONFIG_ATARI */ 2836 2837/* 2838 * Serial port output support. 2839 */ 2840 2841/* 2842 * Initialize serial port hardware for 9600/8/1 2843 */ 2844func_start serial_init,%d0/%d1/%a0/%a1 2845 /* 2846 * Some of the register usage that follows 2847 * CONFIG_AMIGA 2848 * a0 = pointer to boot info record 2849 * d0 = boot info offset 2850 * CONFIG_ATARI 2851 * a0 = address of SCC 2852 * a1 = Liobase address/address of scc_initable 2853 * d0 = init data for serial port 2854 * CONFIG_MAC 2855 * a0 = address of SCC 2856 * a1 = address of scc_initable_mac 2857 * d0 = init data for serial port 2858 */ 2859 2860#ifdef CONFIG_AMIGA 2861#define SERIAL_DTR 7 2862#define SERIAL_CNTRL CIABBASE+C_PRA 2863 2864 is_not_amiga(1f) 2865 lea %pc@(L(custom)),%a0 2866 movel #-ZTWOBASE,%a0@ 2867 bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE 2868 get_bi_record BI_AMIGA_SERPER 2869 movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE 2870| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE 28711: 2872#endif 2873#ifdef CONFIG_ATARI 2874 is_not_atari(4f) 2875 movel %pc@(L(iobase)),%a1 2876#if defined(USE_PRINTER) 2877 bclr #0,%a1@(LSTMFP_IERB) 2878 bclr #0,%a1@(LSTMFP_DDR) 2879 moveb #LPSG_CONTROL,%a1@(LPSG_SELECT) 2880 moveb #0xff,%a1@(LPSG_WRITE) 2881 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 2882 clrb %a1@(LPSG_WRITE) 2883 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 2884 moveb %a1@(LPSG_READ),%d0 2885 bset #5,%d0 2886 moveb %d0,%a1@(LPSG_WRITE) 2887#elif defined(USE_SCC) 2888 lea %a1@(LSCC_CTRL),%a0 2889 lea %pc@(L(scc_initable)),%a1 28902: moveb %a1@+,%d0 2891 jmi 3f 2892 moveb %d0,%a0@ 2893 moveb %a1@+,%a0@ 2894 jra 2b 28953: clrb %a0@ 2896#elif defined(USE_MFP) 2897 bclr #1,%a1@(LMFP_TSR) 2898 moveb #0x88,%a1@(LMFP_UCR) 2899 andb #0x70,%a1@(LMFP_TDCDR) 2900 moveb #2,%a1@(LMFP_TDDR) 2901 orb #1,%a1@(LMFP_TDCDR) 2902 bset #1,%a1@(LMFP_TSR) 2903#endif 2904 jra L(serial_init_done) 29054: 2906#endif 2907#ifdef CONFIG_MAC 2908 is_not_mac(L(serial_init_not_mac)) 2909#ifdef MAC_SERIAL_DEBUG 2910#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B) 2911#define MAC_USE_SCC_B 2912#endif 2913#define mac_scc_cha_b_ctrl_offset 0x0 2914#define mac_scc_cha_a_ctrl_offset 0x2 2915#define mac_scc_cha_b_data_offset 0x4 2916#define mac_scc_cha_a_data_offset 0x6 2917 2918#ifdef MAC_USE_SCC_A 2919 /* Initialize channel A */ 2920 movel %pc@(L(mac_sccbase)),%a0 2921 lea %pc@(L(scc_initable_mac)),%a1 29225: moveb %a1@+,%d0 2923 jmi 6f 2924 moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset) 2925 moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset) 2926 jra 5b 29276: 2928#endif /* MAC_USE_SCC_A */ 2929 2930#ifdef MAC_USE_SCC_B 2931 /* Initialize channel B */ 2932#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ 2933 movel %pc@(L(mac_sccbase)),%a0 2934#endif /* MAC_USE_SCC_A */ 2935 lea %pc@(L(scc_initable_mac)),%a1 29367: moveb %a1@+,%d0 2937 jmi 8f 2938 moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset) 2939 moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset) 2940 jra 7b 29418: 2942#endif /* MAC_USE_SCC_B */ 2943#endif /* MAC_SERIAL_DEBUG */ 2944 2945 jra L(serial_init_done) 2946L(serial_init_not_mac): 2947#endif /* CONFIG_MAC */ 2948 2949#ifdef CONFIG_Q40 2950 is_not_q40(2f) 2951/* debug output goes into SRAM, so we don't do it unless requested 2952 - check for '%LX$' signature in SRAM */ 2953 lea %pc@(q40_mem_cptr),%a1 2954 move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */ 2955 move.l #0xff020000,%a1 2956 cmp.b #'%',%a1@ 2957 bne 2f /*nodbg*/ 2958 addq.w #4,%a1 2959 cmp.b #'L',%a1@ 2960 bne 2f /*nodbg*/ 2961 addq.w #4,%a1 2962 cmp.b #'X',%a1@ 2963 bne 2f /*nodbg*/ 2964 addq.w #4,%a1 2965 cmp.b #'$',%a1@ 2966 bne 2f /*nodbg*/ 2967 /* signature OK */ 2968 lea %pc@(L(q40_do_debug)),%a1 2969 tas %a1@ 2970/*nodbg: q40_do_debug is 0 by default*/ 29712: 2972#endif 2973 2974#ifdef CONFIG_APOLLO 2975/* We count on the PROM initializing SIO1 */ 2976#endif 2977 2978#ifdef CONFIG_HP300 2979/* We count on the boot loader initialising the UART */ 2980#endif 2981 2982L(serial_init_done): 2983func_return serial_init 2984 2985/* 2986 * Output character on serial port. 2987 */ 2988func_start serial_putc,%d0/%d1/%a0/%a1 2989 2990 movel ARG1,%d0 2991 cmpib #'\n',%d0 2992 jbne 1f 2993 2994 /* A little safe recursion is good for the soul */ 2995 serial_putc #'\r' 29961: 2997 2998#ifdef CONFIG_AMIGA 2999 is_not_amiga(2f) 3000 andw #0x00ff,%d0 3001 oriw #0x0100,%d0 3002 movel %pc@(L(custom)),%a0 3003 movew %d0,%a0@(CUSTOMBASE+C_SERDAT) 30041: movew %a0@(CUSTOMBASE+C_SERDATR),%d0 3005 andw #0x2000,%d0 3006 jeq 1b 3007 jra L(serial_putc_done) 30082: 3009#endif 3010 3011#ifdef CONFIG_MAC 3012 is_not_mac(5f) 3013 3014#ifdef MAC_SERIAL_DEBUG 3015 3016#ifdef MAC_USE_SCC_A 3017 movel %pc@(L(mac_sccbase)),%a1 30183: btst #2,%a1@(mac_scc_cha_a_ctrl_offset) 3019 jeq 3b 3020 moveb %d0,%a1@(mac_scc_cha_a_data_offset) 3021#endif /* MAC_USE_SCC_A */ 3022 3023#ifdef MAC_USE_SCC_B 3024#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */ 3025 movel %pc@(L(mac_sccbase)),%a1 3026#endif /* MAC_USE_SCC_A */ 30274: btst #2,%a1@(mac_scc_cha_b_ctrl_offset) 3028 jeq 4b 3029 moveb %d0,%a1@(mac_scc_cha_b_data_offset) 3030#endif /* MAC_USE_SCC_B */ 3031 3032#endif /* MAC_SERIAL_DEBUG */ 3033 3034 jra L(serial_putc_done) 30355: 3036#endif /* CONFIG_MAC */ 3037 3038#ifdef CONFIG_ATARI 3039 is_not_atari(4f) 3040 movel %pc@(L(iobase)),%a1 3041#if defined(USE_PRINTER) 30423: btst #0,%a1@(LSTMFP_GPIP) 3043 jne 3b 3044 moveb #LPSG_IO_B,%a1@(LPSG_SELECT) 3045 moveb %d0,%a1@(LPSG_WRITE) 3046 moveb #LPSG_IO_A,%a1@(LPSG_SELECT) 3047 moveb %a1@(LPSG_READ),%d0 3048 bclr #5,%d0 3049 moveb %d0,%a1@(LPSG_WRITE) 3050 nop 3051 nop 3052 bset #5,%d0 3053 moveb %d0,%a1@(LPSG_WRITE) 3054#elif defined(USE_SCC) 30553: btst #2,%a1@(LSCC_CTRL) 3056 jeq 3b 3057 moveb %d0,%a1@(LSCC_DATA) 3058#elif defined(USE_MFP) 30593: btst #7,%a1@(LMFP_TSR) 3060 jeq 3b 3061 moveb %d0,%a1@(LMFP_UDR) 3062#endif 3063 jra L(serial_putc_done) 30644: 3065#endif /* CONFIG_ATARI */ 3066 3067#ifdef CONFIG_MVME147 3068 is_not_mvme147(2f) 30691: btst #2,M147_SCC_CTRL_A 3070 jeq 1b 3071 moveb %d0,M147_SCC_DATA_A 3072 jbra L(serial_putc_done) 30732: 3074#endif 3075 3076#ifdef CONFIG_MVME16x 3077 is_not_mvme16x(2f) 3078 /* 3079 * If the loader gave us a board type then we can use that to 3080 * select an appropriate output routine; otherwise we just use 3081 * the Bug code. If we haev to use the Bug that means the Bug 3082 * workspace has to be valid, which means the Bug has to use 3083 * the SRAM, which is non-standard. 3084 */ 3085 moveml %d0-%d7/%a2-%a6,%sp@- 3086 movel vme_brdtype,%d1 3087 jeq 1f | No tag - use the Bug 3088 cmpi #VME_TYPE_MVME162,%d1 3089 jeq 6f 3090 cmpi #VME_TYPE_MVME172,%d1 3091 jne 5f 3092 /* 162/172; it's an SCC */ 30936: btst #2,M162_SCC_CTRL_A 3094 nop 3095 nop 3096 nop 3097 jeq 6b 3098 moveb #8,M162_SCC_CTRL_A 3099 nop 3100 nop 3101 nop 3102 moveb %d0,M162_SCC_CTRL_A 3103 jra 3f 31045: 3105 /* 166/167/177; it's a CD2401 */ 3106 moveb #0,M167_CYCAR 3107 moveb M167_CYIER,%d2 3108 moveb #0x02,M167_CYIER 31097: 3110 btst #5,M167_PCSCCTICR 3111 jeq 7b 3112 moveb M167_PCTPIACKR,%d1 3113 moveb M167_CYLICR,%d1 3114 jeq 8f 3115 moveb #0x08,M167_CYTEOIR 3116 jra 7b 31178: 3118 moveb %d0,M167_CYTDR 3119 moveb #0,M167_CYTEOIR 3120 moveb %d2,M167_CYIER 3121 jra 3f 31221: 3123 moveb %d0,%sp@- 3124 trap #15 3125 .word 0x0020 /* TRAP 0x020 */ 31263: 3127 moveml %sp@+,%d0-%d7/%a2-%a6 3128 jbra L(serial_putc_done) 31292: 3130#endif /* CONFIG_MVME16x */ 3131 3132#ifdef CONFIG_BVME6000 3133 is_not_bvme6000(2f) 3134 /* 3135 * The BVME6000 machine has a serial port ... 3136 */ 31371: btst #2,BVME_SCC_CTRL_A 3138 jeq 1b 3139 moveb %d0,BVME_SCC_DATA_A 3140 jbra L(serial_putc_done) 31412: 3142#endif 3143 3144#ifdef CONFIG_SUN3X 3145 is_not_sun3x(2f) 3146 movel %d0,-(%sp) 3147 movel 0xFEFE0018,%a1 3148 jbsr (%a1) 3149 addq #4,%sp 3150 jbra L(serial_putc_done) 31512: 3152#endif 3153 3154#ifdef CONFIG_Q40 3155 is_not_q40(2f) 3156 tst.l %pc@(L(q40_do_debug)) /* only debug if requested */ 3157 beq 2f 3158 lea %pc@(q40_mem_cptr),%a1 3159 move.l %a1@,%a0 3160 move.b %d0,%a0@ 3161 addq.l #4,%a0 3162 move.l %a0,%a1@ 3163 jbra L(serial_putc_done) 31642: 3165#endif 3166 3167#ifdef CONFIG_APOLLO 3168 is_not_apollo(2f) 3169 movl %pc@(L(iobase)),%a1 3170 moveb %d0,%a1@(LTHRB0) 31711: moveb %a1@(LSRB0),%d0 3172 andb #0x4,%d0 3173 beq 1b 3174 jbra L(serial_putc_done) 31752: 3176#endif 3177 3178#ifdef CONFIG_HP300 3179 is_not_hp300(3f) 3180 movl %pc@(L(iobase)),%a1 3181 addl %pc@(L(uartbase)),%a1 3182 movel %pc@(L(uart_scode)),%d1 /* Check the scode */ 3183 jmi 3f /* Unset? Exit */ 3184 cmpi #256,%d1 /* APCI scode? */ 3185 jeq 2f 31861: moveb %a1@(DCALSR),%d1 /* Output to DCA */ 3187 andb #0x20,%d1 3188 beq 1b 3189 moveb %d0,%a1@(DCADATA) 3190 jbra L(serial_putc_done) 31912: moveb %a1@(APCILSR),%d1 /* Output to APCI */ 3192 andb #0x20,%d1 3193 beq 2b 3194 moveb %d0,%a1@(APCIDATA) 3195 jbra L(serial_putc_done) 31963: 3197#endif 3198 3199L(serial_putc_done): 3200func_return serial_putc 3201 3202/* 3203 * Output a string. 3204 */ 3205func_start puts,%d0/%a0 3206 3207 movel ARG1,%a0 3208 jra 2f 32091: 3210#ifdef CONSOLE 3211 console_putc %d0 3212#endif 3213#ifdef SERIAL_DEBUG 3214 serial_putc %d0 3215#endif 32162: moveb %a0@+,%d0 3217 jne 1b 3218 3219func_return puts 3220 3221/* 3222 * Output number in hex notation. 3223 */ 3224 3225func_start putn,%d0-%d2 3226 3227 putc ' ' 3228 3229 movel ARG1,%d0 3230 moveq #7,%d1 32311: roll #4,%d0 3232 move %d0,%d2 3233 andb #0x0f,%d2 3234 addb #'0',%d2 3235 cmpb #'9',%d2 3236 jls 2f 3237 addb #'A'-('9'+1),%d2 32382: 3239#ifdef CONSOLE 3240 console_putc %d2 3241#endif 3242#ifdef SERIAL_DEBUG 3243 serial_putc %d2 3244#endif 3245 dbra %d1,1b 3246 3247func_return putn 3248 3249#ifdef CONFIG_MAC 3250/* 3251 * mac_serial_print 3252 * 3253 * This routine takes its parameters on the stack. It then 3254 * turns around and calls the internal routine. This routine 3255 * is used until the Linux console driver initializes itself. 3256 * 3257 * The calling parameters are: 3258 * void mac_serial_print(const char *str); 3259 * 3260 * This routine does NOT understand variable arguments only 3261 * simple strings! 3262 */ 3263ENTRY(mac_serial_print) 3264 moveml %d0/%a0,%sp@- 3265#if 1 3266 move %sr,%sp@- 3267 ori #0x0700,%sr 3268#endif 3269 movel %sp@(10),%a0 /* fetch parameter */ 3270 jra 2f 32711: serial_putc %d0 32722: moveb %a0@+,%d0 3273 jne 1b 3274#if 1 3275 move %sp@+,%sr 3276#endif 3277 moveml %sp@+,%d0/%a0 3278 rts 3279#endif /* CONFIG_MAC */ 3280 3281#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3282func_start set_leds,%d0/%a0 3283 movel ARG1,%d0 3284#ifdef CONFIG_HP300 3285 is_not_hp300(1f) 3286 movel %pc@(L(iobase)),%a0 3287 moveb %d0,%a0@(0x1ffff) 3288 jra 2f 3289#endif 32901: 3291#ifdef CONFIG_APOLLO 3292 movel %pc@(L(iobase)),%a0 3293 lsll #8,%d0 3294 eorw #0xff00,%d0 3295 moveb %d0,%a0@(LCPUCTRL) 3296#endif 32972: 3298func_return set_leds 3299#endif 3300 3301#ifdef CONSOLE 3302/* 3303 * For continuity, see the data alignment 3304 * to which this structure is tied. 3305 */ 3306#define Lconsole_struct_cur_column 0 3307#define Lconsole_struct_cur_row 4 3308#define Lconsole_struct_num_columns 8 3309#define Lconsole_struct_num_rows 12 3310#define Lconsole_struct_left_edge 16 3311#define Lconsole_struct_penguin_putc 20 3312 3313func_start console_init,%a0-%a4/%d0-%d7 3314 /* 3315 * Some of the register usage that follows 3316 * a0 = pointer to boot_info 3317 * a1 = pointer to screen 3318 * a2 = pointer to Lconsole_globals 3319 * d3 = pixel width of screen 3320 * d4 = pixel height of screen 3321 * (d3,d4) ~= (x,y) of a point just below 3322 * and to the right of the screen 3323 * NOT on the screen! 3324 * d5 = number of bytes per scan line 3325 * d6 = number of bytes on the entire screen 3326 */ 3327 3328 lea %pc@(L(console_globals)),%a2 3329 movel %pc@(L(mac_videobase)),%a1 3330 movel %pc@(L(mac_rowbytes)),%d5 3331 movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */ 3332 movel %d3,%d4 3333 swap %d4 /* -> high byte */ 3334 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3335 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3336 3337 movel %d5,%d6 3338| subl #20,%d6 3339 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3340 divul #8,%d6 /* we'll clear 8 bytes at a time */ 3341 moveq #-1,%d0 /* Mac_black */ 3342 subq #1,%d6 3343 3344L(console_clear_loop): 3345 movel %d0,%a1@+ 3346 movel %d0,%a1@+ 3347 dbra %d6,L(console_clear_loop) 3348 3349 /* Calculate font size */ 3350 3351#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8) 3352 lea %pc@(font_vga_8x8),%a0 3353#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16) 3354 lea %pc@(font_vga_8x16),%a0 3355#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11) 3356 lea %pc@(font_vga_6x11),%a0 3357#elif defined(CONFIG_FONT_8x8) /* default */ 3358 lea %pc@(font_vga_8x8),%a0 3359#else /* no compiled-in font */ 3360 lea 0,%a0 3361#endif 3362 3363 /* 3364 * At this point we make a shift in register usage 3365 * a1 = address of console_font pointer 3366 */ 3367 lea %pc@(L(console_font)),%a1 3368 movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */ 3369 tstl %a0 3370 jeq 1f 3371 lea %pc@(L(console_font_data)),%a4 3372 movel %a0@(FONT_DESC_DATA),%d0 3373 subl #L(console_font),%a1 3374 addl %a1,%d0 3375 movel %d0,%a4@ 3376 3377 /* 3378 * Calculate global maxs 3379 * Note - we can use either an 3380 * 8 x 16 or 8 x 8 character font 3381 * 6 x 11 also supported 3382 */ 3383 /* ASSERT: a0 = contents of Lconsole_font */ 3384 movel %d3,%d0 /* screen width in pixels */ 3385 divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */ 3386 3387 movel %d4,%d1 /* screen height in pixels */ 3388 divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */ 3389 3390 movel %d0,%a2@(Lconsole_struct_num_columns) 3391 movel %d1,%a2@(Lconsole_struct_num_rows) 3392 3393 /* 3394 * Clear the current row and column 3395 */ 3396 clrl %a2@(Lconsole_struct_cur_column) 3397 clrl %a2@(Lconsole_struct_cur_row) 3398 clrl %a2@(Lconsole_struct_left_edge) 3399 3400 /* 3401 * Initialization is complete 3402 */ 34031: 3404func_return console_init 3405 3406func_start console_put_stats,%a0/%d7 3407 /* 3408 * Some of the register usage that follows 3409 * a0 = pointer to boot_info 3410 * d7 = value of boot_info fields 3411 */ 3412 puts "\nMacLinux\n\n" 3413 3414#ifdef SERIAL_DEBUG 3415 puts " vidaddr:" 3416 putn %pc@(L(mac_videobase)) /* video addr. */ 3417 3418 puts "\n _stext:" 3419 lea %pc@(_stext),%a0 3420 putn %a0 3421 3422 puts "\nbootinfo:" 3423 lea %pc@(_end),%a0 3424 putn %a0 3425 3426 puts "\ncpuid:" 3427 putn %pc@(L(cputype)) 3428 putc '\n' 3429 3430#ifdef MAC_SERIAL_DEBUG 3431 putn %pc@(L(mac_sccbase)) 3432 putc '\n' 3433#endif 3434# if defined(MMU_PRINT) 3435 jbsr mmu_print_machine_cpu_types 3436# endif /* MMU_PRINT */ 3437#endif /* SERIAL_DEBUG */ 3438 3439func_return console_put_stats 3440 3441#ifdef CONSOLE_PENGUIN 3442func_start console_put_penguin,%a0-%a1/%d0-%d7 3443 /* 3444 * Get 'that_penguin' onto the screen in the upper right corner 3445 * penguin is 64 x 74 pixels, align against right edge of screen 3446 */ 3447 lea %pc@(L(mac_dimensions)),%a0 3448 movel %a0@,%d0 3449 andil #0xffff,%d0 3450 subil #64,%d0 /* snug up against the right edge */ 3451 clrl %d1 /* start at the top */ 3452 movel #73,%d7 3453 lea %pc@(L(that_penguin)),%a1 3454L(console_penguin_row): 3455 movel #31,%d6 3456L(console_penguin_pixel_pair): 3457 moveb %a1@,%d2 3458 lsrb #4,%d2 3459 console_plot_pixel %d0,%d1,%d2 3460 addq #1,%d0 3461 moveb %a1@+,%d2 3462 console_plot_pixel %d0,%d1,%d2 3463 addq #1,%d0 3464 dbra %d6,L(console_penguin_pixel_pair) 3465 3466 subil #64,%d0 3467 addq #1,%d1 3468 dbra %d7,L(console_penguin_row) 3469 3470func_return console_put_penguin 3471 3472/* include penguin bitmap */ 3473L(that_penguin): 3474#include "../mac/mac_penguin.S" 3475#endif 3476 3477 /* 3478 * Calculate source and destination addresses 3479 * output a1 = dest 3480 * a2 = source 3481 */ 3482 3483func_start console_scroll,%a0-%a4/%d0-%d7 3484 lea %pc@(L(mac_videobase)),%a0 3485 movel %a0@,%a1 3486 movel %a1,%a2 3487 lea %pc@(L(mac_rowbytes)),%a0 3488 movel %a0@,%d5 3489 movel %pc@(L(console_font)),%a0 3490 tstl %a0 3491 jeq 1f 3492 mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */ 3493 addal %d5,%a2 3494 3495 /* 3496 * Get dimensions 3497 */ 3498 lea %pc@(L(mac_dimensions)),%a0 3499 movel %a0@,%d3 3500 movel %d3,%d4 3501 swap %d4 3502 andl #0xffff,%d3 /* d3 = screen width in pixels */ 3503 andl #0xffff,%d4 /* d4 = screen height in pixels */ 3504 3505 /* 3506 * Calculate number of bytes to move 3507 */ 3508 lea %pc@(L(mac_rowbytes)),%a0 3509 movel %a0@,%d6 3510 movel %pc@(L(console_font)),%a0 3511 subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */ 3512 mulul %d4,%d6 /* scan line bytes x num scan lines */ 3513 divul #32,%d6 /* we'll move 8 longs at a time */ 3514 subq #1,%d6 3515 3516L(console_scroll_loop): 3517 movel %a2@+,%a1@+ 3518 movel %a2@+,%a1@+ 3519 movel %a2@+,%a1@+ 3520 movel %a2@+,%a1@+ 3521 movel %a2@+,%a1@+ 3522 movel %a2@+,%a1@+ 3523 movel %a2@+,%a1@+ 3524 movel %a2@+,%a1@+ 3525 dbra %d6,L(console_scroll_loop) 3526 3527 lea %pc@(L(mac_rowbytes)),%a0 3528 movel %a0@,%d6 3529 movel %pc@(L(console_font)),%a0 3530 mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */ 3531 divul #32,%d6 /* we'll move 8 words at a time */ 3532 subq #1,%d6 3533 3534 moveq #-1,%d0 3535L(console_scroll_clear_loop): 3536 movel %d0,%a1@+ 3537 movel %d0,%a1@+ 3538 movel %d0,%a1@+ 3539 movel %d0,%a1@+ 3540 movel %d0,%a1@+ 3541 movel %d0,%a1@+ 3542 movel %d0,%a1@+ 3543 movel %d0,%a1@+ 3544 dbra %d6,L(console_scroll_clear_loop) 3545 35461: 3547func_return console_scroll 3548 3549 3550func_start console_putc,%a0/%a1/%d0-%d7 3551 3552 is_not_mac(L(console_exit)) 3553 tstl %pc@(L(console_font)) 3554 jeq L(console_exit) 3555 3556 /* Output character in d7 on console. 3557 */ 3558 movel ARG1,%d7 3559 cmpib #'\n',%d7 3560 jbne 1f 3561 3562 /* A little safe recursion is good for the soul */ 3563 console_putc #'\r' 35641: 3565 lea %pc@(L(console_globals)),%a0 3566 3567 cmpib #10,%d7 3568 jne L(console_not_lf) 3569 movel %a0@(Lconsole_struct_cur_row),%d0 3570 addil #1,%d0 3571 movel %d0,%a0@(Lconsole_struct_cur_row) 3572 movel %a0@(Lconsole_struct_num_rows),%d1 3573 cmpl %d1,%d0 3574 jcs 1f 3575 subil #1,%d0 3576 movel %d0,%a0@(Lconsole_struct_cur_row) 3577 console_scroll 35781: 3579 jra L(console_exit) 3580 3581L(console_not_lf): 3582 cmpib #13,%d7 3583 jne L(console_not_cr) 3584 clrl %a0@(Lconsole_struct_cur_column) 3585 jra L(console_exit) 3586 3587L(console_not_cr): 3588 cmpib #1,%d7 3589 jne L(console_not_home) 3590 clrl %a0@(Lconsole_struct_cur_row) 3591 clrl %a0@(Lconsole_struct_cur_column) 3592 jra L(console_exit) 3593 3594/* 3595 * At this point we know that the %d7 character is going to be 3596 * rendered on the screen. Register usage is - 3597 * a0 = pointer to console globals 3598 * a1 = font data 3599 * d0 = cursor column 3600 * d1 = cursor row to draw the character 3601 * d7 = character number 3602 */ 3603L(console_not_home): 3604 movel %a0@(Lconsole_struct_cur_column),%d0 3605 addql #1,%a0@(Lconsole_struct_cur_column) 3606 movel %a0@(Lconsole_struct_num_columns),%d1 3607 cmpl %d1,%d0 3608 jcs 1f 3609 console_putc #'\n' /* recursion is OK! */ 36101: 3611 movel %a0@(Lconsole_struct_cur_row),%d1 3612 3613 /* 3614 * At this point we make a shift in register usage 3615 * a0 = address of pointer to font data (fbcon_font_desc) 3616 */ 3617 movel %pc@(L(console_font)),%a0 3618 movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */ 3619 andl #0x000000ff,%d7 3620 /* ASSERT: a0 = contents of Lconsole_font */ 3621 mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */ 3622 addl %d7,%a1 /* a1 = points to char image */ 3623 3624 /* 3625 * At this point we make a shift in register usage 3626 * d0 = pixel coordinate, x 3627 * d1 = pixel coordinate, y 3628 * d2 = (bit 0) 1/0 for white/black (!) pixel on screen 3629 * d3 = font scan line data (8 pixels) 3630 * d6 = count down for the font's pixel width (8) 3631 * d7 = count down for the font's pixel count in height 3632 */ 3633 /* ASSERT: a0 = contents of Lconsole_font */ 3634 mulul %a0@(FONT_DESC_WIDTH),%d0 3635 mulul %a0@(FONT_DESC_HEIGHT),%d1 3636 movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */ 3637 subq #1,%d7 3638L(console_read_char_scanline): 3639 moveb %a1@+,%d3 3640 3641 /* ASSERT: a0 = contents of Lconsole_font */ 3642 movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */ 3643 subql #1,%d6 3644 3645L(console_do_font_scanline): 3646 lslb #1,%d3 3647 scsb %d2 /* convert 1 bit into a byte */ 3648 console_plot_pixel %d0,%d1,%d2 3649 addq #1,%d0 3650 dbra %d6,L(console_do_font_scanline) 3651 3652 /* ASSERT: a0 = contents of Lconsole_font */ 3653 subl %a0@(FONT_DESC_WIDTH),%d0 3654 addq #1,%d1 3655 dbra %d7,L(console_read_char_scanline) 3656 3657L(console_exit): 3658func_return console_putc 3659 3660 /* 3661 * Input: 3662 * d0 = x coordinate 3663 * d1 = y coordinate 3664 * d2 = (bit 0) 1/0 for white/black (!) 3665 * All registers are preserved 3666 */ 3667func_start console_plot_pixel,%a0-%a1/%d0-%d4 3668 3669 movel %pc@(L(mac_videobase)),%a1 3670 movel %pc@(L(mac_videodepth)),%d3 3671 movel ARG1,%d0 3672 movel ARG2,%d1 3673 mulul %pc@(L(mac_rowbytes)),%d1 3674 movel ARG3,%d2 3675 3676 /* 3677 * Register usage: 3678 * d0 = x coord becomes byte offset into frame buffer 3679 * d1 = y coord 3680 * d2 = black or white (0/1) 3681 * d3 = video depth 3682 * d4 = temp of x (d0) for many bit depths 3683 */ 3684L(test_1bit): 3685 cmpb #1,%d3 3686 jbne L(test_2bit) 3687 movel %d0,%d4 /* we need the low order 3 bits! */ 3688 divul #8,%d0 3689 addal %d0,%a1 3690 addal %d1,%a1 3691 andb #7,%d4 3692 eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3693 andb #1,%d2 3694 jbne L(white_1) 3695 bsetb %d4,%a1@ 3696 jbra L(console_plot_pixel_exit) 3697L(white_1): 3698 bclrb %d4,%a1@ 3699 jbra L(console_plot_pixel_exit) 3700 3701L(test_2bit): 3702 cmpb #2,%d3 3703 jbne L(test_4bit) 3704 movel %d0,%d4 /* we need the low order 2 bits! */ 3705 divul #4,%d0 3706 addal %d0,%a1 3707 addal %d1,%a1 3708 andb #3,%d4 3709 eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */ 3710 lsll #1,%d4 /* ! */ 3711 andb #1,%d2 3712 jbne L(white_2) 3713 bsetb %d4,%a1@ 3714 addq #1,%d4 3715 bsetb %d4,%a1@ 3716 jbra L(console_plot_pixel_exit) 3717L(white_2): 3718 bclrb %d4,%a1@ 3719 addq #1,%d4 3720 bclrb %d4,%a1@ 3721 jbra L(console_plot_pixel_exit) 3722 3723L(test_4bit): 3724 cmpb #4,%d3 3725 jbne L(test_8bit) 3726 movel %d0,%d4 /* we need the low order bit! */ 3727 divul #2,%d0 3728 addal %d0,%a1 3729 addal %d1,%a1 3730 andb #1,%d4 3731 eorb #1,%d4 3732 lsll #2,%d4 /* ! */ 3733 andb #1,%d2 3734 jbne L(white_4) 3735 bsetb %d4,%a1@ 3736 addq #1,%d4 3737 bsetb %d4,%a1@ 3738 addq #1,%d4 3739 bsetb %d4,%a1@ 3740 addq #1,%d4 3741 bsetb %d4,%a1@ 3742 jbra L(console_plot_pixel_exit) 3743L(white_4): 3744 bclrb %d4,%a1@ 3745 addq #1,%d4 3746 bclrb %d4,%a1@ 3747 addq #1,%d4 3748 bclrb %d4,%a1@ 3749 addq #1,%d4 3750 bclrb %d4,%a1@ 3751 jbra L(console_plot_pixel_exit) 3752 3753L(test_8bit): 3754 cmpb #8,%d3 3755 jbne L(test_16bit) 3756 addal %d0,%a1 3757 addal %d1,%a1 3758 andb #1,%d2 3759 jbne L(white_8) 3760 moveb #0xff,%a1@ 3761 jbra L(console_plot_pixel_exit) 3762L(white_8): 3763 clrb %a1@ 3764 jbra L(console_plot_pixel_exit) 3765 3766L(test_16bit): 3767 cmpb #16,%d3 3768 jbne L(console_plot_pixel_exit) 3769 addal %d0,%a1 3770 addal %d0,%a1 3771 addal %d1,%a1 3772 andb #1,%d2 3773 jbne L(white_16) 3774 clrw %a1@ 3775 jbra L(console_plot_pixel_exit) 3776L(white_16): 3777 movew #0x0fff,%a1@ 3778 jbra L(console_plot_pixel_exit) 3779 3780L(console_plot_pixel_exit): 3781func_return console_plot_pixel 3782#endif /* CONSOLE */ 3783 3784#if 0 3785/* 3786 * This is some old code lying around. I don't believe 3787 * it's used or important anymore. My guess is it contributed 3788 * to getting to this point, but it's done for now. 3789 * It was still in the 2.1.77 head.S, so it's still here. 3790 * (And still not used!) 3791 */ 3792L(showtest): 3793 moveml %a0/%d7,%sp@- 3794 puts "A=" 3795 putn %a1 3796 3797 .long 0xf0119f15 | ptestr #5,%a1@,#7,%a0 3798 3799 puts "DA=" 3800 putn %a0 3801 3802 puts "D=" 3803 putn %a0@ 3804 3805 puts "S=" 3806 lea %pc@(L(mmu)),%a0 3807 .long 0xf0106200 | pmove %psr,%a0@ 3808 clrl %d7 3809 movew %a0@,%d7 3810 putn %d7 3811 3812 putc '\n' 3813 moveml %sp@+,%a0/%d7 3814 rts 3815#endif /* 0 */ 3816 3817__INITDATA 3818 .align 4 3819 3820#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \ 3821 defined(CONFIG_HP300) || defined(CONFIG_APOLLO) 3822L(custom): 3823L(iobase): 3824 .long 0 3825#endif 3826 3827#if defined(CONSOLE) 3828L(console_globals): 3829 .long 0 /* cursor column */ 3830 .long 0 /* cursor row */ 3831 .long 0 /* max num columns */ 3832 .long 0 /* max num rows */ 3833 .long 0 /* left edge */ 3834 .long 0 /* mac putc */ 3835L(console_font): 3836 .long 0 /* pointer to console font (struct font_desc) */ 3837L(console_font_data): 3838 .long 0 /* pointer to console font data */ 3839#endif /* CONSOLE */ 3840 3841#if defined(MMU_PRINT) 3842L(mmu_print_data): 3843 .long 0 /* valid flag */ 3844 .long 0 /* start logical */ 3845 .long 0 /* next logical */ 3846 .long 0 /* start physical */ 3847 .long 0 /* next physical */ 3848#endif /* MMU_PRINT */ 3849 3850L(cputype): 3851 .long 0 3852L(mmu_cached_pointer_tables): 3853 .long 0 3854L(mmu_num_pointer_tables): 3855 .long 0 3856L(phys_kernel_start): 3857 .long 0 3858L(kernel_end): 3859 .long 0 3860L(memory_start): 3861 .long 0 3862L(kernel_pgdir_ptr): 3863 .long 0 3864L(temp_mmap_mem): 3865 .long 0 3866 3867#if defined (CONFIG_MVME147) 3868M147_SCC_CTRL_A = 0xfffe3002 3869M147_SCC_DATA_A = 0xfffe3003 3870#endif 3871 3872#if defined (CONFIG_MVME16x) 3873M162_SCC_CTRL_A = 0xfff45005 3874M167_CYCAR = 0xfff450ee 3875M167_CYIER = 0xfff45011 3876M167_CYLICR = 0xfff45026 3877M167_CYTEOIR = 0xfff45085 3878M167_CYTDR = 0xfff450f8 3879M167_PCSCCTICR = 0xfff4201e 3880M167_PCTPIACKR = 0xfff42025 3881#endif 3882 3883#if defined (CONFIG_BVME6000) 3884BVME_SCC_CTRL_A = 0xffb0000b 3885BVME_SCC_DATA_A = 0xffb0000f 3886#endif 3887 3888#if defined(CONFIG_MAC) 3889L(mac_booter_data): 3890 .long 0 3891L(mac_videobase): 3892 .long 0 3893L(mac_videodepth): 3894 .long 0 3895L(mac_dimensions): 3896 .long 0 3897L(mac_rowbytes): 3898 .long 0 3899#ifdef MAC_SERIAL_DEBUG 3900L(mac_sccbase): 3901 .long 0 3902#endif /* MAC_SERIAL_DEBUG */ 3903#endif 3904 3905#if defined (CONFIG_APOLLO) 3906LSRB0 = 0x10412 3907LTHRB0 = 0x10416 3908LCPUCTRL = 0x10100 3909#endif 3910 3911#if defined(CONFIG_HP300) 3912DCADATA = 0x11 3913DCALSR = 0x1b 3914APCIDATA = 0x00 3915APCILSR = 0x14 3916L(uartbase): 3917 .long 0 3918L(uart_scode): 3919 .long -1 3920#endif 3921 3922__FINIT 3923 .data 3924 .align 4 3925 3926availmem: 3927 .long 0 3928m68k_pgtable_cachemode: 3929 .long 0 3930m68k_supervisor_cachemode: 3931 .long 0 3932#if defined(CONFIG_MVME16x) 3933mvme_bdid: 3934 .long 0,0,0,0,0,0,0,0 3935#endif 3936#if defined(CONFIG_Q40) 3937q40_mem_cptr: 3938 .long 0 3939L(q40_do_debug): 3940 .long 0 3941#endif 3942